Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **49**, 1 (1998), 81–95 © 1998 Universitat de Barcelona

Normability of an S-ring

MARHRANI EL-MILOUDI AND AAMRI MOHAMED

Université Hassan II Mohammedia, Faculté des Sciences Ben M'sik, B.P. 7955 Casablanca, Maroc

Received June 18, 1996. Revised September 18, 1996

Abstract

We give some criteria of normability of an S-ring, and we study the properties of its norms.

1. Introduction

Let A be a Hausdorff topological ring with identity and without zero divisors. We assume that A is commutative.

A is called an S-ring if it contains a sequence $(\lambda_n)_n$ of invertible elements which converges to 0 in A, and a symmetric closed neighborhood e of 0 such that

 $1 \in e, ee \subset e, and ea \subset a$ (S)

for every a belonging to a fundamental system of neighborhoods of 0 in A. The S-ring notion was introduced in [1] and [2] in order to generalize some results on the closed graph theorem to topological modules. Some properties of these rings have been studied in [2]. In this paper, we give some criteria of normability of an S-ring, and we study the properties of its norms.

2. Notations

In the sequel, we assume that A is an S-ring and we use the above notations. We will denote by I(A) the set of invertible elements of A and by R the set of its topological nilpotents.

If N is a norm on A, we denote by C(N) the core of N:

$$C(N) = \left\{ x \in A \mid N(xy) = N(x) N(y), \ \forall y \in A \right\},\$$

and by N_s the semi-norm on A defined by

$$N_s(x) = \inf_{p \ge 0} N(x^p)^{1/p}.$$

3. Properties of normability of an S-ring

Proposition 3.1

Let B be a topological ring with identity and without zero divisors. We assume that B is Hausdorff and commutative.

If B contains a sequence of invertible elements which converges to 0, then B is an S-ring if and only if 0 possesses a bounded neighborhood.

Proof. If B is an S-ring, it contains a bounded neighborhood of 0, by definition.

Conversely, let V be a bounded neighborhood of 0 in B, $W = (V \cap (-V)) \cup \{-1, 1\}$ and $e = \{x \in B \mid x W \subset W\}$. e is a neighborhood of 0 in B which satisfies the condition (S). \Box

Proposition 3.2

The following assertions are equivalent

- 1. A is normed.
- 2. A contains an invertible topological nilpotent.

Proof. 1. \Rightarrow 2. If N is a norm on A, there exists $n \in \mathbb{N}$ such that $N(\lambda_n) < 1$ and then λ_n is an invertible topological nilpotent.

 $2. \Rightarrow 1$. Let c be an invertible topological nilpotent in A; there exists $n_0 \in \mathbb{N}$ such that $c^{n_0}e + c^{n_0}e \subset e$.

Let $\alpha = c^{n_0}$ and $V_n = \alpha^{2n} e$; $(V_n)_{n \in \mathbb{Z}}$ is a fundamental system of neighborhoods of 0 in A, and we have $V_{n+1} + V_{n+1} \subset V_n$ for all $n \in \mathbb{Z}$. Moreover, we have $A = \bigcup_{n \in \mathbb{Z}} V_n$.

We define the mapping g on A by

$$\begin{cases} g(0) = 0, \\ g(x) = 2^{-n}, & \text{if } x \in V_n - V_{n+1} \end{cases}$$

Let N defined on A by,

$$N(x) = \inf \{ g(x_1) + \dots + g(x_n) / x_1 + \dots + x_n = x \},\$$

N is a norm on A, and since $V_n \subset N^{-1}([0, 2^{-n}]) \subset V_{n-1}$, for all $n \in \mathbb{N}$, N defines the topology of A. \Box

In the following, if A is normed we denote by N the norm defined as in the preceding proof.

Proposition 3.3

Let B be a commutative Hausdorff topological ring with identity and without zero divisors. The following assertions are equivalent

- 1. B is an normed S-ring.
- 2. There exists a norm M on B such that C(M) contains an invertible topological nilpotent.

