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Abstract

We give some criteria of normability of an S-ring, and we study the properties
of its norms.

1. Introduction

Let A be a Hausdorff topological ring with identity and without zero divisors. We
assume that A is commutative.

A is called an S-ring if it contains a sequence (λn)n of invertible elements which
converges to 0 in A, and a symmetric closed neighborhood e of 0 such that

1 ∈ e, ee ⊂ e, and ea ⊂ a (S)

for every a belonging to a fundamental system of neighborhoods of 0 in A. The
S-ring notion was introduced in [1] and [2] in order to generalize some results on the
closed graph theorem to topological modules. Some properties of these rings have
been studied in [2]. In this paper, we give some criteria of normability of an S-ring,
and we study the properties of its norms.

81

Administrador




82 Marhrani and Aamri

2. Notations

In the sequel, we assume that A is an S-ring and we use the above notations. We will
denote by I(A) the set of invertible elements of A and by R the set of its topological
nilpotents.

If N is a norm on A, we denote by C(N) the core of N :

C(N) =
{
x ∈ A / N(x y) = N(x)N(y), ∀y ∈ A

}
,

and by Ns the semi-norm on A defined by

Ns(x) = inf
p≥0

N(xp)1/p.

3. Properties of normability of an S-ring

Proposition 3.1

Let B be a topological ring with identity and without zero divisors. We assume

that B is Hausdorff and commutative.

If B contains a sequence of invertible elements which converges to 0, then B is

an S-ring if and only if 0 possesses a bounded neighborhood.

Proof. If B is an S-ring, it contains a bounded neighborhood of 0, by definition.
Conversely, let V be a bounded neighborhood of 0 in B, W = (V ∩ (−V )) ∪

{−1, 1} and e = {x ∈ B / xW ⊂ W} . e is a neighborhood of 0 in B which satisfies
the condition (S). �

Proposition 3.2

The following assertions are equivalent

1. A is normed.

2. A contains an invertible topological nilpotent.
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Proof. 1. ⇒ 2. If N is a norm on A, there exists n ∈ N such that N(λn) < 1 and
then λn is an invertible topological nilpotent.

2. ⇒ 1. Let c be an invertible topological nilpotent in A; there exists n0 ∈ N

such that cn0e + cn0e ⊂ e.
Let α = cn0 and Vn = α2ne; (Vn)n∈Z is a fundamental system of neighborhoods

of 0 in A, and we have Vn+1 + Vn+1 ⊂ Vn for all n ∈ Z. Moreover, we have
A = ∪n∈ZVn.

We define the mapping g on A by{
g(0) = 0 ,

g(x) = 2−n , if x ∈ Vn − Vn+1 .

Let N defined on A by,

N(x) = inf
{
g(x1) + · · · + g(xn) / x1 + · · · + xn = x

}
,

N is a norm on A, and since Vn ⊂ N−1([0, 2−n]) ⊂ Vn−1, for all n ∈ N, N defines
the topology of A. �

In the following, if A is normed we denote by N the norm defined as in the
preceding proof.

Proposition 3.3
Let B be a commutative Hausdorff topological ring with identity and without

zero divisors. The following assertions are equivalent

1. B is an normed S-ring.
2. There exists a norm M on B such that C(M) contains an invertible topological

nilpotent.

Proof. 1. ⇒ 2. Let e be a neighborhood of 0 in B satisfying the condition (S) and
let α ∈ B defined as in the proof of the Proposition 3.2.

If α−1 ∈ e, (α−n)n would be bounded which is impossible; then α−1 /∈ e, which
gives 1 /∈ α e and α2 ∈ α2 e− α4 e = V1 − V2. Consequently, g(α2) = 1

2 .
Let d = α2, d is an invertible topological nilpotent and we have g(d x) =

g(d) g(x), for all x ∈ B. Indeed, if x ∈ Vn−Vn+1 we have d x ∈ dα2ne−dα2(n+1)e =
Vn+1 − Vn+2; and then g(d x) = 2−(n+1) = 2−1 g(x) = g(d)g(x).

If x1, . . . , xn ∈ B such that x1+ · · ·+xn = d x, we have x = d−1 x1+ · · ·+d−1xn

which gives N(x) ≤ g(d−1x1) + · · · + g(d−1xn) = g(d−1)(g(x1) + · · · + g(xn)) and
then, N(x)N(d) ≤ g(x1) + · · · + g(xn). Hence, N(x)N(d) ≤ N(d x).

