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ABSTRACT

We give some criteria of normability of an S-ring, and we study the properties
of itsnorms.

1. Introduction

Let A be a Hausdorff topological ring with identity and without zero divisors. We
assume that A is commutative.

A is called an S-ring if it contains a sequence (A, ), of invertible elements which
converges to 0 in A, and a symmetric closed neighborhood e of 0 such that

lee, eeCe and eaCa (5)

for every a belonging to a fundamental system of neighborhoods of 0 in A. The
S-ring notion was introduced in [1] and [2] in order to generalize some results on the
closed graph theorem to topological modules. Some properties of these rings have
been studied in [2]. In this paper, we give some criteria of normability of an S-ring,

and we study the properties of its norms.
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2. Notations

In the sequel, we assume that A is an S-ring and we use the above notations. We will
denote by I(A) the set of invertible elements of A and by R the set of its topological
nilpotents.

If N is a norm on A, we denote by C'(N) the core of N:

C(N)={z€ A/ N(zy)=N(z)N(y), Vy € A},
and by N the semi-norm on A defined by

N,(z) = inf N(zP)'/?.

p=>0

3. Properties of normability of an S-ring

Proposition 3.1

Let B be a topological ring with identity and without zero divisors. We assume
that B is Hausdorff and commutative.

If B contains a sequence of invertible elements which converges to 0, then B is
an S-ring if and only if 0 possesses a bounded neighborhood.

Proof. If B is an S-ring, it contains a bounded neighborhood of 0, by definition.

Conversely, let V' be a bounded neighborhood of 0 in B, W = (V. N (=V)) U
{-1,1} ande={z e B /aW C W}. eis a neighborhood of 0 in B which satisfies
the condition (.5). O

Proposition 3.2
The following assertions are equivalent

1. A is normed.

2. A contains an invertible topological nilpotent.
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Proof. 1. = 2. If N is a norm on A, there exists n € N such that N()\,) < 1 and
then )\, is an invertible topological nilpotent.

2. = 1. Let ¢ be an invertible topological nilpotent in A; there exists ng € N
such that c™°e + c™%e C e.

Let a = ¢ and V,, = a?"e; (V,,)nez is a fundamental system of neighborhoods
of 0 in A, and we have V,i11 + V41 C V,, for all n € Z. Moreover, we have
A= UnEZVn-

We define the mapping g on A by

9(0) =0,
{g(x)zZ_”, if zeV,—Vyy1.
Let N defined on A by,
N(z)=inf {g(z1) + -+ g(zn) /31 4+ + 3 =2},

N is a norm on A, and since V,, C N71([0,27"]) C V,,_1, for all n € N, N defines
the topology of A. [

In the following, if A is normed we denote by N the norm defined as in the
preceding proof.

Proposition 3.3

Let B be a commutative Hausdorff topological ring with identity and without
zero divisors. The following assertions are equivalent

1. B is an normed S-ring.
2. There exists a norm M on B such that C(M) contains an invertible topological
nilpotent.

Proof. 1. = 2. Let e be a neighborhood of 0 in B satisfying the condition (S) and
let o € B defined as in the proof of the Proposition 3.2.

If a=! €e, (a™™), would be bounded which is impossible; then a~! ¢ e, which
gives 1 ¢ ae and a? € a?e — a*e = Vi — V. Consequently, g(a?) = %

Let d = o2, d is an invertible topological nilpotent and we have g(dx) =
g(d) g(z), for all z € B. Indeed, if x € V,, — V,,.1 we have dz € da?"e —da?™ Ve =
Vip1 — Vago; and then g(da) = 2700 =271 g(z) = g(d)g(x).

If 1,...,2, € Bsuchthat z1+---+z, =dz,wehavex =d 2, +---+d 'z,
which gives N(z) < g(d~'ay) + -+ g(d 'x,) = g(d V) (g(z1) +--- + g(z,)) and
then, N(z) N(d) < g(x1) + -+ g(x,,). Hence, N(z)N(d) < N(dzx).

