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Abstract

It is proved that, for some reverse doubling weight functions, the related operator
which appears in the Fefferman Stein’s inequality can be taken smaller than those
operators for which such an inequality is known to be true.

§ 1. The results

Let T be a classical operator (i.e. a fractional maximal operator or a Calderon-
Zygmund operator or a fractional integral operator). The Fefferman-Stein’s inequa-
lity related to T is

(1)
∫

Rn

∣∣(Tf)(x)
∣∣pw(x)dx ≤ C

∫
Rn

∣∣f(x)
∣∣p(Sw)(x)dx for all functions f ;

where w is a weight function (i.e. a nonnegative locally integrable functions) and S

is a convenient operator which will be precised. In (1), it is assumed that n ∈ N
∗,

1 < p < ∞ and C > 0 is a constant which does not depend on each f . The dual
inequality associated to (1) is denoted as

(1∗)
∫

Rn

∣∣(Tg)(x)
∣∣p′

(Sw)(x)1−p′
dx ≤ C

∫
Rn

∣∣g(x)
∣∣p′

w(x)1−p′
dx for all functions g;

where p′ = p/(p− 1). As it is known [4] and as it will be alluded in this text,
inequalities (1) and (1∗) are useful tools in Harmonic Analysis and in Analysis of
Partial Differential Equations.
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Our purpose on this paper is to prove that, for some reverse doubling weight
functions, the related operator S which appears in (1) and (1∗) can be taken smaller
than those operators for which they are known to be true.

Recall that a weight function w satisfies a reverse doubling condition (or w ∈
RDρ) when there are ρ > 0, c > 0 for which

tnρ
∫
|y|<R

w(y)dy ≤ c

∫
|y|<tR

w(y)dy

for all R > 0 and t > 1. In particular any doubling weight function satisfies the
reverse doubling condition (see [10]). The growth condition

(H) w(x) ≤ c0|x|−n

∫
{c1|x|<|z|<c2|x|}

w(z)dz for all x 	= 0

is also useful. Here c0, c1, c2 > 0 are constants which do not depend on x. Condition
(H) is satisfied for instance for radial monotone weight functions.

The fractional maximal operator Ms of order s, 0 ≤ s < n, is defined as

(Msf)(x) = sup

{
|Q|s/n−1

∫
Q

f(y)dy; Q cubes containing x

}
.

So M = M0 is the Hardy-Littlewood maximal operator. For 1 < p < n/s, then it is
well-known that

(2)
∫

Rn

(Msf)p(x)w(x)dx ≤ C

∫
Rn

fp(x)(Mspw)(x)dx for all f ≥ 0 .

Inequality (2) with s = 0 is the classical result due to C. Fefferman and E. Stein [4].
And for s > 0, then (2) can be derived by a Sawyer’s result [9]. Inequality (2) is a
crucial point to obtain vector-valued inequalities for maximal functions, which are
for instance useful to study function spaces (see [4]). Although Ms is not a linear
operator, a sort of dual version of (2) holds, since

(2∗)
∫

Rn

(Msg)p
′
(x)(Sw)1−p′

(x)dx ≤ C

∫
Rn

gp
′
(x)w1−p′

(x)dx for all g ≥ 0 .

with (Sg)(x) = (Stg)(x) = (Mspg
t)1/t(x) where t > 1. (2∗) can be used to get

inequality (2) for singular integral operator (see for instance the proof of Theorem 2
below). For s = 0, Pérez [6] was able to get (2∗) with smaller operators S such as
c1(Mw)(x) ≤ (Sw)(x) ≤ c2(Stw)(x). For w ∈ RDρ ∩H we can get a better result.
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Theorem 1

Let 0 ≤ s < n, 1 < p < n/s. Assume w satisfying a reverse doubling condition

and the growth condition (H). Then there is C > 0 such that

∫
Rn

(Msg)p
′
(x)(Mspw)1−p′

(x)dx ≤ C

∫
Rn

gp
′
(x)w1−p′

(x)dx.

The constant C > 0 in this result depends only on n, p and on the constants which
appear in the reverse doubling condition and in condition (H).

Next we consider the case of any Calderon-Zygmund operator T . Such an ope-
rator can be viewed as a linear operator taking C∞

c (Rn) into L1
loc(R

n, dx), bounded
on L2(Rn, dx) and for which

(Tf)(x) =
∫

Rn

K(x, y)f(y)dy a.e. x /∈ supp f

for each f ∈ L∞
c (Rn, dx). Here K(x, y) is a continuous function defined on

{(x, y); x 	= y} and satisfies the standard estimates: |K(x, y)| ≤ C|x − y|−n

and |K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C
(

|x−x′

|x−y|

)ε

|x − y|−n whenever
2|x − x′| ≤ |x − y|, and where C > 0, ε ∈]0, 1] do not depend on x, y, x′. By a
classical result due to A. Córdoba and C. Fefferman [3] then

(3)
∫

Rn

∣∣(Tf)(x)
∣∣pw(x)dx ≤ C

∫
Rn

∣∣f(x)
∣∣p(Sw)(x)dx for all f

with (Sg)(x) = (Stg)(x) = (Mgt)1/t(x) for any t > 1. Pérez [5] improved this result
by proving that (3) is true with smaller operators S as in (2∗) with s = 0. Again a
better result holds when w ∈ RDρ ∩H.

