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Abstract

The aim of this series of papers is to develop the theory of minimal models
for real algebraic threefolds. The ultimate aim is to understand the topology of
the set of real points of real algebraic threefolds. We pay special attention to
3–folds which are birational to projective space and, more generally, to 3–folds
of Kodaira dimension minus infinity.

The present work contains the beginning steps of this program. First we
classify 3–dimensional terminal singularities over any field of characteristic
zero. When the base field is the set of reals, the classification is used to give a
topological description of the set of real points.

1. Introduction

In real algebraic geometry, considerable attention has been paid to the study of
real algebraic curves (in connection with Hilbert’s 16th problem) and also to real
algebraic surfaces. See [17], [16] and the references there.

In higher dimensions one of the main avenues of investigation was initiated by
[13], and later developed by many others (see [1] for some recent directions). One of
these results says that every compact differentiable manifold can be realized as the
set of real points of an algebraic variety. [13] posed the problem of obtaining similar
results using a restricted class of varieties, for instance rational varieties.

The aim of this series of papers is to develop the theory of minimal models
for real algebraic threefolds. This approach gives very strong information about
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the topology of real algebraic threefolds, and it also answers the above mentioned
question of [13].

For algebraic threefolds over C, the minimal model program provides a very
powerful tool. The method of the program is the following. (See [7] or [5] for
introductions.)

Starting with a smooth projective variety X, we perform a series of “elemen-
tary” birational transformations

X = X0 −−→ X1 −−→ · · · −−→ Xn

until we reach a variety Xn whose global structure is “simple”. In essence the
minimal model program allows us to investigate many questions in two steps: first
study the effect of the “elementary” transformations and then consider the “simple”
global situation.

In practice both of these steps are frequently rather difficult. For instance, we
still do not have a complete list of all possible “elementary” steps, despite repeated
attempts to obtain it.

A somewhat unpleasant feature of the theory is that the varieties Xi are not
smooth, but have so called terminal singularities. In developing the theory of mini-
mal models for real algebraic threefolds, we again have to understand the terminal
singularities that occur.

The aim of this paper is to give a classification of terminal 3-fold singularities
over R. Minimal models serve only as a background, the proofs depend entirely on
well established methods of singularity theory. I do not even use the definition of
terminal singularities!

Subsequent papers of the series will examine the connections between the topo-
logy of a real algebraic threefold X and the minimal model program (see [9]). Using
the classification of this paper as the starting point, we will be able to exclude most
terminal singularities from the minimal model of X if the set of real points X(R) is
orientable (or satisfies some weaker topological assumptions).

Terminal 3-fold singularities over C are completely classified. [15] is a very
readable introduction and survey. I will take the result of this classification as my
definition, since the theory over R can be most naturally developed in this setting.

The classification is, in some sense, not complete. In a few cases I obtain unique
normal forms (4.3), but in most cases this seems nearly impossible (see [10] for a
special case over C). My aim is to write the singularities in a form that allows one
to determine their topology over R. The resulting lists and algorithms are given in
sections 4–5.
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It turns out that the normal forms of 3-fold terminal singularities are essentially
the same over any field of characteristic zero. Thus in sections 2–3 I work with any
subfield of C.

As a consequence of the classification over C, we know that 3-fold terminal
singularities come in two types. Some are hypersurface singularities, and the others
are quotients of these hypersurface singularities by a finite cyclic group. Accordingly,
the classification over any field is done in two steps. Section 2 deals with terminal
hypersurface singularities. These results are mostly routine generalizations of the
theory over C.

Quotient singularities frequently have “twisted” forms over a subfield of C.
“Twisted” forms do not appear for 3-fold terminal singularities, and so the classifi-
cation ends up very similar to the one over C.

2. Terminal hypersurface singularities

Notation 2.1. For a field K let K[[x1, . . . , xn]] denote the ring of formal power
series in n variables over K. For K = R or K = C, let K{x1, . . . , xn} denote the
ring of those formal power series which converge in some neighborhood of the origin.

For any F ∈ K{x1, . . . , xn} the set (F = 0) is a germ of a real or complex
analytic set. I will refer to it as a singularity. If F ∈ K[[x1, . . . , xn]] then by the
singularity (F = 0) I mean the scheme SpecKK[[x1, . . . , xn]]/(F ).

For a power series F , Fd denotes the degree d homogeneous part. The multi-
plicity, denoted by mult0F , is the smallest d such that Fd �= 0. If we write a power
series as F≥d then it is assumed that its multiplicity is at least d.

We say that two power series F,G ∈ K[[x1, . . . , xn]] are equivalent over K
if there is an automorphism of K[[x1, . . . , xn]] given by xi �→ φi(x1, . . . , xn) ∈
K[[x1, . . . , xn]] and an invertible u(x1, . . . , xn) ∈ K[[x1, . . . , xn]] such that

u(x1, . . . , xn)G(x1, . . . , xn) = F (φ1, . . . , φn) .

Thus F and G are equivalent iff the corresponding singularities (F = 0) and (G = 0)
are isomorphic (over K).

We have to pay special attention to cases when F and G are not equivalent
over K but are equivalent over some larger field. For instance, F = x2

1 + x2
2 and

G = x2
1 − x2

2 are not equivalent over R but are equivalent over C.
If K = R,C and F,G ∈ K{x1, . . . , xn} then I am mainly interested in equiva-

lences where u, φi ∈ K{x1, . . . , xn}.
If F,G ∈ K{x1, . . . , xn} have isolated critical points at the origin, then F

and G are equivalent in K{x1, . . . , xn} iff they are equivalent in K[[x1, . . . , xn]]
(cf. [2, p. 121]), thus we do not have to be careful about this distinction.



338 Kollár

Definition 2.2. Let K be a field of characteristic zero with algebraic closure K̄.
(F (x, y, z) = 0) is called a Du Val singularity (or a rational double point) iff over K̄

it is equivalent to one of the standard forms

An : x2 + y2 + zn+1 = 0 for n ≥ 0 ;
Dn : x2 + y2z + zn−1 = 0 for n ≥ 4 ;
E6 : x2 + y3 + z4 = 0 ;
E7 : x2 + y3 + yz3 = 0 ;
E8 : x2 + y3 + z5 = 0 .

Du Val singularities have many interesting intrinsic characterizations, (cf. [6], [15])
but I will not use this.

The following definition introduces our basic objects of study.

Definition 2.3. Let K be a field of characteristic zero with algebraic closure K̄.
(F (x, y, z, t) = 0) is called a compound Du Val singularity (or cDV for short) iff over
K̄ it is equivalent to

h(x, y, z) + tf(x, y, z, t) = 0

where (h = 0) is a Du Val singularity.
(F (x, y, z, t) = 0) is called a cAn (resp. cDn or cEn) singularity if its equation

can be written as above with h having type An (resp. Dn or En), but it does not
admit such representation with a smaller value of n. It is called a cA (resp. cD or
cE) singularity if the value of n is not specified.

The reason we are interested in cDV singularities is the following:

Theorem 2.4 [14]

A 3-dimensional hypersurface singularity over C is terminal iff it is an isolated

cDV singularity. �

The aim of this section is to develop “normal forms” for cDV singularities
over any field K. This will then give “normal forms” for 3-dimensional terminal
hypersurface singularities over K.

