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Abstract

Necessary and sufficient conditions for URWC points and LURWC property are
given in Orlicz sequence space lM .

In 1986 M.A. Smith [1] introduced the concept of local uniform rotundity in the
direction of weakly compact sets (LURWC). Let X be a Banach space, S(X), B(X)
be the unit sphere and unit ball, respectively x ∈ S(X) is called a URWC point
provided xn ∈ B(X), ‖xn + x‖ → 2 and xn

w−→ z imply z = x. X is said to be
LURWC provided every point on S(X) is a URWC point.

In this paper, we discuss the criteria for URWC points and LURWC pro-
perty in Orlicz sequence space. Let M(u) be a real, even, continuous and con-
vex function on (−∞,+∞), M(0) = 0, limu→∞M(u) = ∞ and M(u) > 0
(u > 0). Let N(v) and M(u) be a pair of complemented N -functions, N(v) =
maxu>0{u|v| −M(u)}. We say that M(u) satisfies the ∆2-condition provided there
exist u0 > 0 and K ≥ 0 such that M(2u) ≤ kM(u) for every u ∈ [0, u0] (M ∈ ∆2

for short). An interval [a, b] is called a structural affine interval of M(u) if M(u) is
linear on [a, b], but not on [a − ε, b] and [a, b + ε] for any ε > 0. Let the sequence
consists of {[an, bn]}∞n=1 all structural affine intervals. Define

SM := R \
∞⋃

n=1

(an, bn), S0
M := R \

∞⋃
n=1

[an, bn],
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and let {a}, {b} denote all left and right end points of the structural affine intervals
of M(u), respectively (a certain real number may belong to both {a} and {b}). If
M(u) have no structural affine interval on [c, d], we call M(u) is strictly convex on
[c, d] (M ∈ SC[c, d] for short).

On the space of all real sequences x = (x(j))∞j=1 we denote the modular of x by
ρM (x) =

∑∞
j=1M(x(j)). Linear set lM = {x = (x(j))∞j=1 : ∃λ > 0, ρM (x/λ) <∞}

becomes a Banach space if it is endowed with the Luxemburg norm

‖x‖ = inf
{
λ > 0 : ρM (x/λ) ≤ 1

}
.

We call it the Orlicz sequence space and denote by lM .

Theorem 1

If x ∈ S(lM ), then x is URWC point if and only if

(i) there exists 0 < τ < 1, such that ρM (x/(1− τ)) <∞.

(ii) {j : |x(j)| �∈ SM} is singleton at most.

(iii) If there exists j0 such that |x(j0)| ∈ {a}, then {j �= j0 : |x(j)| ∈ {b}} = ∅; if

there exists j0 such that |x(j0)| ∈ {b}, then {j �= j0 : |x(j)| ∈ {a}} = ∅.

Proof. Necessity. We suppose without loss of generality that x(j) ≥ 0 (j = 1, 2, . . .).
If (i) is false, then for any ε > 0, ρM ((1 + ε)x) =∞. We may suppose as well that
x(j0) > 0. Put y = (x(1), . . . , x(j0− 1),−x(j0), x(j0 + 1), . . .). Then ‖y‖ = ‖x‖ = 1,
ρM ((x+ y)/2) =

∑
j �=j0

M(x(j)) < ρM (x) ≤ 1, and for any ε > 0,

ρM
(
(1 + ε)(x+ y)/2

)
= ρM

(
(1 + ε)x

)
−M

(
(1 + ε)x(j0)

)
=∞ ,

which shows that ‖(x+ y)/2‖ = 1.
Obviously y �= x, so this contradicts the fact that x is a URWC point.
Since any URWC point is surely an extreme point, by Theorem 7 [2] we obtain

(ii) immediately.
If (iii) is false, we can assume that there are structural affine intervals [a, b] and

[a′, b′] of M(u), such that x(1) = a, x(2) = b′. Take t, t′ small enough, satisfying
a+ t ≤ b, b′ − t′ ≥ a′ and M(a+ t)−M(a) = M(b′)−M(b′ − t′). Put

y =
(
a+ t, b′ − t′, x(3), x(4), . . .

)
.

Then

ρM (y) = M(a+ t) +M(b′ − t′) +
∞∑
j=3

M
(
x(j)

)

= M(a) +M(b′) +
∞∑
j=3

M
(
x(j)

)
= ρM (x) .
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Since we have proved that there is 0 < τ < 1 such that ρM (x/(1− τ)) <∞, we get
ρM (x) = 1 hence ρM (y) = 1. This shows that ‖y‖ = 1. Similarly

ρM
(
(x+ y)/2

)
= M

(
(a+ a+ t)/2

)
+M

(
(b′ + b′ − t′)/2

)

+
∞∑
j=3

M
(
x(j)

)

=
(
M(a) +M(a+ t)

)
/2 +

(
M(b′) +M(b′ − t′)

)
/2 +

∞∑
j=3

M
(
x(j)

)

=
(
ρM (x) + ρM (y)

)
/2 = 1,

which means ‖(x+ y)/2‖ = 1. Obviously y �= x, a contradiction.