2. ⇒ 1. Let e = {x ∈ B / M(x) ≤ 1}, an = {x ∈ B / M(x) ≤ 1
n} and d be an

invertible topological nilpotent which belongs to C(M). We have e an ⊂ an, for all
n ∈ N�. Moreover, (dn)n is a sequence of invertible elements which converges to 0.
Then B is an normed S-ring. �
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Remark 3.4. If A is normed then N(1) = 1. Moreover, there exists an invertible
topological nilpotent d in C(N) such that e ⊂ {x ∈ A / N(x) ≤ 1} ⊂ d−1 e.

Indeed, for the last assertion one can see the proofs of the Proposition 3.2
and 3.3. We have N(d) = N(d.1) = N(d)N(1) and then, N(1) = 1.

Proposition 3.5

If A is normed we have

{
x ∈ A/ N(x) < 1

}
⊂ e ⊂

{
x ∈ A/ N(x) ≤ 1

}
.

Proof. We have already seen that e ⊂ {x ∈ A / N(x) ≤ 1}. If x ∈ A such that
N(x) < 1 , there exists x1, . . . , xp ∈ A with x = x1 + · · · + xp and g(x1) + · · · +
g(xp) < 1.

Let ni ∈ Z be such that g(xi) = 2−ni . Since, g(xi) < 1 we have ni > 0 and thus
x = x1 + · · · + xp ∈ α2n1 e + · · · + α2np e ⊂ e. �

Corollary 3.6

Assume that A is normed. Then for all d ∈ C(N) ∩ I(A) we have

{
x ∈ A / N(x) < N(d)n

}
⊂ dn e ⊂

{
x ∈ A / N(x) ≤ N(d)n

}
for all n ∈ N.

Proof. If N(x) < N(d)n, we have N(x d−n) < 1 which gives xd−n ∈ e and then,
x ∈ dn e.

Conversely, if x ∈ dn e, we have x d−n ∈ e and thus N(x d−n) = N(x)N(d)−n ≤
1. Consequently, N(x) ≤ N(d)n. �

Corollary 3.7

We have the inclusion:

b(e) ⊂ {x ∈ A / N(x) = 1}, where b(e) is the boundary of e.

Proof. Let x ∈ b(e). Since e is closed, we have x ∈ e and then N(x) ≤ 1. If N(x) < 1,
x is an interior element of e, which is impossible. Consequently, N(x) = 1. �

Proposition 3.8

A is normed if and only if there exists n0 ∈ N such that for all n ≥ n0, λn is a

topological nilpotent.
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Proposition 3.9

A is normed if and only if R is a neighborhood of 0.

Proof. If A is normed, the set {x ∈ A/ N(x) < 1} is a neighborhood of 0 contained
in R. Hence, R is a neighborhood of 0.

Conversely, if R is a neighborhood of 0, there exists n0 such that λn0 belongs to
R. Then, A contains an invertible topological nilpotent and therefore it is normed. �

Proposition 3.10

Assume that A is normed and there exists a sequence (xn)n of elements of A

which converges to 1 such that N(xn) < 1, for all n. The following assertions hold

1. {x ∈ A / N(x) < 1} is dense in {x ∈ A /N(x) ≤ 1}.
2. e = {x ∈ A / N(x) ≤ 1}.
3. b(e) = {x ∈ A / N(x) = 1} if and only if Int(e) = {x ∈ A / N(x) < 1}, where

Int(e) is the interior of e.

4. R is dense in
{
x ∈ A / Ns(x) ≤ 1

}
.

Proof. 1. Let x ∈ A be such that N(x) ≤ 1; the sequence (xnx)n converges to x

and, N(xnx) ≤ N(xn)N(x) < 1 which gives the required result.
2. follows from 1.
3. follows from 2.
4. We have R ⊂

{
x ∈ A / Ns(x) ≤ 1

}
. If Ns(x) ≤ 1, we have Ns(xnx) < 1,

for all n and the sequence (xnx)n converges to x. Then, x ∈ R. �

Proposition 3.11

The following assertions are equivalent

1. 1 ∈ R.

2. e ⊂ R.

3.
{
x ∈ A / (xn)n is bounded

}
⊂ R.

Proof. 2. ⇒ 1. Trivial.
1. ⇒ 3. Let x ∈ A be such that (xn)n is bounded. Since 1 ∈ R, there exists a

sequence (xn)n of elements of R which converges to 1; xn x ∈ R for all n; and the
sequence (xnx)n converges to x. Hence, x ∈ R.