The proof is a rather standard application of the methods of [2].

2.5 (How to simplify power series?)
We use 3 methods to bring power series to normal forms:

(1) The Weierstrass preparation theorem. This is frequently stated only over
C, but it works over any field since the Weierstrass normal form is unique.
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(2) The elimination of the yn−1-term from the polynomial anyn + an−1y
n−1 +

· · · by a coordinate change y �→ y − an−1/nan when an is invertible.
(3) Let M1, . . . ,Mk be monomials in the variables x1, . . . , xm. Assume that

x0M1, . . . , x0Mk are multiplicatively independent. Then any power series
of the form

∑
Mi · ui(x1, . . . , xm) where ui(0) �= 0 for all i is equivalent to∑

Mi · ui(0) by a suitable coordinate change xi �→ xi · (unit).

These elementary operations are sufficient to deal with the cA and cE cases. In
the cD case the following generalization of (2.5.2) is needed.

Construction 2.6. In K[[x1, . . . , xm]], assign positive integral weights to the va-
riables w(xi) = wi. For a monomial set w(

∏
xci
i ) =

∑
ciwi. Write a power series

in terms of its weighted homogeneous pieces F = Fd + Fd+1 + · · ·. Our aim is to
find a coordinate change such that F is transformed into a power series (or even a
polynomial) of the form F̃d + F̃>d where F̃d = Fd and F̃>d contains as few terms as
possible.

Choose gi ∈ K[[x1, . . . , xm]] such that w(gi) = w(xi) + e for some e > 0. Then

F (xi + gi) = F (xi) +
∑

gi
∂Fd

∂xi
+ R>(d+e)(xi) .

Repeatedly using this for higher and higher degrees, we see that, for every N > 0,
F is equivalent to a power series FN + R>N where FN is a polynomial of degree
N and no linear combination of the monomials in FN can be written in the form∑

gi(∂Fd/∂xi) as above.
In the ring of formal power series this can be continued indefinitely, thus at the

end we can kill all the degree > d elements of the Jacobian ideal

∆(Fd) :=
(
∂Fd

∂x1
, . . . ,

∂Fd

∂xm

)
.

If F ∈ K{x1, . . . , xm} defines an isolated singularity, then FN + R>N is equivalent
to FN by an analytic coordinate change for N � 1 by Tougeron’s lemma (cf. [2,
p. 121]). Thus the final conclusion is the same.

Proposition 2.7

Any power series F≥2(x1, . . . , xn) is equivalent to a power series

a1x
2
1 + · · · + akx

2
k + G≥3(xk+1, . . . , xn) .
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Proof. By a linear change of coordinates we can diagonalize F2, thus we can assume
that F2 = a1x

2
1 + · · ·+akx

2
k. Repeatedly applying (2.5.1) to the variables x1, . . . , xk

we reach a situation when F is a quadratic polynomial in the variables x1, . . . , xk.
(2.5.2) can then be used to eliminate the linear terms in x1, . . . , xk. �

Theorem 2.8

Assume that F≥1(x, y, z, t) ∈ K[[x, y, z, t]] defines a terminal singularity of type

cA. Then F is equivalent to one of the following:

cA0 : x .

cA1 : ax2 + by2 + cz2 + dtm, where abcd �= 0 .

cA>1 : ax2 + by2 + f≥3(z, t), where ab �= 0 and f≥3(z, t) has no multiple factors.

This has type cAn for n = mult0f − 1 .

In all these cases we can multiply through by a−1 to get a somewhat simpler
form when the coefficient of x2 is 1.

Proof. If F1 �= 0 then (2.5.1) gives cA0. Thus assume that F1 = 0. F has type cA,
hence F2 is a quadric of rank at least 2. If the rank is 2 then (2.7) gives the cA>1

cases. f≥3(z, t) has no multiple factors since the singularity is isolated.
Assume finally that F2 has rank 3 or 4. By (2.7) we can write F as ax2 + by2 +

cz2 + g(t) = 0. Using (2.5.3) we obtain ax2 + by2 + cz2 + dtm = 0. �

Theorem 2.9

Assume that F≥2(x, y, z, t) ∈ K[[x, y, z, t]] defines a terminal singularity of type

cD. Then F is equivalent to one of the following:

cD4 : x2 + f≥3(y, z, t), where f3 is not divisible by the square of a linear form.

cD>4 : x2 + y2z + aytr + h≥s(z, t), where a ∈ K, r ≥ 3, s ≥ 4 and hs �= 0.

This has type cDn where n = min{2r, s + 1} if a �= 0 and n = s + 1 if a = 0.

Proof. F2 is a rank one quadric, thus in suitable coordinates the equation becomes
ax2 + f≥3(y, z, t). Here f3 �= 0 is not the cube of a linear form since otherwise we
would have a type cE singularity. If f3 is not divisible by the square of a linear form
then we have case cD4.

If f3 is divisible by the square of a linear form, then f3 = l21l2 for two linear
forms li, and both of them are defined over K. We can change coordinates l1 �→ y

and l2 �→ z.
At this point our power series is x2+y2z+(higher order terms). Assign weights

w(x) = 3, w(y) = w(z) = 2, w(t) = 6. The leading term is x2 + y2z. Using (2.6) we
can eliminate all monomials which contain y2 or yz.
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To see the last part, take the hyperplane section t = λz. The term ayλrzr

can be eliminated by a substitution y �→ y + (a/2)λrzr−1. This creates a term
−(a/2)2λ2rz2r−1. The only problem could be that h(z, λz) has multiplicity 2r − 1
and there is cancellation. However, h2r−1(z, λz) = z2r−1h2r−1(1, λ) is a polynomial
of degree 2r − 1 in λ, thus it does not equal −(a/2)2λ2rz2r−1. �

Theorem 2.10

Assume that F≥2(x, y, z, t) ∈ K[[x, y, z, t]] defines a terminal singularity of type

cE. Then F is equivalent to one of the following:

cE6 : x2 + y3 + yg≥3(z, t) + h≥4(z, t), where h4 �= 0 .

cE7 : x2 + y3 + yg≥3(z, t) + h≥5(z, t), where g3 �= 0 .

cE8 : x2 + y3 + yg≥4(z, t) + h≥5(z, t), where h5 �= 0 .

Proof. F2 is a rank one quadric by (2.3), thus in suitable coordinates the equation
becomes ax2 + f≥3(y, z, t). Here f3 �= 0 and it is the cube of a linear form since
otherwise we would have a type cD singularity. (2.5.1–2) gives an equation

ax2 + by3 + yg≥3(z, t) + h≥4(z, t) .

Multiply the equation by a3b2 and then make the substitutions x �→ xa−2b−1 and
y �→ ya−1b−1 to get the required normal forms. �

3. Higher index terminal singularities

The classification of non-hypersurface terminal 3-fold singularities over C relies on
the following construction:

Let Zn denote the cyclic group of order n and ε a primitive nth root of unity.
Assume that Zn acts on C

4 by

σ : (x, y, z, t) �→ (εaxx, εayy, εazz, εatt) .

