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Abstract

A sufficient and necessary condition for weak convergence of sequences in a
class of Banach sequence lattices is obtained. As a direct application, a complete
criterion of a weak convergence of sequences in l∞ is formulated.

1. Introduction

Let X be a Banach space and X+ the conjugate space of X. We say {xn} ⊂ X is
weakly convergent to x ∈ X, if 〈f, xn〉 → 〈f, x〉 for every f ∈ X+. Weak convergence
is one of the most fundamental concepts in functional analysis. For a class of concrete
Banach spaces, such as l∞, L∞ etc., the characteristics of the weak convergences were
not very clear for a long time. The difficulty is due to the conjugate space (l∞)∗

and (L∞)∗ are rather sophisticated.
In this paper, we will study the weak convergence on a class of Banach sequence

lattices. Our study is inspired by the work of professors Chen and Sun [2] who
made an essential progress in studying the weak convergence in Orlicz space LM

and obtained a complete characterization for weakly convergent sequences in LM .
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We shall generalize their work to a class of Banach sequence lattices and give a
sufficient and necessary condition for weakly convergent sequences. Moreover, as a
direct corollary, a sufficient and necessary condition for weakly convergent sequences
in l∞ is also formulated.

Let X be a Banach space and x = (x(i))i∈N is a real (or complex) sequence. If
X is an ideal space equipped with the monotone norm i.e., |y(i)| ≤ |x(i)| for every
i ∈ N and x ∈ X implies y ∈ X and ‖y‖ ≤ ‖x‖, then we say that X is a Banach
sequence lattice. It is well known that every linear continuous functional f on the
Banach sequence lattice can be uniquely decomposed into f = g + ϕ, where g is a
regular functional and ϕ is a singular functional ([4] Theorem X.3.6). We say g ∈ X+

is regular if 〈g, x〉 =
∑∞

i=1 g(i)x(i) for every x ∈ X; ϕ ∈ X+ is called a singular
functional if 〈ϕ, x〉 = 0 for every x ∈ X0 = {x ∈ X|τ(x) = limn→∞ ‖x− [x]n‖ = 0}.
Where [x]n = (x(1), x(2), . . . , x(n), 0, 0, . . .). Let X+

0 and Φ∗ denote the sets of all
regular and singular functional functionals of X+, respectively. It is well known
that Φ∗ is isometric to (X/X0)∗, where X/X0 is the quotient space with X divided
by X0. We easily know that τ(x) = limn→∞ ‖x − [x]n‖ is a semi-norm on X with
τ(X0) = 0 and is a norm on X/X0. We say that τ(·) is absorbing on X if for any
x1, x2 ∈ X, supp x1 ∩ supp x2 = ∅, we have τ(x1 + x2) = max(τ(x1), τ(x2)). l∞

and Orlicz space lM are the basic examples on which τ(·) is absorbing (see [5]).
For simply, we denote

y(I) =
{
y(i), i ∈ I
0, i ∈ N \ I

for every y ∈ X and I ⊂ N . Let {xn}∞n=1 ⊂ X be a sequence, we denote
(minn≤m xn(i))i∈N by minn≤m xn. Let f ∈ X+, I ⊂ N , we define f(I) by
〈f(I), x〉 = 〈f, x(I)〉 for every x ∈ X. It is known f(I) ∈ X+ if f ∈ X+.

2. Some weak properties and the weak convergence

on Banach sequence lattice

Proposition 2.1

Let ϕ ∈ Φ∗. Then we have

‖ϕ‖ = sup
τ(x)>0

|〈ϕ, x〉|/τ(x) = sup
τ(x)=1

|〈ϕ, x〉|. (2.1)
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Proof. If ϕ ∈ Φ∗, then 〈ϕ, x〉 = 〈ϕ, x − [x]n〉, which implies |〈ϕ, x〉| ≤ ‖ϕ‖·
limn→∞ ‖x − [x]n‖ = ‖ϕ‖τ(x), i.e., ‖ϕ‖ ≥ supτ(x)>0 |〈ϕ, x〉|/τ(x). On the other
hand, τ(x) ≤ ‖x‖ and τ(X0) = 0. Then,

‖ϕ‖ = sup
x∈X

|〈ϕ, x〉|/‖x‖ ≤ sup
τ(x)>0

|〈ϕ, x〉|/τ(x). �

Remark 2.2. By Proposition 2.1, we have Φ∗ is isometric to [X/X0, τ(·)]∗, i.e.,
Φ∗ ∼= [X/X0, τ(·)]∗. In the following we always understand Φ∗ as the dual space of
X/X0 endowed with the norm τ(·).

