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Abstract

A simple way of obtaining separable quotients in the class of weakly countably
determined (WCD) Banach spaces is presented (Theorem 1). A large class of
Banach lattices, possessing as a quotient c0, l1, l2, or a reflexive Banach space
with an unconditional Schauder basis, is indicated (Theorem 2).

1. Introduction

In this paper we are concerned with effective constructions of separable quotients of
Banach spaces, and we complete to the Banach space case general results obtained
for locally convex spaces in [19]. We consider the so called Separable Quotient
Problem, which P. Casazza states in the paper [3] as one of the more important and
still unsolved problems in Functional Analysis:

Can every infinite dimensional Banach space be mapped continuously
onto an infinite dimensional and separable Banach space?

So far, most of the results obtained in that topic are purely existential in nature
(see e.g., [7],[15], [19]; H.P. Rosenthal [14] has proved that all infinite dimensional
C(K)-spaces have c0 or l2 as a quotient, cf. [8]), and they yield no information on
the structure of separable quotients in general, if such exist. On the other hand,
there are Banach spaces possessing plenty of complemented separable subspaces ([2],
[4], [5], [18], [20], [22], [23]), but proofs of this fact are dependent on the toilsome
and noneffective constructing of a continuous projection with separable range.
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The purpose of the present paper is to give a simple method of obtaining sepa-
rable quotients in the class of weakly countably determined Banach spaces without
using the above mentioned projections with separable ranges (Theorem 1), and to
indicate a wide class of Banach spaces having “nice” separable quotients (Theo-
rem 2).

2. The WCD case

Let E = (E, τ) be a locally convex space, and let E′ denote its topological dual.
The terms “weak” and “weak∗” refer to the topologies σ(E,E′) and σ(E′, E), re-
spectively. If E is a Banach space, then χ(E) [χ∗(E”), resp.] denotes the norm
[weak∗, resp.] density character of E [of E′, resp.]; similar meanings have the re-
spective density characters of subspaces of E and E′, resp. If W is a nonempty
subset of E′, then W⊥ denotes the annihilator (in E) of W . A Banach space E
is said to be weakly compactly generated (WCG) provided that there is a linearly
dense weakly compact subset C in E; and E is called weakly countably determined
(WCD) whenever there is a sequence A = (An) of absolutely convex, closed and
bounded subsets of E with E =

⋃
I∈J(A)

⋂
n∈I An, where J(A) = {I ⊂ N :

⋂
n∈I An

is weakly compact} (see [23], Definitions 1 and 2; or [21], p. 138).
In the proposition below we collect fundamental facts concerning WCG and

WCD Banach spaces.

Proposition 1

(a) Every WCG space is a WCD space ([23], Lemma 2).

(b) The WCD property is inherited by quotient spaces [23], Theorem 3).

(c) If E is WCD then χ(E) = χ∗(E′) ([23], Corollary 2).

(d) Every reflexive space is WCG, and if E is WCG which can be continuously

mapped onto a dense subspace of a Banach space G then G is WCG also ([9],

Proposition 2.1).

The main theorem of this part presented below is inspired by a similar result
for the so called countably WCG locally convex spaces ([19], Theorem 1).

Theorem 1

Let E be a WCD Banach space. IfW is an infinite dimensional weak∗-separable

and weak∗-closed subset of E′ then the quotient Banach space E/W⊥ is separable

and infinite dimensional.
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Proof. By Proposition 1, parts (b) and (c), we have χ(E/W⊥) = χ∗((E/W⊥)′) =
χ∗(W ) = ℵ0. Since (E/W⊥)′ is infinite dimensional, we have that E/W⊥ is infinite
dimensional as well. �

3. The Banach lattice case

In the second part of the paper we consider separable quotients of Banach lattices.
The main result of this part (Theorem 2) is proved by means of weak∗-Schauder basic
sequences, and two propositions presented below contain all the needed facts for our
purposes. For the convenience of the reader we recall successively fundamental
results and notions both from theories of Schauder bases and linear lattices (=Riesz
spaces). For more information in these topics we refer the reader to the monographs
[1], [11], [12], [13], [16], [17].

A sequence (en) in a locally convex space (E, τ) is called a τ - Schauder [uncon-
ditional] basis of E if for each x ∈ E there is a unique sequence (αn) of scalars such
that x = τ −∑∞

n=1 αnen [unconditional convergence] and the coefficient functionals
(e∗n) defined by e∗n(x) = αn, n = 1, 2, . . ., are τ -continuous. Two bases (en) and (fn)
of locally convex spaces E and F , resp., are said to be equivalent provided that the
series

∑∞
n=1 αnen and

∑∞
n=1 αnfn are convergent simultaneously; if E and F are

Banach spaces then, by the Closed Graph Theorem, the linear operator T : E → F

defined by Ten = fn, n = 1, 2, . . ., is a homeomorphism. A sequence (en) in E is
said to be a τ -Schauder basic sequence provided that (en) forms a Schauder basis
for the space [en]τ := lin {en : n ∈ N} τ

. If E is a Banach space and τ is the norm
topology on E, then we simply write [en] instead of [en]τ . By using the Hahn-
Banach theorem, it is easy to check that if (x∗n) is a weak∗- Schauder basic sequence
in E′ then there is a (not uniquely determined) sequence (xn) in E such that the
sequence (xn, x∗n), n = 1, 2, . . ., is biorthogonal and for every x∗ ∈ [x∗n]weak∗

we have
x∗ = weak∗ − ∑∞

n=1 x
∗(xn)x∗n.