I will use the shorter notation 1
n (ax, ay, az, at) to denote such an action.

If F (x, y, z, t) is equivariant with respect to this action, then Zn acts on the hy-
persurface (F= 0) and we can take the quotient, denoted by (F = 0)/ 1

n (ax, ay, az, at).
By [14], every terminal 3-fold singularity X over C is of the form (F = 0)/

1
n (ax, ay, az, at), where F defines a terminal hypersurface singularity. The value of
n is uniquely determined by X, it is called the index of X.
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It is not easy to come up with a complete list of terminal 3-fold singularities,
but by now the list is well understood; see [15] for a good survey. It turns out that
most actions do not produce terminal quotients and we have only a few cases:

Theorem 3.1 [12]
Let 0 ∈ X be a 3-fold terminal nonhypersurface singularity over C. Then 0 ∈ X

is isomorphic to a singularity described by the following list:

name equation index action condition
cA/n xy + f(z, t) n (r,−r, 1, 0) (n, r) = 1
cAx/2 x2 + y2 + f≥4(z, t) 2 (0, 1, 1, 1)
cAx/4 x2 + y2 + f≥2(z, t) 4 (1, 3, 1, 2) f2(0, 1) = 0
cD/2 x2 + f≥3(y, z, t) 2 (1, 0, 1, 1)
cD/3 x2 + f≥3(y, z, t) 3 (0, 2, 1, 1) f3(1, 0, 0) �= 0
cE/2 x2 + y3 + f≥4(y, z, t) 2 (1, 0, 1, 1)

The equations have to satisfy 2 obvious conditions:
(1) The equations define a terminal hypersurface singularity.
(2) The equations are Zn-equivariant. (In fact Zn-invariant, except for cAx/4.)
If we work over a field K which does not contain the nth roots of unity, then

the action 1
n (a1, . . . , am) is not defined over K. There is, however, another way of

looking at the quotient which does make sense over any field.
Any action of the cyclic group Zn on C

mdefines a Zn-grading w of C[[x1, . . ., xm]]
by

w
(∏

xci
i

)
= a iff σ

(∏
xci
i

)
= εa ·

∏
xci
i .

If F is Zn-equivariant then (F ) ⊂ C[[x1, . . . , xm]] is a homogeneous ideal, hence
the grading descends to a grading of C[[x1, . . . , xm]]/(F ). The ring of functions on
the quotient (F = 0)/ 1

n (a1, . . . , am) can be identified with the ring of grade zero
elements of C[[x1, . . . , xm]]/(F ).

If K is any field, n ∈ N and ai ∈ Z, then we obtain a Zn-grading w =
w(a1, . . . , am) of K[[x1, . . . , xm]] (or of R{x1, . . . , xm}) by

w
(∏

xci
i

)
=

∑
ciai ∈ Zn .

Let R ⊂ K[[x1, . . . , xm]] denote the subring of grade zero elements. Then SpecKR
gives a singularity over K which is denoted by

A
m/

1
n

(a1, . . . , am) .
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(When K = R, one might be tempted to write R
m/ 1

n (a1, . . . , am) instead. However,
the set of real points of A

m/ 1
n (a1, . . . , am) is not in any sense a quotient of the set

R
n (cf. (5.3)), so this may lead to confusion).

If F ∈ K[[x1, . . . , xm]] is graded homogeneous, then w gives a grading of
K[[x1, . . . , xm]]/(F ). Let R/(R∩(F )) ⊂ K[[x1, . . . , xm]]/(F ) be the subring of grade
zero elements. SpecKR/(R ∩ (F )) defines a singularity over K. By construction,

SpecKR/
(
R ∩ (F )

)
×SpecK SpecK̄ ∼= (F = 0)/

1
n

(a1, . . . , am) .

Thus SpecKR is a terminal singularity over K iff (F = 0)/ 1
n (a1, . . . , am) is a terminal

singularity over K̄.
Under certain conditions, every K-form of a quotient is obtained this way:

Theorem 3.2

K be a field of characteristic zero with algebraic closure K̄. Let Zn denote the

cyclic group of order n and ε a primitive nth root of unity. Assume that Zn acts on

K̄m by σ : (xi) �→ (εwixi). Let F ∈ K̄[[x1, . . . , xm]] be equivariant with respect to

this action, and assume that the fixed point set of σ has codimension at least 2 in

(F = 0). Assume in addition that

w(F ) −
∑

wi is relatively prime to n .

Let 0 ∈ X be a singularity over K such that

X ×SpecK SpecK̄ ∼= (F = 0)/
1
n

(w1, . . . , wm) .

Then there is an FK ∈ K[[x1, . . . , xm]] such that F and FK are equivalent over K̄

and

X ∼= (FK = 0)/
1
n

(w1, . . . , wm) .

Reid pointed out that the right way to think about this result is the following.
If ZK is a projective variety over a field K such that ZK̄ embeds into P

m
K̄

then ZK

need not embed into P
m
K . This is, however, true, if the embedding is given by the

canonical line bundle. Thus if Pic(ZK̄) is generated by the canonical line bundle,
then we do not expect any “unusual”K-forms of Z . As we see in the proof, n and
w(F )−

∑
wi are relatively prime iff the canonical line bundle of XK̄ \ {0} generates

the Picard group.
The following examples show that the relative prime condition is necessary:
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Example 3.3: Consider the quotient singularity C[u, v]/ 1
n (1,−1). It is isomorphic

to (xy− zn = 0) via the substitutions x = un, y = vn, z = uv. Over C we have a Du
Val singularity An−1 = (x2 + y2 + zn = 0).

Over R we see that (x2−y2−zn = 0) ∼= A
2/ 1

n (1,−1). Another R-form of An−1

is x2 + y2 − zn. This can also be obtained as a quotient, but this time we act on A
2

by rotation with angle 2π/n.
Finally, if n is even, then there is another R-form of An−1 given by (x2 + y2 +

zn = 0). The only R-point is the origin, so we do not even have a nonzero map
R

2 → (x2 + y2 + zn = 0).
As another example, take the 4-dimensional terminal singularity

C
4/ 1

n (a,−a, b,−b) for any (ab, n) = 1. It has another R-form given as A
4/Zn where

we act on the first two coordinates by rotation with angle 2aπ/n and on the last
two coordinates by rotation with angle 2bπ/n.

In some special cases there are further R-forms. Take for instance
C

4/ 1
2 (1, 1, 1, 1). This can be realized as the cone over CP

3 embedded by the quadrics
into CP

9.
Let C ⊂ RP

2 be a smooth conic. Taking symmetric powers we have Sym3C ⊂
Sym3

RP
2 and Sym3H0(RP

2,O(1)) embeds it to RP
9. If C has a real point, then

Sym3C ∼= RP
3 and we get the Veronese embedding. If C has no real points then

the image is a variety over R without real points. The cone over it is a real form of
A

4/ 1
2 (1, 1, 1, 1) with an isolated real point at the origin.

Proof of (3.2). Let S = K̄[[x1, . . . , xm]]/(F ) be the ring of functions on X̃K̄ :=
(F = 0). The Zn-action defines a Zn-grading S =

∑n−1
i=0 Si. S0, the ring of grade 0

elements, is exactly the ring of functions on XK̄ . Our aim is to find an algebraic way
of reconstructing S from S0, which then hopefully generalizes to nonclosed fields.