Sufficiency. Let us still suppose that x(j) ≥ 0 (j = 1, 2, . . .). Suppose that
xn ∈ B(lM ) for any n ∈ N and ‖xn + x‖ → 2, xn

w−→z.
In order to prove the equality z = x, it suffices to show that xn(j)→ x(j) (j =

1, 2, . . .). First we will prove that for any α ∈ [0, 1],

ρM
(
αxn + (1− α)x

)
→ 1

(
n→∞

)
. (1)

From ‖x‖ = 1, ‖xn‖ ≤ 1 and ‖(x + xn)/2‖ → 1, we easily deduce that ‖αxn/2 +
(1− α/2)x‖ → 1. Thus for any ε > 0, ‖(1 + ε)(αxn/2 + (1− α/2)x‖ > 1 for n large
enough. Therefore

1 ≤ ρM
(
(1 + ε)(αxn/2 + (1− α/2)x)

)

= ρM
(
(1/2)(1 + ε)[αxn + (1− α)x] + [(1/2)(1− ε)(1 + ε)/(1− ε)]x

)

≤ (1/2)(1 + ε)ρM
(
αxn + (1− α)x

)
+ (1/2)(1− ε)ρM

(
[(1 + ε)/(1− ε)]x

)
.

Since ρM (x (1− τ)) <∞, setting ε→ 0, we have

1 ≤ (1/2) lim inf
n→∞

ρM
(
αxn + (1− α)x

)
+ (1/2)ρM (x),

which yields lim inf
n→∞

ρM (αxn+(1−α)x) ≥ 1, and by the obvious inequality ρM (αxn+

(1− α)x) ≤ 1, we get (1).
Now, we will prove that

lim
j0→∞

sup
n

∑
j>j0

M
(
xn(j)

)
= 0.
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If it is false, then there are ε0 > 0 and jn → ∞ satisfying
∑

j>jn
M(xn(j)) ≥

ε0 (n = 1, 2, . . .). (Here {xn} may be subsequence of sequence original {xn}). Since
xn

w−→z, {xn}∞n=1 is weakly compact set in lM , it is further lN− weakly compact set,
from the well known result in [3], lim

n→∞
sup
n
mρM (xn/m) = 0. We may take m large

enough satisfying

mτ < m− 1 + τ and mρM
(
xn/m

)
< ε0/2

(
n = 1, 2, . . .

)
.

Hence
∑
j>jn

M
(
xn(j)/m

)
≤ ρM (xn/m) < (1/2m)ε0 ≤ (1/2m)

∑
j>jn

M
(
xn(j)

)

(n = 1, 2, . . .).

By condition (i) of sufficiency, when n is large enough

∑
j>jn

M
(
x(j)/(1− τ)

)
< τ ε0/

(
4(m− 1 + τ)

)
.

Combining this with (1), we obtain

1← ρM

( τ

m− 1 + τ
xn +

(m− 1)
m− 1 + τ

x
)

=
jn∑
j=1

M
( τ

m− 1 + τ
xn(j) +

(m− 1)
m− 1 + τ

x(j)
)

+
∑
j>jn

M
( mτ

m− 1 + τ

xn(j)
m

+
(m− 1)(1− τ)
m− 1 + τ

x(j)
1− τ

)

≤ τ

m− 1 + τ

jn∑
j=1

M
(
xn(j)

)
+

m− 1
m− 1 + τ

jn∑
j=1

M
(
x(j)

)

+
mτ

m− 1 + τ

∑
j>jn

M
(
xn(j)/m

)
+

(m− 1)(1− τ)
m− 1 + τ

∑
j>jn

M
(
x(j)/(1− τ)

)

≤ τ

m− 1 + τ

jn∑
j=1

M
(
xn(j)

)
+

m− 1
m− 1 + τ

jn∑
j=1

M
(
x(j)

)

+
mτ

m− 1 + τ

1
2m

∑
j>jn

M
(
xn(j)

)
+

(m− 1)(1− τ)
m− 1 + τ

∑
j>jn

M
(
x(j)/(1− τ)

)
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≤ τ

m− 1 + τ
ρM (xn)− τ

2(m− 1 + τ)

∑
j>jn

M
(
xn(j)

)

+
m− 1

m− 1 + τ
ρM (x) +

τε0
4(m− 1 + τ)