Proof. 1. \Rightarrow 2. Let *e* be a neighborhood of 0 in *B* satisfying the condition (*S*) and let $\alpha \in B$ defined as in the proof of the Proposition 3.2.

If $\alpha^{-1} \in e$, $(\alpha^{-n})_n$ would be bounded which is impossible; then $\alpha^{-1} \notin e$, which gives $1 \notin \alpha e$ and $\alpha^2 \in \alpha^2 e - \alpha^4 e = V_1 - V_2$. Consequently, $g(\alpha^2) = \frac{1}{2}$.

Let $d = \alpha^2$, d is an invertible topological nilpotent and we have g(dx) = g(d) g(x), for all $x \in B$. Indeed, if $x \in V_n - V_{n+1}$ we have $dx \in d\alpha^{2n}e - d\alpha^{2(n+1)}e = V_{n+1} - V_{n+2}$; and then $g(dx) = 2^{-(n+1)} = 2^{-1}g(x) = g(d)g(x)$.

If $x_1, ..., x_n \in B$ such that $x_1 + \dots + x_n = dx$, we have $x = d^{-1}x_1 + \dots + d^{-1}x_n$ which gives $N(x) \leq g(d^{-1}x_1) + \dots + g(d^{-1}x_n) = g(d^{-1})(g(x_1) + \dots + g(x_n))$ and then, $N(x)N(d) \leq g(x_1) + \dots + g(x_n)$. Hence, $N(x)N(d) \leq N(dx)$.

2. ⇒ 1. Let $e = \{x \in B \mid M(x) \leq 1\}$, $a_n = \{x \in B \mid M(x) \leq \frac{1}{n}\}$ and d be an invertible topological nilpotent which belongs to C(M). We have $e a_n \subset a_n$, for all $n \in \mathbb{N}^*$. Moreover, $(d^n)_n$ is a sequence of invertible elements which converges to 0. Then B is an normed S-ring. □

Remark 3.4. If A is normed then N(1) = 1. Moreover, there exists an invertible topological nilpotent d in C(N) such that $e \subset \{x \in A \mid N(x) \leq 1\} \subset d^{-1}e$.

Indeed, for the last assertion one can see the proofs of the Proposition 3.2 and 3.3. We have N(d) = N(d,1) = N(d)N(1) and then, N(1) = 1.

Proposition 3.5

If A is normed we have

$$\{x \in A / N(x) < 1\} \subset e \subset \{x \in A / N(x) \le 1\}.$$

Proof. We have already seen that $e \subset \{x \in A / N(x) \leq 1\}$. If $x \in A$ such that N(x) < 1, there exists $x_1, \ldots, x_p \in A$ with $x = x_1 + \cdots + x_p$ and $g(x_1) + \cdots + g(x_p) < 1$.

Let $n_i \in \mathbb{Z}$ be such that $g(x_i) = 2^{-n_i}$. Since, $g(x_i) < 1$ we have $n_i > 0$ and thus $x = x_1 + \cdots + x_p \in \alpha^{2n_1} e + \cdots + \alpha^{2n_p} e \subset e$. \Box

Corollary 3.6

Assume that A is normed. Then for all $d \in C(N) \cap I(A)$ we have

$$\left\{x \in A \mid N(x) < N(d)^n\right\} \subset d^n e \subset \left\{x \in A \mid N(x) \le N(d)^n\right\} \quad \text{for all} \quad n \in \mathbb{N}.$$

Proof. If $N(x) < N(d)^n$, we have $N(x d^{-n}) < 1$ which gives $xd^{-n} \in e$ and then, $x \in d^n e$.

Conversely, if $x \in d^n e$, we have $x d^{-n} \in e$ and thus $N(x d^{-n}) = N(x)N(d)^{-n} \leq 1$. Consequently, $N(x) \leq N(d)^n$. \Box

Corollary 3.7

We have the inclusion: $b(e) \subset \{x \in A \mid N(x) = 1\}$, where b(e) is the boundary of e.

Proof. Let $x \in b(e)$. Since e is closed, we have $x \in e$ and then $N(x) \leq 1$. If N(x) < 1, x is an interior element of e, which is impossible. Consequently, N(x) = 1. \Box

Proposition 3.8

A is normed if and only if there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, λ_n is a topological nilpotent.