There is another summand which can be easily seen algebraically. Set d =
w(F ) −

∑
wi. Note that

1
∂F/∂xm

dx1 ∧ . . . ∧ dxm−1

is a local generator of the dualizing sheaf ωS and it has weight −d. Thus

ωS0
∼= Sd

1
∂F/∂xm

dx1 ∧ . . . ∧ dxm−1.

Once Sd is determined, we obtain Sjd as follows. The multiplication maps

Sa ⊗S0 Sb → Sa+b (subscripts modulo n)
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are isomorphisms over the open set where the Zn-action is free. We assumed that
the complement has codimension at least 2, thus Sjd

∼= S
[j]
d , where S

[j]
d denotes the

double dual of S⊗j
d . If d and n are relatively prime, then we obtain every summand

Si this way. In particular,

S =
n−1∑
i=0

Si
∼=

n−1∑
j=0

ω
[j]
S0

.

Over an arbitrary field, we can thus proceed as follows. Let ωX be the dualizing
sheaf of X. This is also the reflexive sheaf OX(KX) where KX is the canonical class.

Then ω
[n]
X is isomorphic to OX , where n is the index. (We know this over K̄.

Tensoring with a field extension is faithfully flat, and a finite module over a local
ring is free iff it is free after a faithfully flat extension, cf. [11, 4.E].) Fix such an
isomorphism s : ω[n]

X → OX .
Consider the OX -algebra R(X, s) :=

∑n−1
j=0 ω

[j]
X , where multiplication for j+k ≥

n is given by

ω
[j]
X ⊗ ω

[k]
X �→ ω

[j+k]
X

∼= ω
[n]
X ⊗ ω

[j+k−n]
X

s⊗1−→ ω
[j+k−n]
X .

This has a Zn grading by declaring ω
[j]
X to have grade j.

(Note. Two isomorphisms s1, s2 : ω
[r]
X → OX differ by an invertible function

h ∈ O∗
X . If h is an nth power, then the resulting algebras R(X, si) are isomorphic,

but they need not be isomorphic otherwise. This is connected with the topological
aspects observed in (5.3).)

Over K̄, R(X, s) is isomorphic to OX̃ . R(X, s) is a K-form of OX̃ , so R(X, s) is
an algebra of the form K[[x1, . . . , xm]]/(FK), where F and FK are equivalent over
K̄.

The grading lifts to a grading of K[[x1, . . . , xm]] such that FK is graded homo-
geneous. We can choose xi to be homogeneous. �

As a corollary, we obtain the following classification of terminal 3-fold nonhy-
persurface singularities over nonclosed fields:

Theorem 3.4

Let K be a field of characteristic zero and 0 ∈ X a 3-fold terminal nonhypersur-

face singularity over K. Then 0 ∈ X is isomorphic over K to a singularity described

by the following list:
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name equation index weights condition
cA/2 ax2 + by2 + f(z, t) 2 (1, 1, 1, 0)
cA/n xy + f(z, t) n ≥ 3 (r,−r, 1, 0) (n, r) = 1
cAx/2 ax2 + by2 + f≥4(z, t) 2 (0, 1, 1, 1)
cAx/4 ax2 + by2 + f≥2(z, t) 4 (1, 3, 1, 2) f2(0, 1) = 0
cD/2 x2 + f≥3(y, z, t) 2 (1, 0, 1, 1)
cD/3 x2 + f≥3(y, z, t) 3 (0, 2, 1, 1) f3(1, 0, 0) �= 0
cE/2 x2 + y3 + f≥4(y, z, t) 2 (1, 0, 1, 1)

(In the cA/2-case, if −ab is a square, the equation can be brought to the form

xy + f(z, t), but not otherwise. This is why the cA/2 and cA/n cases are treated

separately.)

Complement 3.5.
The corresponding quotient singularity is terminal iff the equations satisfy 2

obvious conditions:

(1) The equations define a terminal hypersurface singularity.

(2) The equations are graded homogeneous.

With these assumptions, a terminal singularity corresponds to exactly one case

on the above list.

Proof. By looking at the list of (3.1), we see that the assumptions of (3.2) are
satisfied. Hence we know that X is of the form (FK = 0)/ 1

n (ax, ay, az, at) where
1
n (ax, ay, az, at) is on the list of (3.1).

Once we know a Zn-grading on K[[x, y, z, t]] and a graded homogeneous power
series FK , we can try to bring it to some normal form using the methods (2.5)
and (2.6). They are set up in such a way that if FK is homogeneous in a Zn-grading
then all coordinate changes respect the grading.

The proofs of (2.8, 2.9, 2.10) remain unchanged. The only difference is in (2.7).
It is not true that a quadratic form can be diagonalized using a linear transformation
which respects the Zn-grading. The best one can achieve is a sum of forms in disjoint
sets of variables

∑
qi where each qi is either au2

i or uivi. The latter case is necessary
iff the two variables have different Zn-grading.

In the cD and cE cases the quadric has rank 1, so it can be diagonalized.
In the cA/2 and cAx/2 cases every grade 0 quadric is diagonalizable.
In the cAx/4 case x2, xz, y2, z2 are the only grade 2 quadratic monomials. A

quadratic form like this can again be diagonalized.
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Finally let us look at the cA/n-case for n ≥ 3. The only grade 0 degree 2
monomials are xy, t2 and xz if r = −1 or yz if r = 1. We need to get a rank
≥ 2 quadric, so xy (or xz if r = −1, yz if r = 1) must appear. In the r = ±1
case we may need to perform a linear change of variables to get the normal form
xy + f(z, t). �

4. The topology of terminal hypersurface singularities

Let 0 ∈ X be a real singularity. Its real points X(R) form a topological space,
which can be triangulated (cf. [3, 9.2]). We may assume that 0 is a vertex of the
triangulation. Then locally near 0, X(R) is PL-homeomorphic to the cone over a
simplicial complex L = L(X(R)), which is called the link of 0 in X(R). The local
topology of X(R) at 0 is thus determined by L.

In general one needs to contemplate the dependence of L on various choices
made. I am mainly interested in the case when X is a 3-dimensional isolated singu-
larity. In this case L is a compact surface (without boundary) and so L and X(R)
determine each other up to homeomorphism.

The aim of this section is to classify terminal singularities over R according
to their local topology. To be precise, we give a classification in the cA cases and
provide a procedure in the cD and cE cases which reduces the 3-dimensional problem
to some questions about plane curve singularities.

Notation 4.1. M ∼ N denotes that M and N are homeomorphic.
� denotes disjoint union. M � rN denotes the disjoint union of M and of r

copies of N .
Mg denotes the unique compact, closed and orientable surface of genus g.
We start with a general lemma.

Lemma 4.2

Let X be a smooth real hypersurface. Then X(R) is orientable.

Proof. Let X = (f = 0) be a real equation where f ∈ R[x1, . . . , xn] or
f ∈ R{x1, . . . , xn}. At each point p ∈ X, X divides a neighborhood of p into
two halves. f is positive on one half and negative on the other half. Choosing a sign
thus determines an orientation. �



348 Kollár

Theorem 4.3

The following table gives a complete list of 3-dimensional terminal singularities

of type cA1 over R.