Proposition 2.3

Suppose τ(·) is absorbing on X. Let ϕ ∈ Φ∗, ‖ϕ‖ = 1 and τ(x) > 0, 〈ϕ, x〉 =
τ(x). Then we have

(i) 〈ϕ, y(I)〉 ≥ 0 if I ⊂ {i ∈ N |x(i)y(i) ≥ 0}
(ii) 〈ϕ, y(I)〉 ≤ 0 if I ⊂ {i ∈ N |x(i)y(i) ≤ 0}
(iii) 〈ϕ, y(I)〉 = 0 if I ⊂ {i ∈ N |x(i)y(i) = 0}.

Proof. First we will prove (ii). There exists Q > 0 satisfying τ(y/Q) ≤ τ(x). Put

I1 = {i ∈ N | |y(i)|/Q ≤ |x(i)|}, I2 = I \ I1.

Note that I ⊂ {i ∈ N |x(i)y(i) ≤ 0}. We easily know that |x(i) + y(i)/Q| ≤ |x(i)| if
i ∈ I1 and |x(i)+y(i)/Q| ≤ |y(i)|/Q if i ∈ I2. Then τ(x(N \I)+x(I1)+y(I1)/Q)) ≤
τ(x) and τ(x(I2) + y(I2)/Q) ≤ τ(y/Q) ≤ τ(x). Since τ(·) is absorbing, we have
τ(x + y(I)/Q) ≤ τ(x). Hence

〈ϕ, x + y(I)/Q〉 ≤ τ(x + y(I)/Q) ≤ τ(x) = 〈ϕ, x〉,

which implies 〈ϕ, y(I)/Q〉 ≤ 0 , i.e., 〈ϕ, y(I)〉 ≤ 0.
(i) can be proved as in above proof with −y instead of y.
(iii) is a direct corollary of (i) and (ii). �

Lemma 2.4

Assume τ(·) is absorbing on X, ϕ ∈ Φ∗. Then for any disjoint subsets I1, I2 of

N , we have ‖ϕ(I1 ∪ I2)‖ = ‖ϕ(I1)‖ + ‖ϕ(I2)‖.
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Proof. By Proposition 2.1, for any ε > 0, we can find x, y ∈ X with τ(x) ≤ 1, τ(y) ≤
1 such that

〈ϕ(I1), x〉 ≥ ‖ϕ(I1)‖ − ε/2,

〈ϕ(I2), y〉 ≥ ‖ϕ(I2)‖ − ε/2.

Notice that 〈ϕ(I1), x(N \ I1)〉 = 0, 〈ϕ(I2), y(N \ I2)〉 = 0. We have

〈ϕ(I1), x(I1)〉 ≥ ‖ϕ(I1)‖ − ε/2,

〈ϕ(I2), y(I2)〉 ≥ ‖ϕ(I2)‖ − ε/2,

τ(·) is absorbing on X, τ(x(I1) + y(I2)) ≤ 1. So, we get

‖ϕ(I1 ∪ I2)‖ ≥ 〈ϕ(I1 ∪ I2), x(I1) + y(I2)〉
= 〈ϕ(I1), x(I1)〉 + 〈ϕ(I2), y(I2)〉
≥ ‖ϕ(I1)‖ + ‖ϕ(I2)‖ − ε. �

Lemma 2.5

Suppose τ(·) is absorbing on X. Let ϕ ∈ Φ∗ be an extreme point of the unit

ball B(X+) of X+. Then we have ‖ϕ(I)‖ · ‖ϕ(N \ I)‖ = 0 for any I ⊂ N .

Proof. If not, then there exists I ⊂ N such that ‖ϕ(I)‖ > 0, ‖ϕ(N \ I)‖ > 0. Let

ϕ1 = ϕ(I)/‖ϕ(I)‖, ϕ2 = ϕ(N \ I)/‖ϕ(N \ I)‖.

We can easily see that ϕ = ‖ϕ(I)‖ϕ1 + ‖ϕ(N \ I)‖ϕ2, ϕ1, ϕ2 ∈ B(X+). Since
τ(·) is absorbing on X, by Lemma 2.4,

‖ϕ(I)‖ + ‖ϕ(N \ I)‖ = 1.

This contradicts the fact that ϕ is an extreme point. �

Theorem 2.6 (Rainwater)

Let X be a Banach space and {xn} ⊂ X be bounded. Then {xn} is weakly

convergent to x if and only if for every extreme point f of the unit ball B(X∗) of

X∗, we have 〈f, xn〉 → 〈f, x〉.

The proof of Rainwater Theorem can be found in [3], p.155.
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Theorem 2.7

Let X be a Banach sequence lattice with τ(·) that is absorbing on X, {xn} ⊂ X

is bounded. Then for every ϕ ∈ Φ∗, we have 〈ϕ, xn〉 → 0, (n → ∞) if and only if

for any subsequence {xnk
} of {xn}, we have limm→∞ τ(mink≤m |xnk

|) = 0, where

|y| = (|y(1)|, . . . , |y(n)|, . . .) for every y ∈ X.