3. ⇒ 2. If x ∈ e, the sequence (xn)n is bounded and then x ∈ R. �
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Proposition 3.12

Assume that the topology of A is given by a spectral semi-norm. Then, 1 ∈ R

if and only if R = {x ∈ A / (xn)n is bounded } .

Proof. We have x ∈ R̄ if and only if Ns(x) ≤ 1. Then

R̄ = {x ∈ A / Ns(xn) ≤ 1 ∀n ∈ N} ;

which gives the required result. �

Proposition 3.13

Assume that A is complete and 1 ∈ R. A is normed if and only if I(A) is open.

Proof. It is well known that if A is complete and normed, I(A) is open.
Conversely, if I(A) is open, we have I(A) ∩ R �= ∅. And then, A contains an

invertible topological nilpotent. Consequently, it is normed. �

Proposition 3.14

Let x ∈ R be such that x (e+ e) ⊂ e. Then, (
∑n

k=0 x
k)n is a Cauchy sequence

in A.

Proof. Let Sn = 1 + x + · · · + xn. Since, x (e + e) ⊂ e, we have Sn ∈ e + e, for all
n ∈ N; and then, (Sn)n is bounded.

Let p > q it is easy to see that

p∑
k=q

xk = xqSp−q . (3.1)

Since e + e is bounded there exists n0 ∈ N such that

λn0 e (e + e) ⊂ λn e . (3.2)

On the other hand, there exists N ∈ N such that xq ∈ λn0 e, for all q > N. Com-
bining 3.1 and 3.2 we obtain

∑p
k=q x

k ∈ λn e, for all p > q > N. Which gives the
required result. �
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Corollary 3.15

Assume that A is complete. Then for all x ∈ R such that x (e + e) ⊂ e, 1 − x

is invertible and we have (1 − x)−1 =
∑∞

k=0 x
k.

Proof. By Proposition 3.14, (
∑n

k=0 x
k)n is a Cauchy sequence; then it is convergent

in A.

On the other hand we have (1− x)
∑n

k=0 x
k = 1− xn+1, which converges to 1.

Then, 1 − x is invertible and we have (1 − x)−1 =
∞∑
k=0

xk. �

Corollary 3.16

Assume that A is complete. Then for all x ∈ R, 1 − x is invertible in A.

Proof. Since x ∈ R there exists n ∈ N� such that xn (e+e) ⊂ e; and by Corollary 3.15
1 − xn is invertible in A. Consequently there exists y ∈ A such that y(1 − xn) = 1.
Which completes the proof. �

Definition 3.17. A topological ring B is called sequentially retrobounded if for
every sequence (xn)n of invertible elements of B, (xn)n converges to 0 or (x−1

n )n
possesses a bounded subsequence.

Example 3.18: Every valued ring is sequentially retrobounded.

Lemma 3.19

A is locally compact if and only if e is compact.

Proof. Assume that A is locally compact and, let V be a compact neighborhood
of 0 in A. There exists n ∈ N such that λn e ⊂ V ; then e ⊂ λ−1

n V , and since e is
closed, it is compact.

Conversely, if e is compact, A is trivially locally compact. �

Proposition 3.20

Assume that A is locally compact and sequentially retrobounded. Then it is

normed.



88 Marhrani and Aamri

Proof. Let c ∈ e ∩ I(A) be such that c−1 /∈ e. For all natural integer n we have
cn ∈ e, and since e is compact, there exists a subsequence (cnk)k of (cn)n which
converges to an element α ∈ e.

We claim that α = 0. Indeed, if α �= 0, (c−nk)k contains a bounded subsequence.
And since A is locally compact, it contains a subsequence which converges to some
γ ∈ A. We have αγ = 1, and then α is invertible.

Let mk = nk+1 − nk (we may assume that mk > k for all k), we have cmk ∈ e,

for all k ∈ N∗ and (cmk)k converges to 1. Let y ∈ e, we have y cmk ∈ c e and (ycmk)k
converges to y. Hence, y ∈ c e. Consequently, e = c e, which is impossible since
c−1 /∈ e. It follows that α = 0.

On the other hand, we have cn = cn−nk .cnk which converges to 0 since
(cn−nk)n−nk

is bounded. Consequently, c is an invertible topological nilpotent; and
by Proposition 3.2 A is normed. �

Corollary 3.21

Assume that every sequence (xn)n of invertible elements of A converges to 0 or

(x−1
n )n contains a convergent subsequence. Then A is normed.