In the table n ≥ 1. Case 4, n = 1 and case 5, n = 1 are isomorphic. Aside from

this, two singularities are isomorphic iff they correspond to the same case and the

same value of n.

case equation L
cA1(1) x2 + y2 + z2 ± t2n+1 S2

cA1(2) x2 + y2 − z2 ± t2n+1 S2

cA1(3) x2 + y2 + z2 + t2n ∅
cA1(4) x2 + y2 + z2 − t2n S2 � S2

cA1(5) x2 + y2 − z2 + t2n S2 � S2

cA1(6) x2 + y2 − z2 − t2n S1 × S1

Proof. The equations follow from (2.8), once we note that after multiplying by ±1
we may assume that the quadratic part has at least 2 positive eigenvalues.

The topology is easy to figure out. Since all the claims are special cases of the
next result, I discuss them in more detail there. �

Theorem 4.4

A 3-dimensional terminal singularity of type cA>1 over R is equivalent to a

form

x2 ± y2 ± h(z, t)
m∏
i=1

fi(z, t) = 0 ,

where the fi are irreducible power series (over R) such that R
2 ⊃ (fi(z, t) = 0) �= {0}

and h(z, t) is positive on R
2 \ {0}. The following table gives a complete list of the

possibilities for the topology of X(R).

case equation L(X(R))
cA+

>1(0,+) x2 + y2 + h ∅
cA+

>1(0,−) x2 + y2 − h S1 × S1

cA+
>1(m) x2 + y2 ± hf1 · · · fm �mS2

cA−
>1(0) x2 − y2 ± h S2 � S2

cA−
>1(m) x2 − y2 ± hf1 · · · fm Mm−1
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Proof. We already have the form x2 ± y2 + f(z, t) by (2.8). Write f as a product of
irreducible power series over R. Those factors which do not vanish on R

2 \ {0} are
multiplied together to get h. By writing ±h we may assume that h is positive on
R

2 \ {0}. (Since the signs of the other factors are not fixed, the sign of h matters
only if there are no other factors.) Let fi be the remaining factors of f .

Assume now that we are in the cA+-case: x2 + y2 ± h
∏

fi. Projection to the
(z, t)-plane is a proper map whose fibers are as follows:

(1) S1 if ±h(z, t)
∏

fi(z, t) < 0 ,
(2) a point if ±h(z, t)

∏
fi(z, t) = 0 ,

(3) empty if ±h(z, t)
∏

fi(z, t) > 0 .

If m = 0 then X(R) \ {0} is a circle bundle over either R
2 \ {0} or over the

empty set. The first case gives L ∼ S1 × S1 by (4.2).
If m > 0, we have to describe the semi-analytic set U := (

∏
fi(z, t) ≤ 0) ⊂ R

2.
Semi-analytic sets can be triangulated (cf. [3, 9.2]), thus in a neighborhood of the
origin, U is the cone over U ∩ (z2 + t2 = ε).

Each (fi = 0) is an irreducible curve germ over R, thus homeomorphic to R
1.

So each fi has 2 roots on the circle (z2 + t2 = ε). Hence U ∩ (z2 + t2 = ε) is the
disjoint union of m closed arcs. Therefore L has m connected components, each
homeomorphic to S2.

The second possibility is the cA−-case: x2−y2−h
∏

fi. (The two choices of ±h

are equivalent by interchanging x and y.) Here we project to the (y, z, t)-hyperplane.
The fiber over a point (y, z, t) is

(1) 2 points if y2 + h(z, t)
∏

fi(z, t) > 0 ,
(2) 1 point if y2 + h(z, t)

∏
fi(z, t) = 0 ,

(3) empty if y2 + h(z, t)
∏

fi(z, t) < 0 .

Thus we have to determine the region

U :=
{
y2 + h(z, t)

∏
fi(z, t) ≥ 0

}
⊂ (y2 + z2 + t2 = ε) ∼ S2 ,

and then take its double cover to get L.
If m = 0 then U = S2 and so L = S2 � S2. If m > 0 then h

∏
fi is negative on

m disjoint arcs in the circle (z2 + t2 = ε), and y2 + h(z, t)
∏

fi(z, t) is negative in
contractible neighborhoods of these intervals. Thus U = S2 \ (m discs) and so L is
a surface of genus m− 1, orientable by (4.2). �
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Example 4.5: It is instructive to consider the following incorrect approach to the
topology of cD and cE-type singularities. I illustrate it in the cE6-case.

Over R, a surface singularity of type E6 is x2 + y3 ± z4. For either choice
of sign, projection to the (x, z)-plane is a homeomorphism. Consider a cE6-type
point X. If L(X(R)) has several connected components, then a suitable hyperplane
intersects at least two of them. By a small perturbation we obtain an E6-singularity
as the intersection, thus we conclude that L(X(R)) is connected. This is especially
suggestive if we note that instead of a plane we could use a small perturbation of
any smooth hypersurface.

Unfortunately the conclusion is false, as we see in (4.16). L(X(R)) can have
several components, and some of them are not seen by any hypersurface section.
These look like very “thin”cones, as opposed to the main component which is “thick”.
It would be interesting to give precise meaning to this observation and to see its
significance in the study of singularities.

The following approach to the topology of cD and cE-type singularities is taken
from [2, Sec 12].

4.6. (Deformation to the weighted tangent cone)
Let X := (f(x1, . . . , xn) = 0) be a hypersurface singularity. For simplicity of

notation I assume that f converges for |xi| < 1 + δ. Assign integral weights to the
variables w(xi) = wi and write f as the sum of weighted homogeneous pieces

f = fd + fd+1 + fd+2 + · · · ,
where fs is weighted homogeneous of degree s. For a parameter λ �= 0 set

fλ(x1, . . . , xn) := λ−df(λw1x1, . . . , λ
wnxn)

= fd + λfd+1 + λ2fd+2 + · · ·
This suggests that if we define f0 := fd then

Xλ := (fλ = 0) for λ ∈ R

is a “nice”family of hypersurface singularities. For λ �= 0 they are all isomorphic to
(f = 0) and for λ = 0 we obtain the weighted tangent cone (fd = 0).

This can be used to determine the topology of X(R) in 2 steps. First describe
X0 and then try to relate Xλ and X0 for small values of λ.

Let w be a common multiple of the wi and set ui = w/wi.