Proposition 3.9

A is normed if and only if R is a neighborhood of 0.

Proof. If A is normed, the set $\{x \in A / N(x) < 1\}$ is a neighborhood of 0 contained in R. Hence, R is a neighborhood of 0.

Conversely, if R is a neighborhood of 0, there exists n_0 such that λ_{n_0} belongs to R. Then, A contains an invertible topological nilpotent and therefore it is normed. \Box

Proposition 3.10

Assume that A is normed and there exists a sequence $(x_n)_n$ of elements of A which converges to 1 such that $N(x_n) < 1$, for all n. The following assertions hold

- 1. $\{x \in A \mid N(x) < 1\}$ is dense in $\{x \in A \mid N(x) \le 1\}$.
- 2. $e = \{x \in A / N(x) \le 1\}.$
- 3. $b(e) = \{x \in A / N(x) = 1\}$ if and only if $Int(e) = \{x \in A / N(x) < 1\}$, where Int(e) is the interior of e.
- 4. R is dense in $\{x \in A / N_s(x) \le 1\}$.

Proof. 1. Let $x \in A$ be such that $N(x) \leq 1$; the sequence $(x_n x)_n$ converges to x and, $N(x_n x) \leq N(x_n)N(x) < 1$ which gives the required result.

- 2. follows from 1.
- 3. follows from 2.

4. We have $\overline{R} \subset \{x \in A \mid N_s(x) \leq 1\}$. If $N_s(x) \leq 1$, we have $N_s(x_n x) < 1$, for all n and the sequence $(x_n x)_n$ converges to x. Then, $x \in \overline{R}$. \Box

Proposition 3.11

The following assertions are equivalent

- 1. $1 \in \overline{R}$. 2. $e \subset \overline{R}$.
- 3. $\{x \in A \mid (x^n)_n \text{ is bounded}\} \subset \overline{R}$.

Proof. 2. \Rightarrow 1. Trivial.

 $1. \Rightarrow 3$. Let $x \in A$ be such that $(x^n)_n$ is bounded. Since $1 \in \overline{R}$, there exists a sequence $(x_n)_n$ of elements of R which converges to 1; $x_n x \in R$ for all n; and the sequence $(x_n x)_n$ converges to x. Hence, $x \in \overline{R}$.

3. \Rightarrow 2. If $x \in e$, the sequence $(x^n)_n$ is bounded and then $x \in \overline{R}$. \Box

Proposition 3.12

Assume that the topology of A is given by a spectral semi-norm. Then, $1 \in \overline{R}$ if and only if $\overline{R} = \{x \in A \mid (x^n)_n \text{ is bounded}\}.$

Proof. We have $x \in \overline{R}$ if and only if $N_s(x) \leq 1$. Then

$$R = \{ x \in A \ / \ N_s(x^n) \le 1 \ \forall n \in \mathbb{N} \} ;$$

which gives the required result. \Box

Proposition 3.13

Assume that A is complete and $1 \in \overline{R}$. A is normed if and only if I(A) is open.

Proof. It is well known that if A is complete and normed, I(A) is open.

Conversely, if I(A) is open, we have $I(A) \cap R \neq \emptyset$. And then, A contains an invertible topological nilpotent. Consequently, it is normed. \Box

Proposition 3.14

Let $x \in R$ be such that $x (e+e) \subset e$. Then, $(\sum_{k=0}^{n} x^k)_n$ is a Cauchy sequence in A.

Proof. Let $S_n = 1 + x + \cdots + x^n$. Since, $x(e+e) \subset e$, we have $S_n \in e+e$, for all $n \in \mathbb{N}$; and then, $(S_n)_n$ is bounded.