≤ 1− τε0
2(m− 1 + ε)

+
τε0

4(m− 1 + τ)
= 1− τε0

4(m− 1 + τ)

a contradiction. Therefore (2) is true.
In the following we shall prove that if x(j0) ∈ SM \ {b}, then

lim inf
n→∞

xn(j0) ≥ x(j0). (3)

If x(j0) ∈ SM \ {a}, then

0 ≤ lim sup
n→∞

xn(j0) ≤ x(j0). (4)

If x(j0) ∈ S0
M , then

lim
n→∞

xn(j0) = x(j0). (5)

In fact, if (3) is false, then there exists ε0 > 0 such that (passing to a subsequence
of necessary) we have xn(j0) ≤ x(j0)− ε0.

Since x(j0) may only be the left end point of a structural affine interval of M(u)
but not the right one, hence xn(j0) and x(j0) is not in the same structural affine
interval of M(u).

From |xn(j0)| ≤M−1(1) and xn(j0) ≤ x(j0)− ε0, there is δ > 0 satisfying

M
(
(xn(j0) + x(j0))/2

)
≤ (1− δ)

[
M(xn(j0)) +M(x(j0))

]
/2, (n = 1, 2, . . .),

and by (1), we have

0← ρM (xn) + ρM (x)
2

− ρM
(xn + x

2

)

=
∞∑
j=1

[M(xn(j)) +M(x(j))
2

−M
(xn(j) + x(j)

2

)]

≥ M(xn(j0)) +M(x(j0))
2

−M
(xn(j0) + x(j0)

2

)

≥ (δ/2)
[
M(xn(j0)) +M(x(j0))

]
≥ (δ/2)M

(
x(j0)

)

a contradiction, which shows that (3) is true.
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The proof of (4) is analogous to (3). From (3) and (4) we obtain (5) simply. Now
we will prove the theorem itself. There may be the following four cases according to
(ii) and (iii)

x(j) ∈ S0
M (j = 1, 2, . . .). (I)

By (5), we easily get lim
n→∞

xn(j) = x(j) (j = 1, 2, . . .).

x(j) ∈ S0
M , (j �= j0). (II)

By (5), lim
n→∞

xn(j) = x(j) (j �= j0). Moreover by (2), lim
n→∞

∑
j �=j0

M(xn(j)) =∑
j �=j0

M(x(j)), thus

lim
n→∞

M
(
xn(j0)

)
= lim

n→∞
ρM (xn)− lim

n→∞

∑
j �=j0

M
(
xn(j)

)

= 1−
∑
j �=j0

M
(
x(j)

)
= M

(
x(j0)

)
,

hence lim
n→∞

|xn(j0)| = x(j0).

Since we can directly deduce that lim
n→∞

xn(j0) = −x(j0), which contradicts the

condition ρM ((xn + x)/2)→ 1. Therefore limn→∞ xn(j0) = x(j0).

x(j) ∈ S0
M

⋃
{b} \ {a}. (III)

From (5) and (4), 0 ≤ lim sup
n→∞

xn(j) ≤ x(j), thus lim sup
n→∞

M(xn(j)) ≤
M(x(j)), (j = 1, 2, . . .). If there is j0 such that lim sup

n→∞
M(xn(j0)) < M(x(j0)),

combining (2), we get

1 = lim sup
n→∞

ρM (xn) < ρM (x) = 1,

a contradiction. Hence lim sup
n→∞

xn(j) = x(j) (j = 1, 2, . . .). Since the above equation

holds for any subsequence of {xn}, therefore

lim
n→∞

xn(j) = x(j) (j = 1, 2, . . .).

x(j) ∈ S0
M

⋃
{a} \ {b}. (IV)

The proof is analogous as in case III. �

Theorem 2
The space lM is LURWC if and only if

(i) M ∈ ∆2,
(ii) M ∈ SC[0,M−1(1/2)].
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Proof. Necessity. Since LURWC implies strict rotundity, by Theorem 3 [2], we get
the result immediately.

Sufficiency. For any x ∈ S(lM ), by M ∈ ∆2, we get ρM (x/(1 − τ)) < ∞ for
any τ > 0. Since M ∈ SC[0,M−1(1/2)] and ρM (x) =

∑∞
j=1M(x(j)) = 1, we know

that if |x(j)| �∈ SM , so M(x(j)) ≥ 1/2. Thus, either there is only one j0 such that
|x(j0)| �∈ SM or there are j0 �= j1, such that |x(j0)| = |x(j1)| = M−1(1/2). However
M−1(1/2) may only belong to {a} but not to {b}, so (ii) and (iii) of Theorem 1
hold. This means that x is a URWC point. �
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