Proof. A is sequentially retrobounded. Let us prove that A is locally compact.
Let (xn)n be a sequence of elements of e which does not converge in A; then

(x−1
n )n contains a subsequence (x−1

nk
)k which converges to some α in A. We have

α �= 0; and consequently, (xn)n contains a subsequence which converge in e. It
follows that e is compact. �

Lemma 3.22

Assume that for all x in I(A), x ∈ e or x−1 ∈ e. Then A is sequentially

retrobounded.

Proof. Assume that (x−1
n )n contains a subsequence (x−1

nk
)k which is not bounded.

Then for every p, there exists a subsequence (x−1
pj

)j of (x−1
nk

)k such that x−1
pj

/∈ λ−1
p e

for all j. Hence, λ−1
p xpj ∈ e i.e. xpj ∈ λp e. Consequently, every neighborhood of 0

in A contains a subsequence of (xn)n; we conclude then that 0 is an accumulation
point of (xn)n. �

Proposition 3.23

Assume that A is locally compact and that for every x ∈ I(A), x ∈ e or x−1 ∈ e.

Then A is normed.
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Proof. It suffices to use Lemma 3.22 and Proposition 3.20. �

Proposition 3.24

Assume that A is locally compact and, for all x, y ∈ A such that xy ∈ e we have

x ∈ e or y ∈ e. Then the topology of A is given by a spectral norm.

Moreover, e = R if and only if 1 ∈ R.

Proof. Let x ∈ I(A). Since xx−1 = 1 ∈ e, we have x ∈ e or x−1 ∈ e;∀ and then by
Proposition 3.23 A is normed.

Let x ∈ R, there exists n ∈ N� such that N(xn) < 1, which gives, xn ∈ e.

And from the hypotheses we obtain x ∈ e. It follows that R ⊂ e. Consequently R is
bounded and N is equivalent to Ns.

Assume that 1 ∈ R. By Proposition 3.11 we have e ⊂ R and then e = R̄. �

Proposition 3.25

Assume that A is normed and let M be a spectral norm which is equivalent to

N on A. The following assertions are equivalent

1. C(M) ∩ C(N) contains an invertible topological nilpotent.

2. There exists α > 0 such that M = Nα
s .

3. C(M) = C(Ns).

Proof. 2. ⇒ 3. Trivial.
3. ⇒ 1. C(N) ∩ C(M) = C(N) ∩ C(Ns) = C(N) which contains an invertible

topological nilpotent.
1. ⇒ 2. Let c be an invertible topological nilpotent which belongs to C(N) ∩

C(M), and let d = c−1. We have Ns(d) > 1.
Let α = (lnM(d))(lnNs(d))−1. For all x ∈ A − {0}, there exists s ∈ R such

that M(x) = M(d)s. Let r ∈ Q, we have r = p
q with p ∈ Z and q ∈ N�. If r > s, we

have M(x) < M(d)p/q and, M(x)M(d)−p/q < 1 which gives M(xpd−q) < 1. Hence,
Ns(xpd−q) < 1 and then Ns(x) < Ns(d)r.

If r < s, we have M(x) > M(d)r = M(d)p/q and then M(xpd−q) > 1. Hence,
Ns(xpd−q) > 1. It follows that Ns(x) > Ns(d)r. We conclude by density of Q in
R that Ns(x) = Ns(d)s. Consequently, M(x) = Ns(x)α, which gives the required
result. �
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Corollary 3.26

Assume that A is normed and let v be an absolute value on A which is equivalent

to N on A. Then, Ns is an absolute value on A.

Moreover, there exists r > 0 such that Ns = vr and N is equivalent to Ns.

Proof. v is a spectral norm on A; and C(N) ∩ C(v) = C(N) which contains an
invertible topological nilpotent. By Proposition 3.25 there exists r > 0 such that
Ns = vr. Consequently, Ns is an absolute value.

The last assertion is trivial. �

Corollary 3.27

If v1 and v2 are two equivalent absolute values on A, there exists r > 0 such

that v2 = vr1.

Proposition 3.28

Assume that I(A) is open. If every ideal of A, which is different from {0} , is

dense in A then A is a division ring.

Proof. Let x ∈ A− {0} and a = {αx / α ∈ A}. a is an ideal of A which is different
from 0. Then, a is dense in A. Since I(A) is a non empty open subset of A, we have
I(A) ∩ a �= ∅. Hence, a contains an invertible element of A. Consequently, a = A

and then x is invertible. Which finishes the proof. �

Corollary 3.29

Assume that A is normed, complete and that every ideal which is different from

{0} in A is dense in A. Then A is a division ring.