Proposition 4.7
Notation as above. Assume that X = (f = 0) is an isolated hypersurface

singularity.
Then there is a 0 < λ0 such that for every 0 < λ ≤ λ0

(1) Lλ := Xλ ∩ (
∑

x2ui
i = 1) is smooth, and

(2) Xλ ∩ (
∑

x2ui
i ≤ 1) is homeomorphic to the cone over Lλ .
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Proof. The map R
m → R

+ given by (x1, . . . , xn) �→
∑

x2ui
i is proper. Thus its

restriction to Xλ is also proper. The proposition follows once we establish that the
resulting map

t : Xλ → R

has no critical points with critical value in (0, 1] for 0 < λ ≤ λ0 .
The critical values of a real algebraic morphism form a semi-algebraic set (cf. [3,

9.5]), thus there is a 0 < µ0 such that t : X1 → R has no critical values in (0, µ0].
The following diagram is commutative

Xλ xi �→λ−wixi−−−−−−→ X1

t
�

�t

R
s �→λ−ws−−−−−−→ R

which shows that (4.7) holds with λ0 = µ
1/w
0 . �

So far we have not done much, but the advantage of this approach is that we
can view Lλ as a deformation of the compact real algebraic variety L0. If L0 is
smooth then this deformation is locally trivial differentiably. Thus we obtain:

Corollary 4.8

Assume that (fd = 0) defines an isolated singularity. Then Lλ is diffeomorphic

to L0. �

This is sufficient to describe the the topology of “general”members of several
families of terminal singularities:

Corollary 4.9

Let X be a terminal singularity given by one of the following equations:

cD4 : x2 + f≥3(y, z, t), where f3 = 0 has no real singular point.

cE6 : x2+y3+yg≥3(z, t)+h≥4(z, t), where h4 has no multiple real linear factor.

cE8 : x2+y3+yg≥4(z, t)+h≥5(z, t), where h5 has no multiple real linear factor.

Then:

cD4 : L(X(R)) ∼ S2 if (f3 = 0) ⊂ RP
2 has one connected component and

L(X(R)) ∼ S2 � (S1 × S1) if (f3 = 0) has two connected components.

cE6 : L(X(R)) ∼ S2.

cE8 : L(X(R)) ∼ S2.
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Proof. We use deformation to the weighted tangent cone with (suitable integral
multiples of the) weights (1/2, 1/3, 1/3, 1/3) in the cD4-case, (1/2, 1/3, 1/4, 1/4) in
the cE6-case, and (1/2, 1/3, 1/5, 1/5) in the cE8-case. The equations for X0 are
x2 + f3(y, z, t) = 0, x2 + y3 +h4(z, t) = 0 and x2 + y3 +h5(z, t) = 0. Our conditions
guarantee that X0(R) has isolated singularities, thus it is sufficient to determine
L(X0(R)).

In the cE-cases, projection to the (x, z, t) hyperplane is a homeomorphism from
X0(R) to R

3, thus L(X0(R)) ∼ S2 .
In the cD4-cases we project to the (y, z, t)-hyperplane. As in the proof of (4.4),

we can get L(X0(R)) once we know the set U ⊂ (y2 + z2 + t2 = 1) where f3 is
nonnegative. The boundary ∂U doubly covers the projective curve (f3 = 0) ⊂ RP

3.
If (f3 = 0) ⊂ RP

2 has one connected component then it is a pseudo-line and ∂U is a
connected double cover, hence U is a disc. If (f3 = 0) has two connected components,
then one is a pseudo-line, the other an oval. ∂U has 3 connected components, and
U is a disc plus an annulus. Thus L(X0(R)) ∼ S2 � (S1 × S1). �

Remark 4.10. In the cE cases of the above example, projection to the (x, z, t) plane
is a homeomorphism from X0(R) to R

3 even if h4 or h5 have multiple factors. In
these cases, however, we can not conclude that X(R) is also homeomorphic to R

3.
In fact we see in (4.16) that this is not always true.

Similar arguments work in some of the cD>4-cases:

Corollary 4.11

Let X be a terminal singularity given by equation x2 + y2z + h≥s(z, t), where

z � |hs and hs has no multiple real linear factors. Let s be the number of real linear

factors of hs. There are three cases:

(1) s = 2r + 1 and L(X(R)) ∼ Mr � rS2 ;

(2) s = 2r, h(0, 1) < 0 and L(X(R)) ∼ Mr � (r − 1)S2 ;

(3) s = 2r, h(0, 1) > 0 and L(X(R)) ∼ Mr−1 � rS2.

Proof. We use deformation to the weighted tangent cone with weights (1/2,
(s − 1)/2s, 1/s, 1/s). Thus we need to figure out the topology of x2 + y2z +
h(n−1)(z, t) = 0. As before, this reduces to understanding the set where y2z +
hs(z, t) ≤ 0. This can be done by projecting to the (z, t) plane. Details are left to
the reader. �

4.12 (Weights for the cD and cE cases)
For many terminal singularities one cannot choose weights so that the weighted

tangent cone has an isolated singularity at the origin, but in all cases it is possible
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to choose weights so that the weighted tangent cone has at worst 1-dimensional
singular locus:

name equation is x2+ w(y) w(z) w(t)
cD4 f≥3(y, z, t) 1

3
1
3

1
3

cD>4(1) y2z + aytr + h≥s(z, t) s−1
2s

1
s

1
s

cD>4(2) y2z ± ytr + h≥s(z, t) r−1
2r−1 − ε 1

2r−1+ 2ε 1
2r−1 + ε

r

cE6 y3 + yg≥3(z, t) + h≥4(z, t) 1
3

1
4

1
4

cE7 y3 + yg≥3(z, t) + h≥5(z, t) 1
3

2
9

2
9

cE8 y3 + yg≥4(z, t) + h≥5(z, t) 1
3

1
5

1
5

In the cD>4 case we assume that hs �= 0 and use the first weight sequence if a = 0 or
2r > s + 1 and the second weight sequence if 2r ≤ s + 1, where ε is a small positive
number. (We could use ε = 0 except when 2r = s + 1.) Let (w1, w2, w3, w4) be
integral multiples of these weights. The weighted tangent cone, and its singularities
are the following:

name weighted tangent cone singularities
cD4 x2 + f3(y, z, t) at singular points of (f3 = 0)

cD>4(1) x2 + y2z + hs(z, t) at multiple real factors of zhs

cD>4(2) x2 + y2z ± ytr at the z-axis
cE6 x2 + y3 + h4(z, t) at multiple real factors of h4

cE7 x2 + y3 + yg3(z, t) at real factors of g3

cE8 x2 + y3 + h5(z, t) at multiple real factors of h5

These equations have the form x2 + F (y, z, t) and the deformation to the weighted
tangent cone leaves this form invariant:

x2 + Fλ(y, z, t) = x2 + λ−dF (λw2y, λw3z, λw4t) .

Set
Uλ :=

{
(y, z, t)|Fλ(y, z, t) ≤ 0 ⊂ (y2u2 + z2u3 + t2u4 = 1)

}
.

Uλ is a semi-algebraic set and its boundary is the real algebraic curve

Cλ := {(y, z, t)|Fλ(y, z, t) = 0 ⊂ (y2u2 + z2u3 + t2u4 = 1)} .

We have established the following:

Proposition 4.13
Cλ is a deformation of the real algebraic curve C0 inside the smooth real alge-

braic surface (y2u2 + z2u3 + t2u4 = 1) . �
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4.14 (Deformations of singular real curves)
The deformations of real algebraic curves can be understood in two steps

(cf. [17]). Put small discs around the singularities. Outside the discs all small defor-
mations are topologically trivial and inside the discs we have a local problem invol-
ving real curve singularities. Here we have the advantage that (y2u2 +z2u3 +t2u4 = 1)
is a compact affine algebraic surface, thus we can choose the local deformations in-
dependently and they can always be patched together.

