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Abstract

Infinitely near base points and Enriques’ unloading procedure are used to con-
struct filtrations by complete ideals of C{x, y}. It follows a procedure for
getting generators of the integral closure of an ideal.

Introduction

A geometric theory of infinitesimal base conditions (or virtual multiplicities) for
plane curves was build by F. Enriques at the beginning of this century ([7], L. IV,
chap. II). Its main results are a characterization of the infinitesimal base conditions
that can be sharply satisfied by a curve (consistent conditions), and a procedure (un-
loading) giving the behavior of generic curves subjected to a non-consistent family
of base conditions.

About twenty years later, O. Zariski developed an algebraic and (in his own
words) parallel theory dealing with complete (i.e., integrally closed) ideals of two-
dimensional local rings ([12] and also [13], II, app. 5) whose main result is a theorem
of unique factorization of these ideals as a product of irreducible ones. Zariski’s
theory was partially extended to more general rings, mainly rings of rational sur-
face singularities or regular rings of higher dimension by the work of Lipman ([9]),
Cutkosky ([5], [6]) and Campillo, González-Sprinberg and Lejeune-Jalabert ([1]),
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while Enriques’ theory seems to have been forgotten for many years. Updated ver-
sions of Enriques’ theory, providing modern proofs, can be found in [3] and [4], its
relation with Zariski’s theory is explained in [8] and its extension to curves on a
rational surface singularity has been obtained by Reguera ([11]).

Our main purpose in this note is to show how to use Enriques’ theory, and in
particular unloading, to get filtrations between pairs of embodied complete ideals.
As an application we describe a procedure giving a system of generators of the
integral closure of a zero-dimensional ideal of series in two variables.

We will use the results and keep into the hypothesis and conventions of the
first half (Sections 0 to 6) of [3]. In particular the base field will be the complex
one and we will deal with convergent power series. The formal and algebraic case
can be dealt with similarly. We fix a point O on a smooth analytic surface S, we
denote by O the local ring of S at O (O = C{x, y} if x, y are local coordinates at
O) and by m its maximal ideal. As in [4], we call clusters the non-empty finite sets
of points equal or infinitely near to O such that with each point they contain all
the precedent (by the ordering of the blow-ups) ones. A pair K = (K, ν), where K

is a cluster and ν : K −→ Z an arbitrary map, will be called a weighted cluster .
Weighted clusters were called just clusters in [3]. A weighted cluster K = (K, ν) is
called consistent if and only if it verifies the proximity inequalities: for any p ∈ K,
the virtual multiplicity ν(p) of p is non-less than the sum of the virtual multiplicities
of the points proximate to p in K.

1. A filtration

If K = (K, ν) is a weighted cluster we denote by HK the corresponding ideal of
O: the non-zero elements of HK are all equations of all germs of curve at O going
through K. It is well known, and it is in fact the main link between Enriques’ and
Zariski’s theories, that HK is a complete ideal and all complete zero-dimensional
ideals of O are of this form for a suitable K (see [12]).

Assume there are given two consistent weighted clusters K = (K, ν) and K′ =
(K ′, ν′) and write H = HK, H ′ = HK′ for the corresponding ideals. Assume that
H ⊃ H ′, H 
= H ′: we will show how to get finitely many consistent weighted clusters
Ki = (Ki, νi), i = 0, . . . , n so that K0 = K, Kn = K′,

HK0 ⊃ HK1 ⊃ . . . ⊃ HKn

and dimHKi−1/HKi = 1 for i = 1, . . . , n. In the sequel a sequence of weighted
clusters such as {Ki}i=0,...,n above will be called a flag of clusters with ends K0

and Kn.
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By adding points with virtual multiplicity zero to both clusters we may assume
that K = K ′. Since we assume K 
= K′ there is p ∈ K so that ν(p) 
= ν′(p). Assume
we choose such p so that ν(q) = ν′(q) for all q preceding p and fix any germ of
curve ξ going sharply through K′, this is with eq(ξ) = ν′(q) for q ∈ K ′ and no
other singular points ([3], 3.6): since ξ goes through K too, necessarily ν(p) < ν′(p).
Then we choose any point p1, not already in K and in the first neighborhood of p,
and define a weighted cluster Q1 by taking all points in K with their own virtual
multiplicities and furthermore the point p1 taken with the virtual multiplicity one.

First of all, notice that HQ1 ⊃ HK′ . Indeed, K′ being consistent, it is enough to
see that all germs going sharply through K′ are going through Q1 and this is clear
because any such germ ξ has effective multiplicity at p strictly bigger than ν(p), the
virtual multiplicity of p in Q1, so that its virtual transform contains the exceptional
divisor of blowing-up p and hence has multiplicity at least one at p1.