Proof. Since A is normed and complete, I(A) is a non empty open set. �

Proposition 3.30

Assume that A is locally compact and that its topology is given by a spectral

norm M. Then A is a division ring.
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Proof. Let c be an invertible topological nilpotent in C(N); c is also in C(Ns). On
the other hand, M and Ns have the same topological nilpotents. Then, M and Ns

are equivalent. So, we may assume that M = Ns.

Let a ∈ A be such that Ns(a) = 1. The sequence (an)n is bounded, and then
it contains a subsequence (ank)k which converges to some α ∈ A.

We may assume that mk = nk+1 − nk > k, for all k.
We have Ns(an) = (Ns(a))n = 1, for all n ∈ N. Then, Ns(α) = 1; and con-

sequently, α �= 0. (amk)k contains a subsequence (amkj )j which converges to some
γ ∈ A.

Since ank+1 = ank+1−nk ank = amkank , we have, ankj+1 = amkj ankj ; conse-
quently, α = αγ. And then γ = 1.

A is locally compact then it is complete and, since it is normed, I(A) is open.
It follows that there exists j ∈ N such that amkj ∈ I(A) and then, a is invertible.

Let b ∈ A be such that Ns(b) > 1 and x ∈ A− {0}.
If Ns(x) < 1, there exists two subsequences (nk)k and (mk)k of natural integers

such that lim
k→+∞

Ns(x)nkNs(b)mk = 1 = lim
k→+∞

Ns(xnkbmk).

Consequently, (xnkbmk)k contains a subsequence (xnkj bmkj )j which converges
to some y ∈ A. We have Ns(y) = 1; then, y is invertible and, since I(A) is open,
there exists j ∈ N such that xnkj bmkj ∈ I(A). It follows that x is invertible.

If Ns(x) ≥ 1, there exists m ∈ N such that Ns(λn x) < 1. Then, λn x is
invertible. Which finishes the proof. �

Corollary 3.31

Assume that A is locally compact. Then A is valued if and only if it is a division

ring.

Proof. It is well known that every locally compact division ring is valued.
Conversely, if A is valued, then it is a division ring by Proposition 3.30. �

Corollary 3.32

Assume that A is normed. If (A,Ns) is locally compact then, A is a division

ring and Ns is an absolute value.

Proof. (A,Ns) is an S-ring and its topology is given by a spectral norm. Then, A is
a division ring by Proposition 3.30, and since (A,Ns) is locally compact, it is valued.
We conclude that Ns is an absolute value. �
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Proposition 3.33

Assume that A is normed. The following assertions are equivalent

1. e = R .

2. 1 ∈ R ; and for all x ∈ A, such that xn ∈ e for some n ∈ N∗, we have x ∈ e.

Proof. 1. ⇒ 2. We have 1 ∈ R and since R is bounded, N and Ns are equivalent.
Moreover, we have R = {x ∈ A / Ns(x) ≤ 1} .

If xn ∈ e, then Ns(xn) ≤ 1; and then, Ns(x) ≤ 1. It follows that x ∈ R = e.

2. ⇒ 1. Let x ∈ R. There exists n ∈ N such that N(xn) < 1. On the other
hand, we have e ⊂ {x ∈ A / N(x) ≤ 1} ⊂ {x ∈ A / Ns(x) ≤ 1} = R, which gives
the required result. �

Proposition 3.34

Let B be a locally convex unitary real algebra. B is an S-ring if and only if B

is normed.

Proof. Let N be a norm on B, and set

an =
{
x ∈ A / N(x) ≤ 1

n

}
and e =

{
x ∈ A / N(x y) ≤ 1 ∀y ∈ a1

}
.

(an)n is a fundamental system of neighborhoods of 0 in B; moreover, e satisfies the
condition (S) with λn = 1

n .

Conversely, assume that B is an S-ring and let e be a neighborhood of 0 satis-
fying the condition (S).

Let F be the absolutely convex hull of e and p the gauge of F.

As F is absolutely convex, bounded and absorbent, p is a norm on the vector
space B. Moreover, we have F = {x ∈ B / p(x) ≤ 1}. Then p defines the topology
of B.

On the other hand, if p(x) = α and p(y) = β, we have p(α−1 x) = p(β−1 y) = 1.
Then, x ∈ αF and y ∈ β F. Consequently, x y ∈ αβF. Which gives p(x y) ≤ αβ =
p(x) p(y). �
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4. Case where A is a division ring

In this section we assume that A is a division ring.