Thus we can describe the possible cases for Cλ, and thereby the topological
types of the corresponding 3-dimensional terminal singularities, if we can describe
the deformations of the occurring real plane curve singularities. By looking at the
equations we see that the only singularities that we have to deal with are the 2-
variable versions of the Du Val singularities:

An : y2 ± zn+1 = 0 ;
Dn : y2z ± zn−1 = 0 ;
E6 : y3 + z4 = 0 ;
E7 : y3 ± yz3 = 0 ;
E8 : y3 + z5 = 0 .

For all of these cases, a complete list of the topological types of real deformations
is known [4]. The list can also be found in [17, Figs. 16–28], which contains many
further examples.

Example 4.15: Consider for example the cD4 cases. The various possibilities for f3

are easy to enumerate. The most interesting is f3 = yzt. Here C0 is the intersection
of (yzt = 0) with (y6+z6+t6 = 1). We have 6 singular points of type u2−v2 = 0. At
each of them we can choose a deformation u2−v2±ε = 0. This gives 26 possibilities.
The symmetries of the octahedron act on the configurations so it is easy to get a
complete list.

At the end we get 7 possible topological types for L(X(R) where X = (x2 +
yzt + f≥4(y, z, t) = 0):

M2,M1 � S2,M1, S
2, 2S2, 3S2, 4S2 .

It turns out that these exhaust all the cases given by cD4.

Example 4.16: Consider the cE6-type points

x2 + y3 + yg≥3(z, t) ± z2t2 + h≥5(z, t) .

Using the methods of (2.6) these can be brought to the form

x2 + y3 ± z2t2 + ya(z) + yb(t) + c(z) + d(t) .
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The weighted tangent cone, (x2 + y3 ± z2t2 = 0) is singular along the z and t-axes.
In order to understand the singularity type of Cλ, say along the positive z-axis, set
t = ε. We get an equation

x2 + y3 ± z2ε2 + ya(z) + yb(ε) + c(z) + d(ε) .

mult0a ≥ 3 and mult0c ≥ 5, thus all the terms involving z can be absorbed into z2,
and we obtain the equivalent form

x2 ± z2 + y3 + yb(ε) + d(ε) .

The cubic y3 + yb(ε) + d(ε) has 3 real roots if 4b(ε)3 + 27d(ε)2 < 0 and 1 real root if
4b(ε)3 + 27d(ε)2 > 0 .

C0 is homeomorphic to S1 and it has 4 singular points (along the z and t half
axes). Cλ is a smooth curve which has an oval near a singular point of C0 if the
corresponding cubic has 3 real roots and no ovals if only 1 real root. Thus Cλ has at
most 5 connected components. The ovals give the very “thin”components mentioned
in (4.5).

We can also determine the location of the ovals relative to the “main compo-
nent”of Cλ. In deforming z2 − y3 = 0, the oval can appear only in a neighborhood
of the negative y-axis. Putting all this together, we get the following possibilities
for L(X(R)):

rS2, 1 ≤ r ≤ 5 in the +z2t2-case, and

Mr, 0 ≤ r ≤ 4 in the −z2t2-case.

5. The topology of terminal quotient singularities

Let 0 ∈ X be 3-fold terminal singularity and π : X̃ → X its index one cover. As
we proved, X = X̃/ 1

n (a1, . . . , am) where n is the index of X and the ai are integers.
We use this representation to determine the topology of X in terms of the already
known topology of X̃.

The main question is to determine the real points of A
m/ 1

n (a1, . . . , am). Let
σ : C

m → C
m be the corresponding action of 1 ∈ Zn.

The answer depends on the parity of n. First we discuss the odd index cases
which are easier.

Proposition 5.1

Assume that n is odd and set Y = A
m/ 1

n (a1, . . . , am). Then the induced map

R
n → Y (R) is a homeomorphism.
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Proof. Let R ⊂ R[[x1, . . . , xm]] denote the ring of invariant functions. A point
P ∈ A

m maps to a real point of X iff f(P ) ∈ R for every f ∈ R. Let ε be a primitive
nth root of unity. If P = (p1, . . . , pm) is real then

σb
(
p1, . . . , pm

)
=

(
εba1p1, . . . , ε

bampm
)

is also real iff σb(P ) = P . This shows that the quotient map R
n → X(R) is injective.

Let Q ∈ X(R) be a point. Then π−1(Q) ⊂ A
m has an odd number of closed

points over C (usually n of them) and as a scheme it is defined over R. Thus it has
a real point, hence R

n → X(R) is also surjective. �

Corollary 5.2

Let 0 ∈ X be a 3-fold terminal singularity of odd index and π : X̃ → X its

index one cover. Then π : X̃(R) → X(R) is a homeomorphism. �

The even index case is more subtle. For purposes of induction we allow the case
when n is odd. Consider the action 1

n (a1, . . . , am) on A
m. Write n = 2sn′ where n′

is odd. Let η be a primitive 2s+1-st root of unity and j : R
m → C

m the map

j(x1, . . . , xm) = (ηa1x1, . . . , η
amxm) .

(If n is odd then η = −1, hence j(Rm) = R
m). Write ai = 2ca′i such that a′i is odd

for some i. If s > c, let τ : C
m → C

m be the Z2-action

τ(x1, . . . , xm) =
(
(−1)a

′
1x1, . . . , (−1)a

′
mxm

)
.

For s = c let τ be the identity. Note that both R
n and j(Rn) are τ -invariant.

Proposition 5.3

Set Y = A
m/ 1

n (a1, . . . , am). Define j and τ as above. Then Y (R) is the quotient

of R
m ∪ j(Rm) by τ .

Proof. The proof is by induction on m and n. We can assume that the action is
faithful, that is

∑
biai = 1 is solvable in integers. Indeed, for non faithful actions

we get the same quotient from a smaller group action. The definitions of j and τ

are set up such that they do not change if we change the group this way.
Set Φ :=

∏
i x

bi
i . By induction on m we know that (5.3) holds on each coordinate

hyperplane. Thus we have to deal with points P = (p1, . . . , pm) such that each
pi �= 0.
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Assume that π(P ) is real. Let ε be a primitive 2nth root of unity. pni is real,
hence pi = εci · (real number) for some ci ∈ Z. Thus Φ(P ) = εc · (real number).
Φ(σ(P )) = ε2Φ(P ), hence by replacing P by σr(P ) for some r we may assume that
Φ(P ) ∈ R or Φ(P ) ∈ η · R.

Assume first that Φ(P ) is real. For each i the function Φn−aixi is invariant,
hence has a real value at P . Thus P ∈ R

n. If Φ(P ) ∈ η ·R then the same argument
shows that pi ∈ ηai · R, thus P ∈ j(Rm).

This shows that R
m∪j(Rm) → Y (R) is surjective. It is also τ -invariant. Finally,

if P = (p1, . . . , pm) ∈ R
m ∪ j(Rm) then

σs(P ) =
(
εba1p1, . . . , ε

bampm
)
∈ R

m ∪ j(Rm)

iff σs(P ) = P or σs(P ) = τ(P ). Thus R
m ∪ j(Rm) → Y (R) is 2 : 1 for s > c and

1 : 1 for s = c. �
Definition 5.4. Let F ∈ R[[x1, . . . , xm]] be a power series, homogeneous of grade
d under the grading 1

n (a1, . . . , am). Let η be as above. Define the companion F c of
F with respect to the action 1

n (a1, . . . , am) by

F c(x1, . . . , xm) := η−dF (ηa1x1, . . . , η
amxm) .

