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Abstract

In this paper the notion of convex pairs of convex bounded subsets of a Hausdorff
topological vector space is introduced. Criteria of convexity pair are proved.

The space of pairs of convex compact sets has been investigated in many papers (see
[3], [7], [8], [12]). Recently, this space has found an application in the quasidifferential
calculus (see [1], [9]). A quasidifferential is represented as a pair of convex compact
sets. Since this representation is not uniquely determined it is essential to find the
minimal representation of this pair. The notion of minimal pairs was introduced in
[4]. Some criteria of minimality are given in [2], [5] and [11].

In this paper we investigate pairs of convex compact sets with convex union. We
show that for every pair of convex compact sets there exists an equivalent pair of sets
with convex union. This observation allows us to introduce a new type minimality,
called convex minimality.

In the sequel X = (X, τ) will be a Hausdorff topological vector space, A(X) will
denote the family of all nonempty subsets of X, and let B(X) (resp. K(X)) be the
family of closed and bounded (resp. compact) convex sets in A(X). If A,B ∈ A(X),

then let A
∗
+ B = A + B = Ā + B̄, where Ā denotes the closure of A and A+B is the

usual algebraic Minkowski sum of A and B. It may be showed that B(X) satisfies

the order cancellation law, i.e. for A,B,C ∈ B(X) the inclusion A
∗
+B ⊂ B

∗
+C

implies that A ⊂ C (see [12]). Hence it follows that the commutative semigroup

(B(X),
∗
+ ) satisfies the law of cancellation.

Now let B2(X) = B(X) × B(X). The equivalence relation between pairs of

bounded convex sets is given as follows (A,B) ∼ (C,D) iff A
∗
+D = B

∗
+C. The set
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B2(X) may be ordered by the relation: (A,B) ≤ (C,D) iff A ⊂ C and B ⊂ D. For
A,B ∈ B(X) we will use the notation A ∨ B := conv (A ∪ B). If A,B,C ∈ B(X),

and b ∈ X, then (A ∨B)
∗
+C = A ∨B

∗
+C and A + {b} = A + b. The interval [a, b]

is equal to {a}∨{b}. A pair (A,B) ∈ B2(X) is called minimal if for any pair (C,D)
equivalent to (A,B) the relation (C,D) ≤ (A,B) implies that (A,B) = (C,D). A
pair (A,B) ∈ K2(X) is called convex if A ∪B is a convex set.

In this paper we will consider pairs of sets with convex union.
Let A,B, S ∈ A(X). We say that a set S separates sets A and B if [a, b]∩S �= ∅

for every a ∈ A and b ∈ B.

Proposition 1

If A,B ∈ B(X) then A ∩ B separates sets A and B if and only if the union

A ∪B is a convex set.

Proof. Sufficiency. Let a ∈ A, b ∈ B. Then there exist α, β ≥ 0 with α + β = 1
such that x = α · a + β · b ∈ A ∩B. Hence [a, b] = [a, x] ∪ [x, b] ⊂ A ∪B.
Necessity. Take arbitrary a ∈ A, b ∈ B. Let [a, a0] = [a, b] ∩ A. We have [a, b] =
[a, a0] ∪ [a0, b]. But [a, b] ⊂ A ∪B so [a0, b] ⊂ B. Hence a0 ∈ A ∩B. �

Theorem 1

If A,B ∈ B(X), A ∩B �= ∅ and A + B ⊂ A ∨B
∗
+A ∩B, then A ∩B separates

the sets A and B.

Proof. Let U be a base of neighborhoods of 0 in X. Given any U ∈ U , define a
balanced sequence (Vn)n≥0 in U such that V0 + V0 ⊂ U and Vn+1 + Vn+1 ⊂ Vn for

n ≥ 0. From A + B ⊂ A ∨B
∗
+A ∩B it follows that

A + B ⊂ conv (A ∪B) + A ∩B + V for any V ∈ U ,

in particular

A + B ⊂ conv (A ∪B) + A ∩B + Vn, n ∈ N.

Let a ∈ A and b ∈ B. Then

a + b = α1 · a1 + β1 · b1 + x1 + v1 (1)
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for some a1 ∈ A, b1 ∈ B, x1 ∈ A ∩ B, v1 ∈ V1 , α1, β1 ≥ 0, α1 + β1 = 1. Now, we
consider β1 · a + α1 · a1 ∈ A and α1 · b + β1 · b1 ∈ B. By the inclusion A + B ⊂
conv (A ∪B) + A ∩B + Vn, we have:

β1 · a + α1 · a1 + α1 · b + β1 · b1 = α2 · a2 + β2 · b2 + x2 + v2,

β2 · a + α2 · a2 + α2 · b + β2 · b2 = α3 · a3 + β3 · b3 + x3 + v3,

· · · (2)

βk · a + αk · ak + αk · b + βk · bk = αk+1 · ak+1 + βk+1 · bk+1 + xk+1 + vk+1,

· · ·
βn · a + αn · an + αn · b + βn · bn = αn+1 · an+1 + βn+1 · bn+1 + xn+1 + vn+1,

for some αk + βk = 1, αk, βk ≥ 0, ak ∈ A, bk ∈ B, xk ∈ A ∩ B, vk ∈ Vk, 1 ≤ k ≤
n + 1, n ∈ N. From (1) and (2) we obtain

(1 + β1 + ... + βn) · a + (1 + α1 + ... + αn) · b
= αn+1 · an+1 + βn+1 · bn+1 + x1 + ... + xn+1 + v1 + ... + vn+1. (3)

Denote
γn =

1
n + 1

· (1 + β1 + ... + βn), n ∈ N.