Let p > q it is easy to see that

$$\sum_{k=q}^{p} x^{k} = x^{q} S_{p-q} \,. \tag{3.1}$$

Since e + e is bounded there exists $n_0 \in \mathbb{N}$ such that

$$\lambda_{n_0} e \left(e + e \right) \subset \lambda_n e \,. \tag{3.2}$$

On the other hand, there exists $N \in \mathbb{N}$ such that $x^q \in \lambda_{n_0} e$, for all q > N. Combining 3.1 and 3.2 we obtain $\sum_{k=q}^{p} x^k \in \lambda_n e$, for all p > q > N. Which gives the required result. \Box

Corollary 3.15

Assume that A is complete. Then for all $x \in R$ such that $x(e+e) \subset e, 1-x$ is invertible and we have $(1-x)^{-1} = \sum_{k=0}^{\infty} x^k$.

Proof. By Proposition 3.14, $(\sum_{k=0}^{n} x^k)_n$ is a Cauchy sequence; then it is convergent in A.

On the other hand we have $(1-x) \sum_{k=0}^{n} x^k = 1 - x^{n+1}$, which converges to 1. Then, 1-x is invertible and we have $(1-x)^{-1} = \sum_{k=0}^{\infty} x^k$. \Box

Corollary 3.16

Assume that A is complete. Then for all $x \in R$, 1 - x is invertible in A.

Proof. Since $x \in R$ there exists $n \in \mathbb{N}^*$ such that $x^n (e+e) \subset e$; and by Corollary 3.15 $1 - x^n$ is invertible in A. Consequently there exists $y \in A$ such that $y(1 - x^n) = 1$. Which completes the proof. \Box

DEFINITION 3.17. A topological ring B is called sequentially retrobunded if for every sequence $(x_n)_n$ of invertible elements of B, $(x_n)_n$ converges to 0 or $(x_n^{-1})_n$ possesses a bounded subsequence.

EXAMPLE 3.18: Every valued ring is sequentially retrobounded.

Lemma 3.19

A is locally compact if and only if e is compact.

Proof. Assume that A is locally compact and, let V be a compact neighborhood of 0 in A. There exists $n \in \mathbb{N}$ such that $\lambda_n e \subset V$; then $e \subset \lambda_n^{-1} V$, and since e is closed, it is compact.

Conversely, if e is compact, A is trivially locally compact. \Box

Proposition 3.20

Assume that A is locally compact and sequentially retrobounded. Then it is normed.

Proof. Let $c \in e \cap I(A)$ be such that $c^{-1} \notin e$. For all natural integer n we have $c^n \in e$, and since e is compact, there exists a subsequence $(c^{n_k})_k$ of $(c^n)_n$ which converges to an element $\alpha \in e$.

We claim that $\alpha = 0$. Indeed, if $\alpha \neq 0$, $(c^{-n_k})_k$ contains a bounded subsequence. And since A is locally compact, it contains a subsequence which converges to some $\gamma \in A$. We have $\alpha \gamma = 1$, and then α is invertible.

Let $m_k = n_{k+1} - n_k$ (we may assume that $m_k > k$ for all k), we have $c^{m_k} \in e$, for all $k \in \mathbb{N}^*$ and $(c^{m_k})_k$ converges to 1. Let $y \in e$, we have $y c^{m_k} \in c e$ and $(y c^{m_k})_k$ converges to y. Hence, $y \in c e$. Consequently, e = c e, which is impossible since $c^{-1} \notin e$. It follows that $\alpha = 0$.

On the other hand, we have $c^n = c^{n-n_k} \cdot c^{n_k}$ which converges to 0 since $(c^{n-n_k})_{n-n_k}$ is bounded. Consequently, c is an invertible topological nilpotent; and by Proposition 3.2 A is normed. \Box

Corollary 3.21

Assume that every sequence $(x_n)_n$ of invertible elements of A converges to 0 or $(x_n^{-1})_n$ contains a convergent subsequence. Then A is normed.

Proof. A is sequentially retrobounded. Let us prove that A is locally compact.

Let $(x_n)_n$ be a sequence of elements of e which does not converge in A; then $(x_n^{-1})_n$ contains a subsequence $(x_{n_k}^{-1})_k$ which converges to some α in A. We have $\alpha \neq 0$; and consequently, $(x_n)_n$ contains a subsequence which converge in e. It follows that e is compact. \Box

Lemma 3.22

Assume that for all x in I(A), $x \in e$ or $x^{-1} \in e$. Then A is sequentially retrobounded.