Note that F c ∈ R[[x1, . . . , xm]].

Corollary 5.5

Let 0 ∈ X be a 3-fold terminal singularity of even index and π : X̃ → X its

index one cover. Then

L(X(R)) ∼ L(X̃(R))/(τ) � L(X̃c(R))/(τ) .

Proof. We use the notation of (5.3). Let F = 0 be the equation of X̃ and let
W := (F = 0) ∩ (Rm ∪ j(Rm)). Then X(R) is the quotient of W by τ .

(F = 0) ∩ R
m = X̃(R). (F = 0) ∩ j(Rm) can be identified with the set of real

zeros of F (ηa1x1, . . . , η
amxm) = 0. (The normalizing factor η−d does not change the

set of zeros).
In the terminal case the group action is fixed point free outside the origin on

(F = 0), thus (F = 0) ∩ R
m and (F = 0) ∩ j(Rm) intersect only at the origin. �

As a byproduct we obtain the following:

Corollary 5.6

Let 0 ∈ X be a 3-fold terminal singularity of index > 1. Then 0 ∈ X(R) is not

an isolated point.
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Proof. Let X̃ be the index 1 cover. We are done unless 0 ∈ X̃(R) is an isolated
point. This happens only in cases cA/2, cAx/2 (and maybe for cAx/4) where the
equation of X̃ is F = x2 + y2 + f(z, t) and f(z, t) is positive on R

2 \ {0}.
Let us compute F c. In the cA/2 case we get −x2 − y2 + f(iz, t) and this has

nontrivial solutions in the (x, y, t)-hyperplane. In the cAx/2 case we get x2 − y2 +
f(iz, it) and this has nontrivial solutions in the (x, y)-plane.

In the cAx/4 case already X̃ has nontrivial R-points. Indeed, here f has grade
2, thus every t-power in it has an odd exponent. Thus f(z, t) is not positive on the
t-axis. �

5.7 (Orientability of index 2 quotients)
We have seen in (4.2) that every real algebraic hypersurface is orientable, and so

are their quotients by odd order groups (5.1). With index 2 quotients, the question
of orientability is interesting.

Consider a quotient (F = 0)/ 1
2 (w1, . . . , wm). Let σ be the corresponding Z2

action. We can orient X := (F = 0) by choosing an orientation of R
m and at each

smooth point of X we choose the normal vector pointing in the direction where F

is positive. σ preserves the orientation of R
m iff

∑
wi is even. The parity of w(F )

determines the sign in σ(F ) = ±F . Thus σ preserves the induced orientation of
X iff w(F ) +

∑
wi is even. If w(F ) +

∑
wi is odd, the induced orientation is not

preserved. If σ fixes a connected component of (the nonsingular part of) X(R),
then the corresponding quotient is not orientable. If, however, σ only permutes the
connected components of X(R) then the quotient is still orientable. Thus we obtain:

Lemma 5.8

Let 0 ∈ X := (F = 0)/ 1
2 (w1, . . . , wm) be an isolated singular point, with index

one cover X̃ and companion X̃c. Then L(X(R)) is nonorientable iff w(F ) +
∑

wi is

odd and σ fixes at least one of the connected components of L(X̃(R)) or L(X̃c(R)). �

Example 5.9 (The topology of cA/2 points):
The simplest case is A

3/ 1
2 (1, 1, 1). The link of A

3 is the sphere (x2+y2+z2 = ε2).
We act by the antipodal map, and the quotient is RP

2. The quotient of the purely
imaginary subspace also gives real points, thus L(X(R)) ∼ 2RP

2.
In the cA>0/2 cases write

X := (x2 ± y2 + f(z, t) = 0)/
1
2
(1, 1, 1, 0)
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with cover X̃ := (x2 ± y2 + f(z, t) = 0). Only even powers of z occur in f(z, t),
thus we can write f(z, t) = G(z2, t). As in (4.4) we factor it as G(z2, t) =
±h(z, t)

∏r
i=1 fi(z, t).

The companion cover is X̃c = (x2 ± y2 −G(−z2, t) = 0). We have to be careful
since the product decomposition of G is not preserved. A factor of h may become
indefinite and it can also happen that two factors become conjugate over R. Thus
we write −G(−z2, t) = ±h′(z, t)

∏r′

j=1 f ′
j(z, t).

By (5.5), L(X(R)) = L(X̃(R))/τ � L(X̃c(R))/τ . In all these cases (5.8) shows
that if τ fixes a connected component, the quotient is not orientable. Thus if
L(X̃(R)) or L(X̃c(R)) is connected, the quotient is not orientable. This holds in all
the cA−

>0(r > 0) cases. In the cA−
>0(0) case the equation is (x2 = y2 + h), and each

halfspace of (x �= 0) contains a unique connected component. Thus τ interchanges
the two connected components and the quotient is orientable.

In the cA+
>0 case ±h(z, t)

∏r
i=1 fi(z, t) is negative on r connected regions

P1, . . . , Pr ⊂ R
2, and L(X̃(R)) consist of r copies of S2, one for each Pj . The

involution τ fixes the t-axis pointwise, thus if one of the half t-axes is contained in
some Pj , then τ fixes the S2 over that region. The other copies of S2 are inter-
changed. The same holds for X̃c.

Along the t-axis G(z2, t) and −G(−z2, t) have opposite signs. Thus among the
4 pairs

(
positive half t-axis, G(z2, t)

) (
positive half t-axis,−G(−z2, t)

)
(
negative half t-axis, G(z2, t)

) (
negative half t-axis,−G(−z2, t)

)

there are two where the function is negative along the half axis.
We obtain the following list of possibilities. (We use the notation Kr :=

S2#rRP
2, thus K2 is the Klein bottle.)

X̃ X̃c L(X(R))
cA0 cA0 RP

2 � RP
2

cA−
>0(r > 0) cA−

>0(r
′ > 0) Kr �Kr′

cA−
>0(r > 0) cA−

>0(0) Kr � S2

cA−
>0(0) cA−

>0(0) S2 � S2

cA+
>0(r > 0) cA+

>0(r
′ > 0) 2RP

2 � r+r′−2
2 S2

cA+
>0(r > 0) cA+

>0(0,+) 2RP
2 � r−2

2 S2

cA+
>0(r > 0) cA+

>0(0,−) K2 � r
2S

2

cA+
>0(0,−) cA+

>0(0,+) K2
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Thus X(R) is not orientable, except in the fourth case. This indeed occurs:
Let X̃ := (x2 − y2 + z4m + t2n = 0) and X := X̃/ 1

2 (1, 1, 1, 0) with companion
X̃c = (−x2 + y2 + z4m + t2n = 0). X̃c ∼= X̃ and L(X̃(R)) ∼ S2 �S2. τ interchanges
the two copies of S2. Thus X(R) is orientable and L(X(R)) ∼ S2 � S2.
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