Theorem 2

Let 1 < p < ∞, and w a reverse doubling weight function satisfying the growth

condition (H). Then there is C > 0 such that

∫
Rn

∣∣(Tg)(x)
∣∣pw(x)dx ≤ C

∫
Rn

∣∣g(x)
∣∣p(Mw)(x)dx .

Of course since T is a linear operator, then clearly this inequality is equivalent to∫
Rn

|(T ∗g)(x)|p′
(Mw)(x)1−p′

dx ≤ C

∫
Rn

|g(x)|p′
w(x)1−p′

dx
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where T ∗ is the dual of the operator T .
Finally we end with the case of the fractional integral operator Is, 0 < s < n,

(Isf)(x) =
∫

Rn

|x− y|s−nf(y)dy .

By a result due to D. Adams [1] then, for 1 < p < n/s:

(4)
∫

Rn

(Isf)p(x)w(x)dx ≤ C

∫
Rn

fp(x)(Sw)(x)dx for all f ≥ 0

with (Sg)(x) = (Sstg)(x) = (Msptg
t)1/t(x) for any t with 1 < t < n/sp. Recently

Pérez [3] improved (4), by getting this inequality with (Sf)(x) = (MspM
[p]w)(x)

which is a smaller operator since (MβM
kw)(x) ≤ (Mβtw

t)1/t(x) (see [7]), here Mk

is the k-iteration of the Hardy-Littlewood maximal operator. A better estimate can
be obtained for weight functions w ∈ RDρ ∩H.

Theorem 3

Let 0 < s < n, 1 < p < n/s. Assume w satisfying a reverse doubling condition

and the growth condition (H). Then there is C > 0 such that

∫
Rn

(Isg)p(x)w(x)dx ≤ C

∫
Rn

gp(x)(Mspw)(x)dx .

As indicated in [7], such inequality leads to

∫
Rn

∣∣f(x)
∣∣2w(x)dx ≤ C

∫
Rn

∣∣(∇f)(x)
∣∣2(M2w)(x)dx

which is useful in Partial Differential Equation (when solving a degenerate elliptic
problem) and in quantum mechanics (when estimating eigenvalues of the operator
−�− w). Oubviously since Is is a linear operator, then inequality in Theorem 4 is
equivalent to

∫
Rn

(Isg)p
′
(x)(Mspw)(x)1−p′

dx ≤ C

∫
Rn

gp
′
(x)w(x)1−p′

dx .

In the next paragraph, we give the main estimates needed to prove the results in §3.
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§ 2. Basic tools

We will deduce the proofs of our theorems, by a recent result due to the author [8].

Proposition

Let 1 < p < ∞, p′ = p
p−1 , 0 ≤ s < n (when we deal with Is we take 0 < s < n).

We assume

(2.1) |x|sp′
[

sup
{ 1

4 |x|<|z|<4|x|}
u(z)

]
≤ cv(x) for almost all x ;

(2.2) Rs−n

(∫
|x|<R

v1−p(x)dx
)1/p(∫

|y|<R

u(y)dy
)1/p′

≤ c for all R > 0;

(2.3)
(∫

|x|<R

v1−p(x)dx
)1/p(∫

R<|y|
|y|(s−n)p′

u(y)dy
)1/p′

≤ c for all R > 0.

Then for a constant C > 0

(2.4)
∫

Rn

(Msf)p
′
(x)u(x)dx ≤ C

∫
Rn

fp′
(x)v(x)dx for all f ≥ 0 .

Similarly suppose (2.1), (2.2), (2.3) and

(2.3∗)
(∫

|x|<R

u(x)dx
)1/p′(∫

R<|y|
|y|(s−n)pv1−p(y)dy

)1/p

≤ c for all R > 0 .

Then

(2.5)
∫

Rn

(Isf)p
′
(x)u(x)dx ≤ C

∫
Rn

fp′
(x)v(x)dx for all f ≥ 0 .

In fact the boundedness (2.4) implies (2.2) and (2.3), and (2.1) is also a necessary
condition when both u and v satisfy condition H (see [8]).



6 Rakotondratsimba

Lemma 1

The Muckenhoupt condition (2.2) implies the Hardy condition (2.3) (resp.

(2.3∗)) whenever v1−p ∈ RDρ (resp. u ∈ RDρ) for some ρ > 0.