Proposition 4.1

The following assertions are equivalent

1. A is normed.

2. R is open.

3. R is different from {0} .

Definition 4.2. A is said to be locally retrobounded if there exists a fundamental
system (Vn)n of neighborhoods of 0 in A, such that (A−Vn)−1 is bounded for all n.

Proposition 4.3

A is locally retrobounded if and only if there exists a neighborhood V of 0,

which is bounded and such that (A− V )−1 is bounded.

Proposition 4.4

The following assertions are equivalent

1. (A− e)−1 ⊂ e.

2. For all x, y ∈ A such that xy ∈ e we have x ∈ e or y ∈ e.

3. For all x ∈ A− {0} we have x ∈ e or x−1 ∈ e.

Proof. 2. ⇒ 3. If x /∈ e, then x−1 ∈ e, since xx−1 = 1 ∈ e.

3. ⇒ 2. If x y ∈ e and x /∈ e, we have x−1 ∈ e; and then, y = x−1 (x y) ∈ e.

1. ⇒ 3. If x /∈ e, we have x ∈ A− e. Hence, x−1 ∈ e.

3. ⇒ 1. If x ∈ (A− e)−1, we have x−1 /∈ e which gives x ∈ e. �

Proposition 4.5

A is valued if and only if A is normed and locally retrobounded.

Proof. If A is valued, it is normed. Let now v be an absolute value on A and set
W = {x ∈ A / v(x) ≤ 1}. W is a bounded neighborhood of 0.

If x /∈ W, we have v(x) > 1 and v(x−1) < 1. It follows that x−1 /∈ W. Conse-
quently, (A−W )−1 ⊂ W and then A is locally retrobounded.

Conversely, if A is normed it contains an invertible topological nilpotent and
since it is locally retrobounded, A is valued (see for instance [4] Th.19.14). �
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Let P = {x ∈ A− {0} / x /∈ R and x−1 /∈ R}.

Proposition 4.6

If R ∪ P = e then A is valued.

Proof. If R = {0}, we have P ∪ {0} = e = {x ∈ A − {0} / x /∈ R and x−1 /∈
R} ∪ {0} = A; which is impossible. Then, R �= {0} and A is normed.

If x /∈ e we have x /∈ R ∪ P and then, x−1 ∈ R ⊂ e. We conclude that A is
locally retrobounded. And then it is valued. �

Proposition 4.7

Assume that 1 ∈ R. The following assertions are equivalent

1. (A− e)−1 ⊂ e.

2. There exists an absolute value v on A such that e = {x ∈ A / v(x) ≤ 1}.
3. e = R ∪ P.

4. e = R and P is bounded.

Proof. Since 1 ∈ R, we have R �= {0} and then A is normed.
1. ⇒ 2. A is locally retrobounded and normed then it is valued. If v is an

absolute value on A, we have

R = {x ∈ A / v(x) < 1} and P ∪R = {x ∈ A / v(x) ≤ 1} .

Let us prove that e = {x ∈ A / v(x) ≤ 1}. We have e ⊂ {x ∈ A / v(x) ≤ 1}. If
v(x) < 1 and x /∈ e we obtain x−1 ∈ e, and then v(x−1) ≤ 1. Hence, v(x) ≥ 1 which
is impossible. It follows that {x ∈ A / v(x) < 1} ⊂ e; and since 1 ∈ R, we have
{x ∈ A / v(x) ≤ 1} ⊂ e = e, which gives the required result.

2. ⇒ 3. We have e = R ∪ P = {x ∈ A / v(x) ≤ 1}.
3. ⇒ 1. If x /∈ e we have x /∈ R ∪ P and then x−1 ∈ R. Hence, x−1 ∈ e.

3. ⇒ 4. 1 ∈ R then e ⊂ R and, since e = R ∪ P we have e = {x ∈ A / v(x) ≤
1} ⊂ R. Or, R ⊂ {x ∈ A / v(x) ≤ 1} = e. Then e = R.

4. ⇒ 1. R is a neighborhood of 0 and R ∪ P is bounded then A is valued. Let
v be an absolute value on A, we have e = R = {x ∈ A / v(x) ≤ 1}. If x /∈ e,

we have v(x) > 1 and then v(x−1) < 1. It follows that x−1 ∈ R ⊂ e and hence,
(A− e)−1 ⊂ e. �
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