Proof. Necessity. If not, then there exist ε > 0 and a subsequence of {xn}, without
loss of generality can be still denoted by {xn} such that

τ(min
n<m

|xn|) ≥ ε, m ∈ N.

Let N1
1 = {i ∈ N |x1(i) > 0}, N1

2 = N \ N1
1 . By induction, if Nk

l (l =
1, 2, . . . , 2k) is well defined for k = 1, 2, . . . ,m, we let Nm+1

2l−1 = {i ∈ Nm
l |xm+1(i) ≥

0}, Nm+1
2l = Nm

l \Nm+1
2l−1 , l = 1, . . . ,m. So obtained a partition {Nm

l | l = 1, . . . , 2m}
of N such that for any m, k ∈ N, m ≥ k implies xk(i) is nonnegative or nonpositive
on Nm

l , l = 1, . . . , 2m, τ(·) is absorbing on X. Then there exists lm ≤ 2m such that

τ(min
n<m

|xn|(Nm
lm)) = τ(min

n<m
|xn|) ≥ ε.

By the Hahn-Banach Theorem, we can find ϕm ∈ Φ∗, such that ‖ϕm‖ = 1 and
〈ϕm,minn<m |xn|(Nm

lm
)〉 = τ(minn<m |xn|(Nm

lm
)) ≥ ε, m ∈ N, B(X+) = {f ∈

X+| ‖f‖ ≤ 1} is w∗-compact, the sequence {ϕm} has a w∗-cluster point ϕ ∈ X+.
Moreover, we easily know ϕ ∈ Φ∗. It follows that for every n ∈ N , there exists some
m > n satisfying

|〈ϕ− ϕm, xn〉| < ε/2.

Hence, by Proposition 2.2, noticing that ϕm(N \Nm
lm

) = 0 and xn(i) (i ∈ N \Nm
lm

)
have the same sign, we have

|〈ϕ, xn〉| ≥ |〈ϕm, xn〉| − |〈ϕm − ϕ, xn〉|
≥ |〈ϕm,±xn(Nm

lm)〉| − ε/2

= |〈ϕm, |x|n(Nm
lm)〉| − ε/2

≥ 〈ϕm, min
n<m

|x|n(Nm
lm)〉 − ε/2 ≥ ε/2.

This contradicts the hypothesis 〈ϕ, xn〉 → 0 (n → ∞).

Sufficiency. If not, by the Rainwater Theorem, there exist ε > 0 and an extreme
point ϕ ∈ Φ∗ of B(Φ∗) and a subsequence of {xn}, still denoted by {xn}, such that
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|〈ϕ, xn〉| ≥ ε, n ∈ N . Since limm→∞ τ(minn<m |xn|) = 0, we can find some m ∈ N ,
such that

τ(min
n<m

|xn|) ≤ ε/2.

Let
In = {i ∈ N | |xn(i)| = min

n<m
|xn|(i)}, n = 1, . . . ,m.

Then, by Lemma 2.5, there exists Inm (nm ≤ m) such that ϕ = ϕ(Inm). Denote

I1
nm

= {i ∈ Inm |xnm(i) ≥ 0}, I2
nm

= Inm \ I1
nm

.

By Lemma 2.5, ϕ = ϕ(I1
nm

) or ϕ = ϕ(I2
nm

). Without loss of generality, we
assume ϕ = ϕ(I1

nm
). Hence

|〈ϕ, |xnm |〉| = |〈ϕ, xnm(I1
nm

)〉| = |〈ϕ, xnm〉| ≥ ε.

On the other hand,

|〈ϕ, |xnm
|〉| = |〈ϕ(I1

nm
), |xnm

|〉|
= |〈ϕ, |xnm

|(I1
nm

)〉|
= |〈ϕ, min

n<m
|xn|(I1

nm
)〉|

≤ ‖ϕ‖τ(min
n<m

|xn|) ≤ ε/2 ,

a contradiction. �

Theorem 2.8

Let X be a Banach sequence lattice, {xn} ⊂ X. Then 〈g, xn〉 → 0 (n → ∞) for

every regular functional g ∈ X+ if and only if

(i) xn(i) → 0 for each i ∈ N and

(ii) limm→∞ supn∈N

∑∞
i=m |xn(i)g(i)| = 0

for all regular functional g ∈ X+.