The next proposition summarizes elementary properties of weak∗-Schauder ba-
sic sequences in Banach spaces.

Proposition 2

Let E = (E, ‖ ‖) be a Banach space.

(a) The space E has a separable quotient if and only if E′ has a weak∗-Schauder

basic sequence.

(b) Let (x∗n) be a weak∗-Schauder basic sequence in E′, let (xn) be a fixed, corre-

sponding to (x∗n), sequence in E′ (as described above), and put X =
⋂∞

n=1 kerx∗n.

Then
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(i) (x∗n) is a norm-Schauder basic sequence in E′;

(ii) if Q denotes the quotient map from E onto E/X, then the sequence (Qxn) is a

Schauder basis of E/X (endowed with the quotient norm); moreover,

(iii) if (x∗n) is weak∗-unconditional, then the basis (Qxn) is unconditional.

Proof. Part (a) is proved in ([19], Proposition 1), parts (i) and (ii) of (b) are proved
in ([6], Proposition II.1); we shall show that part (iii) of (b) holds true as well.

Put un = Qxn, n = 1, 2, . . ., fix u =
∑∞

n=1 αnun in E/X, and let (ton) be a
sequence of reals with |ton| = 1, n = 1, 2, . . .. We claim that the series

∑∞
n=1 t

o
nαnun

converges (in norm) in E/X. Since, by assumption, for every x∗ ∈ [x∗n]weak∗
and

x ∈ E we have
∑∞

n=1 |x∗(xn)||x∗n(x)| < ∞, the linear functional f , defined on the
Banach space l∞⊕[x∗n]weak∗⊕E by the rule f((tn), x∗, x) =

∑∞
n=1 tnx

∗(xn)x∗n(x), is
continuous. It follows that the number

(1) C := sup {‖ ∑m
n=1 tnx

∗(xn)x∗n ‖: ‖ x∗ ‖≤ 1, ‖ (tn) ‖l∞≤ 1,m ∈ N} is
finite.
Now fix integers p, q with p < q, and x ∈ X with

(2) ‖ ∑q
n=p αnun ‖≥ (1/2) ‖ x+

∑q
n=p αnxn ‖,

and for a given u′ ∈ (E/X)′ put x∗ = Q∗(u′) and note that x∗ ∈ [x∗n]weak∗
and

‖ x∗ ‖≤‖ u′ ‖. Since the sequence (xn, x∗n), n = 1, 2, . . ., is biorthogonal and (x∗n) is
weak∗-Schauder basic, by (1) and (2) we have

|u′(∑q
n=p t

o
nαnun)| = |x∗(x+

∑q
n=p t

o
nαnxn)| =

|∑∞
k=1 x

∗(xk)x∗k(x+
∑q

n=p t
o
nαnxn)| =

|∑q
k=1 t

o
nx

∗(xk)x∗k)(x+
∑q

n=p αnxn)| ≤ 2C ‖ ∑q
n=p αnun ‖

whenever ‖ u′ ‖ ≤ 1. It follows that ‖ ∑q
n=p t

o
nαnun ‖ ≤ 2C ‖ ∑q

n=p αnun ‖,
where C does not depend on p, q, and (ton), and therefore the series

∑∞
n=1 t

o
nαnun is

norm-convergent in E/X, as claimed. �

Now we come to Banach lattices. A topology τ on a linear lattice E is said
to be locally solid provided that τ possesses a basis for 0 consisting of solid sets (a
subset A of E is solid if A =

⋃
x∈A[−|x|, |x|]). If, additionally, τ is locally convex,

then (E, τ) is called locally convex-solid. If the norm ‖ ‖ defined on a Riesz space E
is monotonic (i.e., |x| ≤ |y| follows that ‖ x ‖≤‖ y ‖) and E is ‖ ‖-complete, then
E = (E, ‖ ‖) is said to be a Banach lattice; the topological dual E′ of E is then a
Banach lattice with respect to the dual norm and the ordering: x∗ ≥ 0 iff x∗(x) ≥ 0
for all x ∈ E+. The norm on E is said to be order continuous provided that xα ↓ 0
in E follows that ‖ xα ‖→ 0.
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Proposition 3
If the norm of a Banach lattice E = (E, ‖ ‖) is order continuous, then every

sequence (x∗n) of positive and pairwise orthogonal elements of E′ is an unconditional
weak∗-Schauder basic sequence.