A proof can be found in [8]. Moreover it is also seen in this paper that the one
side Fefferman-Phong condition

(2.6) Rs

(
1
Rn

∫
|x|<R

v(1−p)t(x)dx
)1/tp( 1

Rn

∫
|y|<R

u(y)dy
)1/p′

≤ c for all R > 0,

(where t > 1) implies both (2.2) and (2.3). Consequently the two weight norm
inequality (2.4) is true whenever the pointwise estimate (2.1) and the condition
(2.6) are satisfied. Without (2.1), Pérez [6] obtained (2.4) from a similar one side
Fefferman condition but this times relatively with arbitrary cubes. Although it
seems restrictive, our result yields conditions easy to check. Indeed, for a given
weight functions, we just have to make a pointwise inequality and integrations over
arbitrary balls centered at the origin (which are more convenient for many usual
weights, particularly for radial weights). Similarly the two side Fefferman-Phong
condition

Rs

(
1
Rn

∫
|x|<R

v(1−p)t(x)dx

)1/tp(
1
Rn

∫
|y|<R

ut(y)dy

)1/tp′

≤ c

implies the boundedness (2.5) whenever (2.1) is assumed.

Lemma 2

Let 1 < p < n/s with 0 ≤ s < n (we take 1/0 = ∞). Define u as u =
(Mspw)1−p′

. There is a constant C > 0 such that

(2.7) u(x) = (Mspw)1−p′
(x) ≤ C

(
Rsp−n

∫
|y|<R

w(y)dy
)1−p′

for all |x| < R ,

and

(2.8) |x|sp′
sup

1
4 |x|<|y|<4|x|

u(y) ≤ Cv(x) = Cw1−p′
(x),

for all x, y with 1/4|x| < |y| < 4|x|.
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Inequality (2.7) is true since

Rsp−n

∫
|y|<R

w(y)dy ≤ Rsp−n

∫
|x−y|<2R

w(y)dy ≤ c(Mspw)(x) .

To see (2.8) first note that for 1/4|x| < |y| < 4|x|:

u(y) = (Mspw)1−p′
(y) ≤ c

(
|x|sp−n

∫
c1|x|<|z|<c2|x|

w(z)dz
)1−p′

,

since

|x|sp−n

∫
c1|x|<|z|<c2|x|

w(z)dz ≤ c′|y|sp−n

∫
|y−z|<(1+4c2)|y|

w(z)dz ≤ c(Mspw)(y) .

Then using the growth condition (H), the conclusion is obtained as follows:

|x|sp′
u(y) ≤ c|x|sp′

(
|x|sp−n

∫
c1|x|<|z|<c2|x|

w(z)dz
)1−p′

= c

(
|x|−n

∫
c1|x|<|z|<c2|x|

w(z)dz
)1−p′

≤ c cp
′−1

0 w1−p′
(x) .

§ 3. Proofs of results

Proof of Theorem 1. Let u = (Mspw)1−p′
, v = w1−p′

so that v1−p = w. By (2.8),
the pointwise estimate (2.1) is satisfied. On the other hand the Muckenhoupt con-
dition (2.2) appears by using (2.7). By the hypothesis then v1−p = w ∈ RDρ,
and consequently by Lemma 1, the Hardy condition (2.3) is satisfied. Thus by our
Proposition, the two weight norm inequality (2.4) is true, which is nothing else than
the inequality in Theorem 1. �

Proof of Theorem 2. Since T is a linear operator, then it is equivalent to get∫
Rn

∣∣(T ∗g)(x)
∣∣p′

(Mw)(x)1−p′
dx ≤ C

∫
Rn

∣∣g(x)
∣∣p′

w(x)1−p′
dx

where T ∗ is the dual of the operator T . First observe that u = (Mw)1−p′
satisfies

the usual Muckenhoupt condition A∞ (see [4] for the definition). Indeed choosing
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t > p′ or p′−1
t−1 < 1, then by the standard technique [4]: (Mw)(p

′−1)/(t−1) ∈ A1 and
u = [(Mw)(p

′−1)/(t−1)]1−t ∈ At. Next by a result due to Coifman [3] (u ∈ A∞) then∫
Rn

∣∣(T ∗g)(x)
∣∣p′

(Mw)(x)1−p′
dx ≤ C

∫
Rn

∣∣Mg(x)
∣∣p′

(Mw)(x)1−p′
dx

and consequently we are reduced to the inequality in Theorem 1 (with s = 0). �

Proof of Theorem 3. Since Is is a linear operator, then it is equivalent to obtain∫
Rn

∣∣(Isg)(x)
∣∣p′

(Mspw)(x)1−p′
dx ≤ C

∫
Rn

∣∣g(x)
∣∣p′

w(x)1−p′
dx .

Again taking u = (Mspw)1−p′
and v = w1−p′

then, as in the proof of Theorem 1, all
conditions (2.1), (2.2) and (2.3) are satisfied. Since u = (Mspw)1−p′ ∈ Ap′ then u
is a doubling weight function and consequently u ∈ RDρ (see [10]) for some ρ > 0.
So again by Lemma 1, the dual condition (2.3∗) is satisfied and consequently, using
the Proposition, Theorem 3 is now proved. �
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