Proof. Sufficiency is very simple, so we only prove the necessity. Condition (i) is
necessary since every coordinate functional is continuous. If (ii) does not hold, there
exists ε > 0 and g ∈ X+ such that

sup
n∈N

∞∑
i=m

|xn(i)g(i)| ≥ 4ε, m = 1, 2, . . . .
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Let m1 = 1. There exists n1 ∈ N such that

∞∑
i=m1

|xn1(i)g(i)| ≥ 3ε,

and there exist n2,m2 ∈ N such that
∑∞

i=m2
|xn1(i)g(i)| < ε and

∑∞
i=m2

|xn2(i)g(i)|
≥ 3ε. Since limm→∞

∑∞
i=m |xn(i)g(i)| = 0 and xn(i) → 0 (i → ∞) for every n ∈ N ,

we can assume that n2 > n1 is sufficiently large such that
∑m2

i=1 |xn2(i)g(i)| < ε.
Repeating the above process, we obtain two subsequence {mk} and {nk} of N

satisfying
∞∑

i=mk

|xnk
(i)g(i)| ≥ 3ε ,

∞∑
i=mk+1

|xnk
(i)g(i)| < 3ε ,

mk−1∑
i=1

|xnk
(i)g(i)| < 3ε .

If
h(i) = |g(i)|signxnk

(i), mk ≤ i ≤ mk+1 − 1, k = 1, 2, . . .

then h ∈ X+. But

|〈h, xnk
〉| =

∞∑
i=1

h(i)xnk
(i)

≥
mk+1−1∑
i=mk

|xnk
(i)g(i)| −

mk−1∑
i=1

|xnk
(i)g(i)| −

∞∑
i=mk+1

|xnk
(i)g(i)|

≥
∞∑

i=mk

|xnk
(i)g(i)| − 2

∞∑
i=mk+1

|xnk
(i)g(i)| −

mk−1∑
i=1

|xnk
(i)g(i)| ≥ ε.

This contradicts the fact that 〈g, xn〉 → 0 for each regular functional g ∈ X+. �

The main result of this paper is the following

Theorem 2.9

Let X be a Banach sequence lattice. τ(·) is absorbing on X, {xn} ⊂ X is norm

bounded. Then xn is weakly convergent to zero if and only if
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(i) xn(i) → 0 for all i ∈ N ;

(ii) limm→∞ supn∈N

∑∞
i=m |xn(i)g(i)| = 0 for all regular functionals g ∈ X+;

(iii) τ(mink<m |xnk
|) → 0 (m → ∞) for every subsequence {xnk

} of {xn}.

Proof. It is a direct corollary of Theorem 2.7 and 2.8. �

Corollary 2.10

Let X be a Banach sequence lattice, τ(·) be absorbing on X, {xn} ⊂ X be

bounded and x ∈ X. Then {xn} is weakly convergent to x if and only if

(i) xn(i) → x(i) for all i ∈ N ;

(ii) limm→∞ supn∈N

∑∞
i=m |[xn(i)−x(i)]g(i)| = 0 for all regular functionals g ∈ X+;

(iii) τ(mink<m |xnk
− x|) → 0 (m → ∞) for every subsequence {xnk

} of {xn}.

Remark 2.11. In Theorem 2.9 and Corollary 2.10, if X is endowed with an equivalent
norm ‖·‖0, then the condition “τ(·) is absorbing on X” can be replaced by “τ0(x) =
limn→∞ ‖x− [x]n‖0 is absorbing on X”.

Corollary 2.12

Assume xn, x ∈ l∞ (n = 1, 2, . . .). Then {xn} is weakly convergent to x if and

only if

(i) xn(i) → x(i) for all i ∈ N and {xn} is bounded.

(ii) lim supl→∞ mink<m |xnk
(i) − x(i)| → 0 (n → ∞) for every subsequence {xnk

}
of {xn}.

Proof. Note τ(x) = limm→∞ supi>m |x(i)| for each x ∈ l∞ and (l∞0 )∗ = c∗0 = l1.
The condition (ii) of Corollary 2.10 is automatically satisfied. Hence the result is
deduced. �

In the following we give an interesting example to show a weakly convergent
sequence in l∞. Let

x1 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .)

x2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .)

. . .

xn =
( 2n−1−1︷ ︸︸ ︷
0, . . . , 0, 1,

2n−1︷ ︸︸ ︷
0, . . . , 0, 1,

2n−1︷ ︸︸ ︷
0, . . . , 0, 1, . . .

)
.

By Corollary 2.11, we know xn is weakly convergent to 0. But τ(xn) ≡ 1.
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Note τ(·) is absorbing on Orlicz sequence space lM and τ(x) = inf{λ >

0| ∑∞
i=1 M(x(i)/λ) < ∞} for each x ∈ lM (see [2,5]). We immediately obtain

Corollary 2.13

Assume {xn} ⊂ lM is bounded, x ∈ lM . Then xn is weakly convergent to x if

and only if

(i) xn(i) → x(i) for all i ∈ N ;

(ii) limm→∞ supn∈N

∑∞
i=m |[xn(i) − x(i)]g(i)| = 0 for every g ∈ lM

∗
,

(iii) τ(mink<m |xnk
− x|) → 0 as m → ∞ for every subsequence {xnk

} of {xn}.

This is just the main result of [2].
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