2.=1. Lete={zxeB/M(x)<1},a,={x€B/M(z) <1} anddbean
invertible topological nilpotent which belongs to C'(M). We have ea, C a,, for all
n € N*. Moreover, (d"),, is a sequence of invertible elements which converges to 0.
Then B is an normed S-ring. [
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Remark 3.4. If A is normed then N(1) = 1. Moreover, there exists an invertible
topological nilpotent d in C'(N) such that e C {r € A/ N(z) <1} Ccd te.

Indeed, for the last assertion one can see the proofs of the Proposition 3.2
and 3.3. We have N(d) = N(d.1) = N(d)N(1) and then, N(1)=1.

Proposition 3.5

If A is normed we have
{xeA/N@)<1l}cec{zeA/N(=z) <1}.

Proof. We have already seen that e C {z € A / N(z) < 1}. If x € A such that
N(z) < 1, there exists z1,...,2, € A with z = 21 +--- + 2 and g(z1) +--- +

g(xp) < 1.
Let n; € Z be such that g(z;) = 27™. Since, g(x;) < 1 we have n;, > 0 and thus

r=xz1+ +ap€Ea*Me+ - +a*reCe O

Corollary 3.6
Assume that A is normed. Then for all d € C(N)NI(A) we have

{reA/N(@)<N(@"}cd*ec{zeA/N()<N()"} forall neN.

Proof. If N(z) < N(d)", we have N(xd™ ™) < 1 which gives zd™" € e and then,
rxede.

Conversely, if x € d" e, we have £ d~" € e and thus N(zd™") = N(x)N(d)™" <
1. Consequently, N(z) < N(d)". O

Corollary 3.7

We have the inclusion:
ble) C {x € A/ N(z) =1}, where b(e) is the boundary of e.

Proof. Let = € b(e). Since e is closed, we have z € e and then N(z) < 1.If N(z) < 1,
x is an interior element of e, which is impossible. Consequently, N(z) = 1. O

Proposition 3.8

A is normed if and only if there exists ng € N such that for all n > ng, A, is a
topological nilpotent.
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Proposition 3.9
A is normed if and only if R is a neighborhood of 0.

Proof. If A is normed, the set {z € A/ N(x) < 1} is a neighborhood of 0 contained
in R. Hence, R is a neighborhood of 0.

Conversely, if R is a neighborhood of 0, there exists ng such that \,, belongs to
R. Then, A contains an invertible topological nilpotent and therefore it is normed. [J]

Proposition 3.10

Assume that A is normed and there exists a sequence (x, ), of elements of A
which converges to 1 such that N(x,) < 1, for all n. The following assertions hold
1. {xr € A/ N(z) < 1} is dense in {x € A /N(x) < 1}.
2.e={xe A/ N(z) <1}
3. ble)={xr€ A/ N(z) =1} if and only if Int(e) = {x € A / N(z) < 1}, where
Int(e) is the interior of e.
4. Ris dense in {z € A/ Ny(z) < 1}.

Proof. 1. Let x € A be such that N(x) < 1; the sequence (x,z), converges to z
and, N(z,z) < N(x,)N(z) < 1 which gives the required result.

2. follows from 1.

3. follows from 2.

4. We have R C {iL‘ € A/ Ns(z) < 1}. If Ns(z) <1, we have Ny(z,z) < 1,
for all n and the sequence (x,z), converges to . Then, x € R. [

Proposition 3.11
The following assertions are equivalent

1.1eR
2. eCR.
3. {z €A/ (z"), isbounded} C R.

Proof. 2. = 1. Trivial.

1. = 3. Let € A be such that (2"),, is bounded. Since 1 € R, there exists a
sequence (), of elements of R which converges to 1; z,, x € R for all n; and the
sequence (x,), converges to x. Hence, = € R.