Proof. The fact that (x∗n) is a weak∗-Schauder basic sequence is proved in ([19];
third proof of Proposition 3, pp. 181-182). We shall show that (x∗n) is unconditional
in (E′, weak∗). For sequences (αn), (tn) of reals with (αn) arbitrary and |tn| = 1,
n = 1, 2, . . ., we have

∣∣∣
m∑

n=1

tnαnx
∗
n

∣∣∣ =
m∑

n=1

|tnαn|x∗n =
∣∣∣

m∑

n=1

αnx
∗
n

∣∣∣ , m = 1, 2, . . . ,

(since all x∗n’s are pairwise orthogonal and positive). It follows that the series∑∞
n=1 αnx

∗
n and

∑∞
n=1 tnαnx

∗
n are convergent simultaneously in the locally-convex

topology |σ|(E′, E) on E′ defined by the collection of seminorms px(x∗)=|x∗|(|x|),
x ∈ E. Since the norm on E is order continuous, the topologies σ(E′, E) and
|σ|(E′, E) are consistent ([1], Theorems 6.6 and 22.1) with σ(E′, E) ≤ |σ|(E′, E)
([1], p. 129); hence the above series are weak∗-convergent simultaneously, and there-
fore (x∗n) is weak∗-unconditional. �

A Riesz space E is said to be σ-Dedekind complete provided that every count-
able subset of E, bounded (in order) from above, has a supremum. For our purposes
we note that both duals of Banach lattices, weakly sequentially complete Banach
lattices, Banach function spaces, and Banach lattices with order continuous norm
are σ-Dedekind complete (see ([16], Theorems II.5.5, II.5.15, II.10.6), and ([13],
Theorem 2.4.2)).

Now we can prove the second result mentioned in the Abstract. It sharpens
Corollary 2 of [19] by indicating more precisely the Banach lattices which can be
obtained as separable quotients of σ-Dedekind complete Banach lattices (it is inter-
esting itself that these quotients have lattice structure as well).

Theorem 2
Every σ-Dedekind complete Banach lattice E has a quotient with an uncondi-

tional Schauder basis. More precisely, E can be mapped continuously onto one of
the spaces: co, l1, l2, or a reflexive Banach space with an unconditional Schauder
basis.

In particular, this statement holds true in the following classes of Banach lat-
tices: duals of Banach lattices, weakly sequentially complete Banach lattices, Banach
lattices with order continuous norm, Banach function spaces (and so, in Orlicz spaces
also).
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Proof. Consider two cases: (a) l∞ embeds (as a closed sublattice) into E, and (b)
l∞ does not embed into E.

In case (a) there is a contractive projection in E onto the lattice copy of l∞
([16]; Corollary 1, p. 110), and since l∞ has l2 as a quotient ([10], p. 111), E can be
mapped continuously onto l2.

In case (b), by ([16], Theorem II.5.14), the norm of E is order continuous, so, by
Proposition 3 and Proposition 2(b)(iii), E has a quotient E/X with an unconditional
Schauder basis (un), say. We have to consider the nonreflexive case only. By the
classical James’ result (see e.g. [10]; Theorems 1.c.9, 1.c.10, 1.c.12), there exist
a strictly increasing sequence of integers (m(n))∞n=1 and a sequence of reals (θk)
such that the vectors yn =

∑m(n+1)
k=m(n)+1 θkuk, n = 1, 2, . . ., are of norm 1 (in the

quotient norm ‖ ‖X on E/X), and the basic sequence (yn) is equivalent to the unit
vectors of co or l1. We shall show that in both cases the Banach space Y = [yn] is
complemented in E/X, and this fact will finish the proof of our theorem. In the co-
case, Y is complemented by Sobczyk’s theorem ([10], Theorem 2.f.5). For the l1-case,
we renorm E/X = [un] such that ‖|∑∞

n=1 tnαnun‖| ≤ ‖|∑∞
n=1 αnun‖| whenever

|tn| ≤ 1, n = 1, 2, . . ., i.e. ‖|∑∞
n=1 αnun‖| we define as sup{‖ ∑∞

n=1 θnαnun ‖X :
|θn|≤1, n = 1, 2, . . .}. The norms ‖ ‖X and ||| ||| are equivalent: we have ‖ u ‖X
≤ ‖|u‖| ≤ c ‖ u ‖X , where c is the unconditional constant of the basis (un) ([17],
Theorem 16.1; [10], Proposition 1.c.7). By the definition of the norm ||| |||, we can
assume that in expansions of yn’s the coefficients θk, k = 1, 2, . . ., are ≥ 0. All
this follows that (E/X, ||| |||), endowed with the coordinatewise ordering, is a Banach
lattice; moreover, yn’s are all positive and pairwise orthogonal, and therefore Y is a
closed sublattice of E/X. The equivalence of (yn) and the unit vectors of l1 follows
that Y is order and topologically isomorphic to the AL-space l1. Corollary 1, p. 120,
in [16] asserts that in this case Y is complemented in the Banach lattice (E/X, ||| |||),
and therefore in the Banach space (E/X, ‖ ‖). �
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