On the other hand it is clear from our construction that HK ⊃ HQ1 and even
that dimHK/HQ1 ≤ 1, as a further point counted once adds a single linear equation
to those defining HK as a linear subspace of O. Furthermore we have HK 
= HQ1

since K is consistent and so there are germs of curve going sharply through K and
going not through the point p1. Thus dimHK/HQ1 = 1

Lastly, since Q1 may be non-consistent, we perform successive unloadings from
it, till getting an equivalent consistent weighted cluster we call K1 (updated versions
of Enriques’ unloading procedure may be found in [3], Section 4 and 5 and [4],
Section 4.5). Since HQ1 = HK1 all our conditions on K1 are fulfilled. If still K1 
= K′

we repeat the former procedure from K1 to get K2, and so on till getting K′ after
dimHK/HK′ steps.

The reader may notice that in case of just a single consistent weighted clus-
ter K being given, a similar and even easier procedure gives rise to an infinite se-
quence of consistent weighted clusters Ki, i ≥ 0 so that K0 = K, HKi−1 ⊃ HKi

and
dimHKi−1/HKi = 1 for i > 0.

2. Base points and integral closure

Let I be a zero-dimensional ideal of O. The cluster of base points of I is a consistent
weighted cluster K(I) defined in the following way. Call Γ the family of germs defined
by the non-zero elements of I. Start by taking the point O with virtual multiplicity
ν(O) equal to the minimal multiplicity at O of the germs in Γ. Then discard from Γ
the germs with multiplicity bigger than ν(O) and call Γ1 the family of the remaining
ones. If these germs do not share any point in the first neighborhood of O, then our
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cluster is just O with virtual multiplicity ν(O). Otherwise we take all points the
germs in Γ1 share in the first neighborhood, each point p with virtual multiplicity
equal to the minimum of the multiplicities at p of the germs in Γ1. Again discard
the germs whose multiplicities are not the minimal ones and look for the points the
remaining germs share in the first neighborhoods of the former ones, and so on.
Notice that at each step we are discarding germs whose equations are in a union of
finitely many ideals strictly contained in I and therefore we keep germs enough to
generate I with their equations. The procedure clearly ends after finitely many steps.
Otherwise, because of Noether’s formula ([10]) we would be able to find systems of
generators of I any two of the germs they define having intersection multiplicity
bigger than any preassigned number. This implies that any two elements of I share
a common factor against the hypothesis of I to be zero-dimensional.

Then it is clear from the former construction that there is a system of generators
of I so that the germs they define are going through K(I) with effective multiplicities
equal to the virtual ones and share no point other than those in K. K(I) is therefore
consistent and furthermore we have:

Lemma 2.1

The integral closure of I is HK(I).

Proof. We know the ideals HK, K any consistent cluster, to be all the integrally
closed zero-dimensional ideals. So assume that such an ideal contains I: then all
germs defined by non-zero elements in I, and in particular those going through
K(I) with effective multiplicities equal to the virtual ones, go through K. Since
these germs share no point but those in K(I), any other germ going through K(I)
with effective multiplicities equal to the virtual ones must go through K too: since
HK(I) may be generated by equations of germs going through K(I) with effective
multiplicities equal to the virtual ones, it follows that HK(I) ⊂ HK and hence the
claim. �

3. Generators of the integral closure

Let I be, as before, a m-primary ideal of O and write Ī = HK(I) for its integral
closure. As it is clear from Nakayama’s lemma, elements f1, . . . fn ∈ Ī are a minimal
system of generators of Ī if and only if their classes modulo mĪ are a basis of Ī/mĪ as
a C-vector space. Write K = (K, ν) = K(I) and denote by K′ the weighted cluster
obtained from K just by increasing the multiplicity of O by one: K′ = (K, ν′),



Filtrations by complete ideals and applications 269

ν′(O) = ν(O) + 1 and ν′(p) = ν(p) if p 
= O. Since K is consistent, K′ is consistent
too and it is easy to check that HK′ = mĪ. Indeed, clearly K′ is the weighted cluster
of base points of mĪ, while mĪ is integrally closed as both m and Ī are so.

As explained in section 1 above, one may construct a flag of clusters {Ki} with
ends K0 = K, Kn = K′. Then

Ī = HK0 ⊃ HK1 ⊃ . . . ⊃ HKn
= mĪ

and dimHKi−1/HKi = 1 for i = 1, . . . , n. Thus, in order to get a minimal system of
generators of Ī, it is enough to pick, for i = 1, . . . , n, an equation fi of a germ going
through Ki−1 but going not through Ki: a suitable germ going through Ki−1 with
effective multiplicities equal to the virtual ones will do the job and the branches of
such a germ are easily determined from Ki−1. By the way note that, as already well
known ([9]), n = ν(O) + 1: it is enough to compute the codimensons of both Ī and
mĪ from K and K′ using the classical formula ([7], L. IV, Ch. II, 17, or also [3, 6.1]).