3. = 2. If z € e, the sequence (z"),, is bounded and then z € R. [J



86 MARHRANI AND A AMRI

Proposition 3.12

Assume that the topology of A is given by a spectral semi-norm. Then, 1 € R
if and only if R={x € A/ (z"), isbounded}.

Proof. We have x € R if and only if N,(x) < 1. Then
R={r€A / Ny(a")<1VYn€eN};

which gives the required result. [J

Proposition 3.13
Assume that A is complete and 1 € R. A is normed if and only if I(A) is open.

Proof. Tt is well known that if A is complete and normed, I(A) is open.
Conversely, if I(A) is open, we have I(A) N R # (). And then, A contains an
invertible topological nilpotent. Consequently, it is normed. [J

Proposition 3.14

Let x € R be such that z (e +¢€) C e. Then, (3 ,_,2"), is a Cauchy sequence
in A.

Proof. Let S, =1+ x+---+ 2" Since, z (e + €) C e, we have S,, € e + e, for all
n € N; and then, (S,,), is bounded.
Let p > ¢ it is easy to see that

p
Z ok =218, . (3.1)
k=q
Since e + e is bounded there exists ng € N such that
Angele+e)C Ay e. (3.2)

On the other hand, there exists N € N such that z? € )\, e, for all ¢ > N. Com-
bining 3.1 and 3.2 we obtain Zizq zF € A\, for all p > ¢ > N. Which gives the
required result. [
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Corollary 3.15

Assume that A is complete. Then for all x € R such that z(e+¢) Ce, 1—=x
is invertible and we have (1 —z)~! = Y77z

Proof. By Proposition 3.14, (3_;_, z*),, is a Cauchy sequence; then it is convergent
in A.
On the other hand we have (1 —xz) Y7_,z* =1 — 2™, which converges to 1.

Then, 1 — x is invertible and we have (1 — z)~! = Z 8. 0
k=0

Corollary 3.16
Assume that A is complete. Then for all x € R, 1 — x is invertible in A.

Proof. Since z € R there exists n € N* such that 2™ (e+e) C e; and by Corollary 3.15
1 — 2™ is invertible in A. Consequently there exists y € A such that y(1 —2™) = 1.
Which completes the proof. [J

DEFINITION 3.17. A topological ring B is called sequentially retrobounded if for
every sequence (r,), of invertible elements of B, (z,), converges to 0 or (z,,1),
possesses a bounded subsequence.

ExamMpPLE 3.18: Every valued ring is sequentially retrobounded.

Lemma 3.19

A is locally compact if and only if e is compact.

Proof. Assume that A is locally compact and, let V' be a compact neighborhood
of 0 in A. There exists n € N such that A\, e C V; then e C A\, !V, and since e is
closed, it is compact.

Conversely, if e is compact, A is trivially locally compact. [J

Proposition 3.20

Assume that A is locally compact and sequentially retrobounded. Then it is
normed.
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Proof. Let ¢ € e N I(A) be such that ¢=! ¢ e. For all natural integer n we have
" € e, and since e is compact, there exists a subsequence (¢"*); of (¢"),, which
converges to an element « € e.

We claim that o = 0. Indeed, if & # 0, (¢~ ™) contains a bounded subsequence.
And since A is locally compact, it contains a subsequence which converges to some
v € A. We have ay = 1, and then « is invertible.

Let my = ngy1 — ng (we may assume that my > k for all k), we have ¢™* € e,
for all £ € N* and (¢"*);, converges to 1. Let y € e, we have y ¢ € ce and (yc™ )i
converges to y. Hence, y € ce. Consequently, e = ce, which is impossible since
¢! ¢ e. It follows that o = 0.

On the other hand, we have ¢ = ¢" " .c™ which converges to 0 since
(¢ ),_p, is bounded. Consequently, ¢ is an invertible topological nilpotent; and
by Proposition 3.2 A is normed. [J

Corollary 3.21

Assume that every sequence (x,,),, of invertible elements of A converges to 0 or
(1), contains a convergent subsequence. Then A is normed.

Proof. A is sequentially retrobounded. Let us prove that A is locally compact.