We have 0 ≤ γn ≤ 1 and

1 − γn =
1

n + 1
· (α1 + ... + αn).

By (3) we have

γn · a + (1 − γn) · b =
cn

n + 1
− b

n + 1
+ x′

n + v′n, (4)

where
cn = αn+1 · an+1 + βn+1 · bn, x′

n =
1

n + 1
· (x1 + ... + xn+1),

x′
n ∈ A ∩B, v′n =

1
n + 1

· (v1 + ... + vn+1), n ∈ N.

By the convexity of A ∩ B, we have x′
n ∈ A ∩ B. In virtue of the compactness

of the interval [0, 1] it follows that there exists a subsequence (γnk
)∞k=1 such that

limk→∞ γnk
= α. Denote zn = γ · a + (1 − γn) · b. Then

lim
k→∞

znk
= α · a + (1 − α) · b = z.
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Now from (4) we obtain

z = z − znk
+

cnk

nk + 1
− b

nk + 1
+ x′

nk
+ v′nk

. (5)

By the boundedness of A ∨B, we have

lim
k→∞

cnk

nk + 1
= 0.

Now we observe that

v′n =
1

n + 1
· (v1 + ... + vn+1) ∈ V1 + ... + Vn + Vn ⊂ V1 + ... + Vn−1 ⊂ V0.

for any n ∈ N. By (5), for sufficiently large k, it must be

α · a+ (1− α) · b ∈ A∩B + V1 + V2 + V2 + V0 ⊂ A∩B + V1 + V1 + V0 ⊂ A∩B +U.

Hence

[a, b] ∩ (A ∩B + U) �= ∅ (6)

for every U ∈ U . Now suppose that [a, b] ∩ A ∩ B = ∅. Since the interval [a, b] is
compact and A∩B is closed, there exists a neighborhood U ∈ U (see [10]) such that

([a, b] + U) ∩ (A ∩B + U) = ∅.

This contradicts condition (6). Hence [a, b] ∩A ∩B �= ∅. �
Analogously as in the case of locally convex space (see [7]), we can show

Lemma 1

If A,B,C ∈ A(X) and C is convex, then

conv (A ∪B) + C = conv [(A + C) ∪ (B + C)].

Proof. Let x ∈ conv (A ∪B) + C. Then

x =
n∑

i=1

αi · ai +
m∑

j=1

βj · bj + c,
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for some ai ∈ A, bj ∈ B, c ∈ C, αi, βj ≥ 0 with
n∑

i

αi +
m∑

j

βj = 1, 1 ≤ j ≤ n, 1 ≤ j ≤ m.

We have

x =
n∑

i

αi · (ai + c) +
m∑

j

βj · (bj + c),

i.e.
x ∈ conv [(A + C) ∪ (B + C)].

Hence
conv (A ∪B) + C ⊂ conv [(A + C) ∪ (B + C)].

The inverse inclusion is obvious. �

Lemma 2
If A,B,C ∈ B(X), then A ∨B

∗
+C = (A

∗
+C) ∨ (B

∗
+C).

Proof. We have

A ∨B
∗
+C = conv (A ∪B) + C) = conv (A ∪B) + C.

Hence, from Lemma 1

A ∨B
∗
+C = (A

∗
+C) ∨ (B

∗
+C). �

Lemma 3
If A,B ∈ B(X), then A ∪B is convex if and only if

A
∗
+B = A ∨B

∗
+A ∩B, A ∩B �= ∅.

Proof. Sufficiency. Let A ∪B is convex. Then A ∩B �= ∅ separates the sets A and
B. Given any a ∈ A and b ∈ B, there exist α, β ≥ 0 with α + β = 1 such that
α · a + β · b ∈ A ∩B. It follows that

a + b = β · a + α · a + α · a + β · b ∈ A ∨B
∗
+A ∩B.

Hence A + B ⊂ A ∨B
∗
+A ∩B. But from Lemma 2

A ∨B
∗
+A ∩B = (A

∗
+A ∩B) ∨ (B

∗
+A ∩B) ⊂ A

∗
+B.

Hence
A

∗
+B = A ∨B

∗
+A ∩B.