Proof. Assume that $(x_n^{-1})_n$ contains a subsequence $(x_{n_k}^{-1})_k$ which is not bounded. Then for every p, there exists a subsequence $(x_{p_j}^{-1})_j$ of $(x_{n_k}^{-1})_k$ such that $x_{p_j}^{-1} \notin \lambda_p^{-1} e$ for all j. Hence, $\lambda_p^{-1}x_{p_j} \in e$ i.e. $x_{p_j} \in \lambda_p e$. Consequently, every neighborhood of 0 in A contains a subsequence of $(x_n)_n$; we conclude then that 0 is an accumulation point of $(x_n)_n$. \Box

Proposition 3.23

Assume that A is locally compact and that for every $x \in I(A)$, $x \in e$ or $x^{-1} \in e$. Then A is normed. *Proof.* It suffices to use Lemma 3.22 and Proposition 3.20. \Box

Proposition 3.24

Assume that A is locally compact and, for all $x, y \in A$ such that $xy \in e$ we have $x \in e$ or $y \in e$. Then the topology of A is given by a spectral norm. Moreover, $e = \overline{R}$ if and only if $1 \in \overline{R}$.

Moreover, e = R if and only if $1 \in R$.

Proof. Let $x \in I(A)$. Since $xx^{-1} = 1 \in e$, we have $x \in e$ or $x^{-1} \in e$; \forall and then by Proposition 3.23 A is normed.

Let $x \in R$, there exists $n \in \mathbb{N}^*$ such that $N(x^n) < 1$, which gives, $x^n \in e$. And from the hypotheses we obtain $x \in e$. It follows that $R \subset e$. Consequently R is bounded and N is equivalent to N_s .

Assume that $1 \in \overline{R}$. By Proposition 3.11 we have $e \subset \overline{R}$ and then $e = \overline{R}$. \Box

Proposition 3.25

Assume that A is normed and let M be a spectral norm which is equivalent to N on A. The following assertions are equivalent

- 1. $C(M) \cap C(N)$ contains an invertible topological nilpotent.
- 2. There exists $\alpha > 0$ such that $M = N_s^{\alpha}$.
- 3. $C(M) = C(N_s)$.

Proof. 2. \Rightarrow 3. Trivial.

 $3. \Rightarrow 1. \ C(N) \cap C(M) = C(N) \cap C(N_s) = C(N)$ which contains an invertible topological nilpotent.

 $1. \Rightarrow 2$. Let c be an invertible topological nilpotent which belongs to $C(N) \cap C(M)$, and let $d = c^{-1}$. We have $N_s(d) > 1$.

Let $\alpha = (\ln M(d))(\ln N_s(d))^{-1}$. For all $x \in A - \{0\}$, there exists $s \in \mathbb{R}$ such that $M(x) = M(d)^s$. Let $r \in \mathbb{Q}$, we have $r = \frac{p}{q}$ with $p \in \mathbb{Z}$ and $q \in \mathbb{N}^*$. If r > s, we have $M(x) < M(d)^{p/q}$ and, $M(x)M(d)^{-p/q} < 1$ which gives $M(x^pd^{-q}) < 1$. Hence, $N_s(x^pd^{-q}) < 1$ and then $N_s(x) < N_s(d)^r$.

If r < s, we have $M(x) > M(d)^r = M(d)^{p/q}$ and then $M(x^p d^{-q}) > 1$. Hence, $N_s(x^p d^{-q}) > 1$. It follows that $N_s(x) > N_s(d)^r$. We conclude by density of \mathbb{Q} in \mathbb{R} that $N_s(x) = N_s(d)^s$. Consequently, $M(x) = N_s(x)^{\alpha}$, which gives the required result. \Box

Corollary 3.26

Assume that A is normed and let v be an absolute value on A which is equivalent to N on A. Then, N_s is an absolute value on A.

Moreover, there exists r > 0 such that $N_s = v^r$ and N is equivalent to N_s .