Let (x,)n be a sequence of elements of e which does not converge in A; then
(z;,')n contains a subsequence (x,,!); which converges to some o in A. We have
a # 0; and consequently, (z,), contains a subsequence which converge in e. It

follows that e is compact. [J

Lemma 3.22

Assume that for all x in I(A), x € e or x~
retrobounded.

! ¢ e. Then A is sequentially

Proof. Assume that (z, '), contains a subsequence (z; ), which is not bounded.
Then for every p, there exists a subsequence (:L‘;jl ); of (z,; 1)k such that x;jl ¢ te
for all j. Hence, A, 1$pj € eie. xy, € A\pe. Consequently, every neighborhood of 0
in A contains a subsequence of (x,,),; we conclude then that 0 is an accumulation
point of (z,),. O

Proposition 3.23

Assume that A is locally compact and that for every x € I(A), x € e or x~*

Then A is normed.

€ e.
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Proof. It suffices to use Lemma 3.22 and Proposition 3.20. [J

Proposition 3.24

Assume that A is locally compact and, for all x,y € A such that xy € e we have
x € e or y € e. Then the topology of A is given by a spectral norm.
Moreover, e = R if and only if 1 € R.

Proof. Let x € I(A). Since xzz7! =1 € ¢, we have € e or 7! € e;V and then by
Proposition 3.23 A is normed.

Let z € R, there exists n € N* such that N(z"™) < 1, which gives, z" € e.
And from the hypotheses we obtain x € e. It follows that R C e. Consequently R is
bounded and N is equivalent to Nj.

Assume that 1 € R. By Proposition 3.11 we have e C R and then e = R. O

Proposition 3.25

Assume that A is normed and let M be a spectral norm which is equivalent to
N on A. The following assertions are equivalent

1. C(M)NC(N) contains an invertible topological nilpotent.
2. There exists a > 0 such that M = Ng*.
3. C(M) = C(N,).

Proof. 2. = 3. Trivial.

3.=1. C(N)NC(M)=C(N)NC(Nys) = C(N) which contains an invertible
topological nilpotent.

1. = 2. Let ¢ be an invertible topological nilpotent which belongs to C(N) N
C(M), and let d = ¢c!. We have N(d) > 1.

Let a = (InM(d))(In Ny(d))~!. For all z € A — {0}, there exists s € R such
that M(z) = M(d)*. Let r € Q, we have r = £ with p € Z and ¢ € N*. If r > s, we
have M (z) < M(d)?/9 and, M (x)M(d)~?/% < 1 which gives M (2Pd~?) < 1. Hence,
Ng(2zPd~7) < 1 and then Ng(x) < Ng(d)".

If r < s, we have M(z) > M(d)" = M(d)?/9 and then M (zPd~9) > 1. Hence,
Ng(xPd=9) > 1. It follows that Ng(x) > N,(d)". We conclude by density of Q in
R that Ns(z) = Ns(d)®. Consequently, M (z) = Ny(z)*, which gives the required
result. U
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Corollary 3.26

Assume that A is normed and let v be an absolute value on A which is equivalent
to N on A. Then, Ny is an absolute value on A.
Moreover, there exists r > 0 such that Ny, = v" and N is equivalent to Nj.

Proof. v is a spectral norm on A; and C(N) N C(v) = C(N) which contains an
invertible topological nilpotent. By Proposition 3.25 there exists » > 0 such that
N, = v". Consequently, Ny is an absolute value.

The last assertion is trivial. [J

Corollary 3.27

If v1 and vy are two equivalent absolute values on A, there exists r > 0 such
that vy = v7.

Proposition 3.28

Assume that I(A) is open. If every ideal of A, which is different from {0}, is
dense in A then A is a division ring.