Necessity. By Theorem 1 and Proposition 1 it follows that A ∪B is convex. �
We call a set A ∈ B(X) is a summand of B ∈ B(X) if there exists a set C ∈ B(X)

such that A
∗
+C = B.
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Theorem 2

If A,B ∈ B(X), then A ∨ B is a summand of A
∗
+B if and only if A ∪ B is

convex.

Proof. Let A
∗
+B = A ∨ B

∗
+S for some S ∈ B(X). Then A

∗
+B ⊃ A

∗
+S and

A
∗
+B ⊃ B

∗
+S. By the order cancellation law, we have S ⊂ A ∩ B. Now, from

Theorem 1 and Proposition 1 it follows that A ∪B is convex.

If A ∪ B is convex, then by Lemma 3 we have A
∗
+B = A ∨ B

∗
+A ∩ B. Hence

A ∨B is summand of A
∗
+B. �

Theorem 3

Let A,B,C ∈ B(X). Then (A
∗
+C) ∪ (B

∗
+C) is a convex set if and only if the

pair (A ∨B,A
∗
+B) is equivalent to (C,D) for some D ∈ B(X).

Proof. Necessity. Suppose that (A
∗
+C) ∪ (B

∗
+C) is convex. Then by Theorem 2

we have
A

∗
+C

∗
+B

∗
+C = (A

∗
+C) ∪ (B

∗
+C)

∗
+ (A

∗
+C) ∩ (B

∗
+C).

But
(A

∗
+C) ∪ (B

∗
+C) = (A

∗
+C) ∨ (B

∗
+C) = A ∨B

∗
+C.

Hence
A

∗
+B

∗
+ 2 · C = A ∨B

∗
+C

∗
+ (A

∗
+C) ∩ (B

∗
+C)

and so
A

∗
+B

∗
+C = A ∨B

∗
+ (A

∗
+C) ∩ (B

∗
+C).

Setting D = (A
∗
+C) ∩ (B

∗
+C), we get

(A ∨B,A
∗
+B) ∼ (C,D).

Sufficiency. Let A
∗
+B

∗
+C = A ∨B

∗
+D for some D ∈ K(X). Then

A
∗
+C

∗
+B

∗
+C = (A

∗
+C) ∨ (B

∗
+C)

∗
+D.

Denote A1 = A
∗
+C, B1 = B

∗
+C. By Theorem 2 it follows that A1 ∪B1 is a convex

set. �
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Corollary 1

If A,B ∈ B(X), then the set (A
∗
+A ∨B) ∪ (B

∗
+A ∨B) is convex.

Proof. Given C = A ∨B and D = A
∗
+B. Then (A ∨B,A

∗
+B) ∼ (C,D) and, from

Theorem 3, we have (A
∗
+A ∨B) ∩ (B

∗
+A ∨B) = A

∗
+B. �

Proposition 2

For every pair (A,B) ∈ B2(X) there exists an equivalent convex pair.

Proof. The Proposition follows immediately by Corollary 1 and by the relation
(A,B) ∼ (A

∗
+A ∨B,B

∗
+A ∨B). �

Lemma 4

If (A,B), (C,D) ∈ B2(X) are two equivalent pairs and A ∪B is convex, then

A
∗
+D = B

∗
+C = C ∨D

∗
+A ∩B.

Proof. Let A
∗
+D = B

∗
+C. Then

A ∨B
∗
+C = (A

∗
+C) ∨ (B

∗
+C) = (A

∗
+C) ∨ (A

∗
+D) = A

∗
+C ∨D.

But from the convexity of A ∪B and Lemma 3 it follows that

A
∗
+B = A ∪B

∗
+A ∩B.

Now we observe that

A
∗
+B

∗
+C ∨D = B

∗
+C

∗
+A ∪B,

and
A ∪B

∗
+A ∩B

∗
+C ∨D = B

∗
+C

∗
+A ∪B.

From the law of cancellation, we have

A
∗
+D = B

∗
+C = C ∨D

∗
+A ∩B. �

Proposition 3

If (A,B), (C,D) ∈ B2(X) are two equivalent convex pairs, then

A
∗
+D = B

∗
+C = A ∪B

∗
+C ∩D = C ∪D

∗
+A ∩B.

Proof. It follows from Lemma 4 immediately. �
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Proposition 4
If (A,B) ∈ K(X)× (B(X) \K(X)) is a pair equivalent to (C,D) ∈ B2(X), then

D ∈ B(X) \ K(X).

Proof. Suppose D ∈ K(X). Then

B
∗
+C = A + D ∈ K(X).

It follows that B + d ⊂ A+D for some d ∈ D. Hence B is a compact set which is a
contradiction. �

Corollary 2
For any (A,B) ∈ K(X)×(B(X)\K(X)) there is no minimal pair (C,D) ∈ K2(X)

equivalent to (A,B).

In [4] it has been proved that for any (A,B) ∈ K2(X) there exists a minimal
pair (Ao, Bo) ∈ K2(X) equivalent to (A,B). The question arises if it remains true
for B2(X) in place of K2(X).
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