Proof. v is a spectral norm on A; and $C(N) \cap C(v) = C(N)$ which contains an invertible topological nilpotent. By Proposition 3.25 there exists r > 0 such that $N_s = v^r$. Consequently, N_s is an absolute value.

The last assertion is trivial. \Box

Corollary 3.27

If v_1 and v_2 are two equivalent absolute values on A, there exists r > 0 such that $v_2 = v_1^r$.

Proposition 3.28

Assume that I(A) is open. If every ideal of A, which is different from $\{0\}$, is dense in A then A is a division ring.

Proof. Let $x \in A - \{0\}$ and $a = \{\alpha x \mid \alpha \in A\}$. *a* is an ideal of *A* which is different from 0. Then, *a* is dense in *A*. Since I(A) is a non empty open subset of *A*, we have $I(A) \cap a \neq \emptyset$. Hence, *a* contains an invertible element of *A*. Consequently, a = A and then *x* is invertible. Which finishes the proof. \Box

Corollary 3.29

Assume that A is normed, complete and that every ideal which is different from $\{0\}$ in A is dense in A. Then A is a division ring.

Proof. Since A is normed and complete, I(A) is a non empty open set. \Box

Proposition 3.30

Assume that A is locally compact and that its topology is given by a spectral norm M. Then A is a division ring.

Proof. Let c be an invertible topological nilpotent in C(N); c is also in $C(N_s)$. On the other hand, M and N_s have the same topological nilpotents. Then, M and N_s are equivalent. So, we may assume that $M = N_s$.

Let $a \in A$ be such that $N_s(a) = 1$. The sequence $(a^n)_n$ is bounded, and then it contains a subsequence $(a^{n_k})_k$ which converges to some $\alpha \in A$.

We may assume that $m_k = n_{k+1} - n_k > k$, for all k.

We have $N_s(a^n) = (N_s(a))^n = 1$, for all $n \in \mathbb{N}$. Then, $N_s(\alpha) = 1$; and consequently, $\alpha \neq 0$. $(a^{m_k})_k$ contains a subsequence $(a^{m_{k_j}})_j$ which converges to some $\gamma \in A$.

Since $a^{n_{k+1}} = a^{n_{k+1}-n_k} a^{n_k} = a^{m_k} a^{n_k}$, we have, $a^{n_{k_j+1}} = a^{m_{k_j}} a^{n_{k_j}}$; consequently, $\alpha = \alpha \gamma$. And then $\gamma = 1$.

A is locally compact then it is complete and, since it is normed, I(A) is open. It follows that there exists $j \in \mathbb{N}$ such that $a^{m_{k_j}} \in I(A)$ and then, a is invertible.

Let $b \in A$ be such that $N_s(b) > 1$ and $x \in A - \{0\}$.

If $N_s(x) < 1$, there exists two subsequences $(n_k)_k$ and $(m_k)_k$ of natural integers such that $\lim_{k \to +\infty} N_s(x)^{n_k} N_s(b)^{m_k} = 1 = \lim_{k \to +\infty} N_s(x^{n_k} b^{m_k}).$

Consequently, $(x^{n_k}b^{m_k})_k$ contains a subsequence $(x^{n_{k_j}}b^{m_{k_j}})_j$ which converges to some $y \in A$. We have $N_s(y) = 1$; then, y is invertible and, since I(A) is open, there exists $j \in \mathbb{N}$ such that $x^{n_{k_j}}b^{m_{k_j}} \in I(A)$. It follows that x is invertible.

If $N_s(x) \ge 1$, there exists $m \in \mathbb{N}$ such that $N_s(\lambda_n x) < 1$. Then, $\lambda_n x$ is invertible. Which finishes the proof. \Box

Corollary 3.31

Assume that A is locally compact. Then A is valued if and only if it is a division ring.

Proof. It is well known that every locally compact division ring is valued.

Conversely, if A is valued, then it is a division ring by Proposition 3.30. \Box

Corollary 3.32

Assume that A is normed. If (A, N_s) is locally compact then, A is a division ring and N_s is an absolute value.