Proof. Let z € A— {0} and a = {ax / a € A}. ais an ideal of A which is different
from 0. Then, a is dense in A. Since I(A) is a non empty open subset of A, we have
I(A) Na # (. Hence, a contains an invertible element of A. Consequently, a = A
and then x is invertible. Which finishes the proof. [

Corollary 3.29

Assume that A is normed, complete and that every ideal which is different from
{0} in A is dense in A. Then A is a division ring.

Proof. Since A is normed and complete, I(A) is a non empty open set. [J

Proposition 3.30

Assume that A is locally compact and that its topology is given by a spectral
norm M. Then A is a division ring.
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Proof. Let ¢ be an invertible topological nilpotent in C(N); ¢ is also in C'(N;). On
the other hand, M and N, have the same topological nilpotents. Then, M and N
are equivalent. So, we may assume that M = Nq.

Let a € A be such that Ns(a) = 1. The sequence (a™), is bounded, and then
it contains a subsequence (a"*); which converges to some a € A.

We may assume that my = ng41 — ng > k, for all k.

We have Ng(a™) = (Ns(a))™ = 1, for all n € N. Then, Ns(a) = 1; and con-
sequently, o # 0. (a™*); contains a subsequence (a""*i); which converges to some
v €A

Since @™kt = @"k+17k gk = gMkg"%  we have, a "tk

Mhi+l = "% q"*i 5 conse-
quently, « = . And then v = 1.

A is locally compact then it is complete and, since it is normed, I(A) is open.
It follows that there exists j € N such that """ € I(A) and then, a is invertible.

Let b € A be such that Ng(b) > 1 and x € A — {0}.

If Ng(z) < 1, there exists two subsequences (ny)r and (my ), of natural integers

such that lim Ng(z)"* Ng(b)™* =1= lim N(z"*b™*).
k—4o00 k—-4o00

Consequently, (z™b"*);, contains a subsequence (x"*"b""i); which converges
to some y € A. We have N,(y) = 1; then, y is invertible and, since I(A) is open,
there exists j € N such that 2" b™" € I(A). It follows that z is invertible.

If Ng(z) > 1, there exists m € N such that Ng(\,x) < 1. Then, A,z is
invertible. Which finishes the proof. [

Corollary 3.31

Assume that A is locally compact. Then A is valued if and only if it is a division
ring.

Proof. It is well known that every locally compact division ring is valued.
Conversely, if A is valued, then it is a division ring by Proposition 3.30. O

Corollary 3.32

Assume that A is normed. If (A, Ny) is locally compact then, A is a division
ring and N is an absolute value.

Proof. (A, N) is an S-ring and its topology is given by a spectral norm. Then, A is
a division ring by Proposition 3.30, and since (4, Ny) is locally compact, it is valued.
We conclude that N, is an absolute value. [
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Proposition 3.33

Assume that A is normed. The following assertions are equivalent

1. e=R.
2. 1€ R; and for all x € A, such that 2™ € e for some n € N*, we have x € e.
Proof. 1. = 2. We have 1 € R and since R is bounded, N and N, are equivalent.
Moreover, we have R = {x € A / Ny(x) < 1}.

If 2" € e, then N,(z") < 1; and then, Ny(z) < 1. It follows that z € R = e.

2. = 1. Let x € R. There exists n € N such that N(z") < 1. On the other
hand, we have e C {r € A / N(z) <1} C {x € A / N4(z) < 1} = R, which gives
the required result. [

Proposition 3.34

Let B be a locally convex unitary real algebra. B is an S-ring if and only if B
is normed.

Proof. Let N be a norm on B, and set

an:{xeA/N(:p)g%} and e={r€A/N@xy) <1Vyca}.
(an)n is a fundamental system of neighborhoods of 0 in B; moreover, e satisfies the
condition (S) with A, = +.

Conversely, assume that B is an S-ring and let e be a neighborhood of 0 satis-
fying the condition (.5).

Let F' be the absolutely convex hull of e and p the gauge of F.

As F is absolutely convex, bounded and absorbent, p is a norm on the vector
space B. Moreover, we have F' = {x € B / p(z) < 1}. Then p defines the topology
of B.