Let us illustrate the procedure for getting generators of the integral closure by
means of an example. Take I = (x5y − y3, x8 + 2x5y): its cluster of base points K
consists of the origin O and the points p1, p2 in its first and second neighborhoods on
the x-axis, with respective virtual multiplicities 3, 3 and 2, plus the point p3 in the
first neighborhood of p2 and proximate to p1 with virtual multiplicity 1. Enriques
diagrams of the clusters K, K′ as well as those of the intermediate weighted clus-
ters giving rise to the filtration described above are shown in next figure (Enriques
diagrams are explained in [7], Book 4, ch. 1, and also in [2], Section 3 and [4], Sec-
tion 3.9 ). It easily turns out that by taking f1 = x5y− y3, f2 = x(y2 −x5)(y−x2),
f3 = xy(y − x2)2, and f4 = xy2(y − x2), the germ of fi = 0 goes through Ki−1 but
not through Ki. Hence f1, f2, f3, f4 generate the integral closure of I.

4. Gaps for non-complete ideals

Fix an m-primary ideal I and let K = (K, ν) be its weighted cluster of base points
and Ī = HK its integral closure. There are of course complete ideals contained in
mI, namely suitable powers of the maximal ideal m. Anyway, Noether’s Af + Bϕ

theorem (Northcott [10]) allows us to determine such an ideal from the cluster of
base points of I: just take a new weighted cluster K′ = (K ′, ν′) which has the same
set of points as K, K ′ = K, and multiplicities ν′(p) = 2ν(p) − 1 for p 
= O and
ν′(O) = 2ν(O) + 1. Then the weighted cluster of base points of mI, say J has the
same points as K and also the same multiplicities, but for the point O whose virtual
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Figure. Getting generators for the integral closure of I = (x5y − y3, x8 + 2x5y).
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multiplicity is increased by one. Then if one takes any two elements g1, g2 ∈ mI so
that both germs g1 = 0, g2 = 0 go through J with effective multiplicities equal to
the virtual ones and share no points outside of J , Noether’s Af+Bϕ just guarantees
that all germs going through K′ have its equations in (g1, g2) and so, in particular,
H ′ = HK′ ⊂ mI as wanted.

Now, let us fix a flag of clusters {Ki}i=0,...,n with ends K and K′. Write Hi =
HKi

, i = 0, . . . , n. We have:

H = H0 ⊃ H1 ⊃ . . . ⊃ Hn = H ′

and dimHi−1/Hi = 1 for i = 1, . . . , n. By taking the traces on I, Ii = Hi ∩ I we
get a sequence of embodied ideals

I = I0 ⊃ I1 ⊃ . . . ⊃ In = H ′

and dim Ii−1/Ii ≤ 1 for i = 1, . . . , n. Once the flag of clusters is fixed, we say that
Ki is a gap for the ideal I if and only if Ii = Ii+1.

Notice that the flag of clusters may be chosen at once for all ideals I with the
same cluster of base points (or the same integral closure): the gaps describe, in a
certain sense, how far is the ideal I from its integral closure. One may view the
clusters Ki as a sequence of singularities, each a first order specialization of the
former one, the first of them being that of generic elements in the linear system of
germs defined by I. Then the gaps are the singularities in the sequence that cannot
be realized by an element of I.

As it is clear the number of gaps of I, say α(I), does not depend on the flag of
clusters but only on the ideal I itself, as it is related to the codimension of I by the
formula

α(I) = dimO/I − dimO/Ī = dimO/I −
∑

p∈K

ν(p)(ν(p) + 1)
2

.

Obviously, in particular the ideal is integrally closed if and only if it has no gaps.
If for each index i corresponding to a non-gap Ki we take fi ∈ Ii − Ii+1, {fi} is

a system of generators of I (their classes generate I/H ′ and hence also I/mI) that in
most senses behaves like an standard basis for the ideal I. Indeed, one may choose a
second flag of clusters, K−δ, . . . ,K0 with ends the empty cluster and K = K0, giving
thus rise to a filtration by complete ideals

O = H−δ ⊃ . . . ⊃ H0 = Ī ,

and then elements gi ∈ Hi −Hi+1 for i = −δ, . . . ,−1 and also for i = 0, . . . , n and
Ki a gap of I. The reader may easily see that any given element g ∈ O may be
uniquely written in the form g =

∑
λigi + f , λi ∈ C and f ∈ I.
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