Proof. (A, N_s) is an S-ring and its topology is given by a spectral norm. Then, A is a division ring by Proposition 3.30, and since (A, N_s) is locally compact, it is valued. We conclude that N_s is an absolute value. \Box

Proposition 3.33

Assume that A is normed. The following assertions are equivalent

1. $e = \overline{R}$.

2. $1 \in \overline{R}$; and for all $x \in A$, such that $x^n \in e$ for some $n \in \mathbb{N}^*$, we have $x \in e$.

Proof. 1. \Rightarrow 2. We have $1 \in \overline{R}$ and since R is bounded, N and N_s are equivalent. Moreover, we have $\overline{R} = \{x \in A \mid N_s(x) \leq 1\}$.

If $x^n \in e$, then $N_s(x^n) \leq 1$; and then, $N_s(x) \leq 1$. It follows that $x \in \overline{R} = e$.

2. \Rightarrow 1. Let $x \in R$. There exists $n \in \mathbb{N}$ such that $N(x^n) < 1$. On the other hand, we have $e \subset \{x \in A \mid N(x) \leq 1\} \subset \{x \in A \mid N_s(x) \leq 1\} = \overline{R}$, which gives the required result. \Box

Proposition 3.34

Let B be a locally convex unitary real algebra. B is an S-ring if and only if B is normed.

Proof. Let N be a norm on B, and set

$$a_n = \left\{ x \in A \mid N(x) \le \frac{1}{n} \right\}$$
 and $e = \left\{ x \in A \mid N(xy) \le 1 \ \forall y \in a_1 \right\}.$

 $(a_n)_n$ is a fundamental system of neighborhoods of 0 in B; moreover, e satisfies the condition (S) with $\lambda_n = \frac{1}{n}$.

Conversely, assume that B is an S-ring and let e be a neighborhood of 0 satisfying the condition (S).

Let F be the absolutely convex hull of e and p the gauge of F.

As F is absolutely convex, bounded and absorbent, p is a norm on the vector space B. Moreover, we have $F = \{x \in B \mid p(x) \leq 1\}$. Then p defines the topology of B.

On the other hand, if $p(x) = \alpha$ and $p(y) = \beta$, we have $p(\alpha^{-1} x) = p(\beta^{-1} y) = 1$. Then, $x \in \alpha F$ and $y \in \beta F$. Consequently, $x y \in \alpha \beta F$. Which gives $p(x y) \leq \alpha \beta = p(x) p(y)$. \Box

4. Case where A is a division ring

In this section we assume that A is a division ring.

Proposition 4.1

The following assertions are equivalent

- 1. A is normed.
- 2. R is open.
- 3. R is different from $\{0\}$.

DEFINITION 4.2. A is said to be locally retrobunded if there exists a fundamental system $(V_n)_n$ of neighborhoods of 0 in A, such that $(A - V_n)^{-1}$ is bounded for all n.

Proposition 4.3

A is locally retrobunded if and only if there exists a neighborhood V of 0, which is bounded and such that $(A - V)^{-1}$ is bounded.

Proposition 4.4

The following assertions are equivalent

- 1. $(A e)^{-1} \subset e$.
- 2. For all $x, y \in A$ such that $xy \in e$ we have $x \in e$ or $y \in e$.
- 3. For all $x \in A \{0\}$ we have $x \in e$ or $x^{-1} \in e$.

Proof. 2. \Rightarrow 3. If $x \notin e$, then $x^{-1} \in e$, since $x x^{-1} = 1 \in e$. 3. \Rightarrow 2. If $x y \in e$ and $x \notin e$, we have $x^{-1} \in e$; and then, $y = x^{-1} (x y) \in e$. 1. \Rightarrow 3. If $x \notin e$, we have $x \in A - e$. Hence, $x^{-1} \in e$. 3. \Rightarrow 1. If $x \in (A - e)^{-1}$, we have $x^{-1} \notin e$ which gives $x \in e$. \Box

Proposition 4.5

A is valued if and only if A is normed and locally retrobounded.

Proof. If A is valued, it is normed. Let now v be an absolute value on A and set $W = \{x \in A \mid v(x) \leq 1\}$. W is a bounded neighborhood of 0.