On the other hand, if p(x) = a and p(y) = 3, we have p(a~'z) = p(8~1y) = 1.
Then, z € a F and y € § F. Consequently, zy € aBF. Which gives p(zy) <af =
p(2) ply). O



Normability of an Sring 93

4. Case where A is a division ring
In this section we assume that A is a division ring.

Proposition 4.1
The following assertions are equivalent

1. A is normed.
2. R is open.
3. R is different from {0} .

DEFINITION 4.2. A is said to be locally retrobounded if there exists a fundamental
system (V,,),, of neighborhoods of 0 in A, such that (A —V,,)~! is bounded for all n.

Proposition 4.3

A is locally retrobounded if and only if there exists a neighborhood V of 0,
which is bounded and such that (A — V)~ is bounded.

Proposition 4.4
The following assertions are equivalent
1. (A-e)lCe.
2. For all z,y € A such that xy € e we have x € e or y € e.
3. Forallz € A— {0} we havex Ce orz~! € e.

Proof. 2. = 3. If x ¢ e, then 27! € e, sincerr~! =1 ce.
3.=2 Ifryceand x ¢ e, we have 271 € ¢; and then, y = 27! (zy) € e.
1.=3.If x ¢ e, we have 7 € A — e. Hence, 7! € e.
3.=> 1.Ifz € (A—e)!, we have x7! ¢ e which gives z € e. O

Proposition 4.5

A is valued if and only if A is normed and locally retrobounded.

Proof. If A is valued, it is normed. Let now v be an absolute value on A and set
W={xeA/v(x)<1}. W is a bounded neighborhood of 0.

If + ¢ W, we have v(x) > 1 and v(z~!) < 1. It follows that z=! ¢ W. Conse-
quently, (A — W)=t C W and then A is locally retrobounded.

Conversely, if A is normed it contains an invertible topological nilpotent and
since it is locally retrobounded, A is valued (see for instance [4] Th.19.14). O
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Let P={z€ A—{0} /x ¢ Rand 27! ¢ R}.

Proposition 4.6
If RUP = e then A is valued.

Proof. If R = {0}, we have PU{0} = e={r € A—{0} /2 ¢ Rand x7' ¢
R} U {0} = A; which is impossible. Then, R # {0} and A is normed.

If z ¢ e we have x ¢ RU P and then, 27! € R C e. We conclude that A is
locally retrobounded. And then it is valued. [

Proposition 4.7

Assume that 1 € R. The following assertions are equivalent
(A—e)"tCe.

There exists an absolute value v on A such that e = {x € A [ v(x) < 1},
e=RUP.

e = R and P is bounded.

o=

Proof. Since 1 € R, we have R # {0} and then A is normed.
1. = 2. A is locally retrobounded and normed then it is valued. If v is an
absolute value on A, we have

R={zxecA/v(xr)<1l} and PUR={zx € A/v(x)<1}.

Let us prove that e = {x € A / v(z) < 1}. Wehave e C {x € A [ v(z) < 1}. If
v(z) < 1 and = ¢ e we obtain x~! € e, and then v(z~1) < 1. Hence, v(x) > 1 which
is impossible. It follows that {z € A / v(x) < 1} C e; and since 1 € R, we have
{zr € A /v(x) <1} C €= e, which gives the required result.

2.= 3. Wehavee=RUP={ze€ A /v(x) <1}

3.=> 1. If z ¢ e we have z ¢ RU P and then 27! € R. Hence, 27! € e.

3.=4. 1€ R theneC R and, sincee= RUP we have e = {x € A / v(x) <
1}CR.Or,RC{r€A/v(x)<1}=e. Thene=R.

4. = 1. R is a neighborhood of 0 and R U P is bounded then A is valued. Let
v be an absolute value on A, we have e = R = {x € A / v(z) < 1}. If 2 ¢ e,
we have v(z) > 1 and then v(z~!) < 1. It follows that 27! € R C e and hence,
(A—e)"tce O
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