If $x \notin W$, we have v(x) > 1 and $v(x^{-1}) < 1$. It follows that $x^{-1} \notin W$. Consequently, $(A - W)^{-1} \subset W$ and then A is locally retrobunded.

Conversely, if A is normed it contains an invertible topological nilpotent and since it is locally retrobounded, A is valued (see for instance [4] Th.19.14). \Box

Let $P = \{x \in A - \{0\} \mid x \notin R \text{ and } x^{-1} \notin R\}.$

Proposition 4.6

If $R \cup P = e$ then A is valued.

Proof. If $R = \{0\}$, we have $P \cup \{0\} = e = \{x \in A - \{0\} \mid x \notin R \text{ and } x^{-1} \notin R\} \cup \{0\} = A$; which is impossible. Then, $R \neq \{0\}$ and A is normed.

If $x \notin e$ we have $x \notin R \cup P$ and then, $x^{-1} \in R \subset e$. We conclude that A is locally retrobounded. And then it is valued. \Box

Proposition 4.7

Assume that $1 \in \overline{R}$. The following assertions are equivalent

- 1. $(A e)^{-1} \subset e$.
- 2. There exists an absolute value v on A such that $e = \{x \in A \mid v(x) \le 1\}$.
- 3. $e = R \cup P$.
- 4. $e = \overline{R}$ and P is bounded.

Proof. Since $1 \in \overline{R}$, we have $R \neq \{0\}$ and then A is normed.

 $1. \Rightarrow 2.$ A is locally retrobounded and normed then it is valued. If v is an absolute value on A, we have

$$R = \left\{ x \in A \; / \; v(x) < 1 \right\} \ \ \text{and} \ \ P \cup R = \left\{ x \in A \; / \; v(x) \leq 1 \right\}.$$

Let us prove that $e = \{x \in A \mid v(x) \leq 1\}$. We have $e \subset \{x \in A \mid v(x) \leq 1\}$. If v(x) < 1 and $x \notin e$ we obtain $x^{-1} \in e$, and then $v(x^{-1}) \leq 1$. Hence, $v(x) \geq 1$ which is impossible. It follows that $\{x \in A \mid v(x) < 1\} \subset e$; and since $1 \in \overline{R}$, we have $\{x \in A \mid v(x) \leq 1\} \subset \overline{e} = e$, which gives the required result.

2. \Rightarrow 3. We have $e = R \cup P = \{x \in A / v(x) \le 1\}$.

3. \Rightarrow 1. If $x \notin e$ we have $x \notin R \cup P$ and then $x^{-1} \in R$. Hence, $x^{-1} \in e$.

 $3. \Rightarrow 4. \quad 1 \in \overline{R} \text{ then } e \subset \overline{R} \text{ and, since } e = R \cup P \text{ we have } e = \{x \in A / v(x) \leq 1\} \subset \overline{R}. \text{ Or, } \overline{R} \subset \{x \in A / v(x) \leq 1\} = e. \text{ Then } e = \overline{R}.$

 $4. \Rightarrow 1. R$ is a neighborhood of 0 and $R \cup P$ is bounded then A is valued. Let v be an absolute value on A, we have $e = \overline{R} = \{x \in A \mid v(x) \leq 1\}$. If $x \notin e$, we have v(x) > 1 and then $v(x^{-1}) < 1$. It follows that $x^{-1} \in R \subset e$ and hence, $(A-e)^{-1} \subset e$. \Box

Normability of an S-ring

References

- 1. M. Aamri, Sur le théorème du graphe fermé, Thèse d'Etat, Toulouse, 1985.
- 2. M. Aamri and El. Marhrani, Les S-anneaux et propriétés de tonnelage dans les modules topologiques, *Academia Peloritana dei Pericolanti*, **67** (1991), 275-292.
- 3. El. Marhrani, *Contribution à la généralisation du théorème du graphe fermé*, Thèse de 3ème cycle, Casablanca, 1990.
- 4. S. Warner, Topological fields, Math. Studies, North Holland 157, 1989.