Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 785-790
(c) 1997 Universitat de Barcelona

On smoothing conditions of multivariate splines

Jerzy Stankiewicz
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

Let T be a k-simplex in \mathbb{R}^{s}, where $0 \leq k<n$, and let S_{a} and S_{b} be two adjacent s-simplices with $T=S_{a} \cap S_{b}$. Suppose that $F(x) \in C\left(S_{a} \cup S_{b}\right)$ with

$$
\begin{aligned}
\left.F(x)\right|_{S_{a}} & =P_{n}(x), \\
\left.F(x)\right|_{S_{b}} & =Q_{n}(x)
\end{aligned}
$$

where P_{n} i Q_{n} are Bezier polynomials in \mathbb{R}^{s} with total degree n. The conditions, which must be required to function F be in class C^{r} across T, are introduced by C.K. Chui and M. Lai ([3], [4]). In the present note the improvement of those conditions is obtained. As an application, algorithm for computation of polynomial coefficients is shown.

Introduction

Let $x^{0}, x^{1}, x^{2}, \ldots, x^{s}$ be linear independent points in \mathbb{R}^{s}. Then its convex hull

$$
\begin{equation*}
\left\langle x^{0}, \ldots, x^{s}\right\rangle=\left\{\sum_{i=0}^{s} \lambda_{i} x^{i}: \sum_{i=0}^{s} \lambda_{i}=1, \lambda_{0}, \ldots, \lambda_{s} \geq 0\right\} \tag{1}
\end{equation*}
$$

is a simplex. It is called an s-simplex. Then any $x \in \mathbb{R}^{s}$ can be identified with an $(s+1)$-tuple $\left(\lambda_{0}, \ldots, \lambda_{s}\right)$ where

$$
\begin{equation*}
\lambda_{i}=\lambda_{i}(x)=\frac{\operatorname{vol}_{s}\left\langle x^{0}, \ldots, x^{i-1}, x, x^{i+1}, \ldots, x^{s}\right\rangle}{\operatorname{vol}_{s}\left\langle x^{0}, \ldots, x^{s}\right\rangle} \tag{2}
\end{equation*}
$$

and

$$
\operatorname{vol}_{s}\left\langle x^{0}, \ldots, x^{s}\right\rangle=\frac{1}{s!}\left|\begin{array}{cccc}
1 & x_{1}^{0} & \ldots & x_{s}^{0} \tag{3}\\
\ldots & \ldots \ldots \ldots . \\
1 & x_{1}^{s} & \ldots & x_{s}^{s}
\end{array}\right|
$$

where $x^{i}=\left(x_{1}^{i}, \ldots, x_{s}^{i}\right)$ and $x=\left(x_{1}, \ldots, x_{s}\right)$. The numbers $\lambda_{0}, \ldots, \lambda_{s}$ are called the barycentric coordinate of x relative to the simplex $\left\langle x^{0}, \ldots, x^{s}\right\rangle$. Since each $\lambda_{i}=\lambda_{i}(x)$ and by using the notation $\lambda^{\beta}=\lambda_{0}^{\beta_{0}} \ldots \lambda_{s}^{\beta_{s}}$ and $\beta!=\beta_{0}!\ldots \beta_{s}!$ for any $\beta=\left(\beta_{0}, \ldots, \beta_{s}\right) \in \mathbb{Z}_{+}^{s+1}$, where $\mathbb{Z}_{+}=\{0,1, \ldots\}$, the Bezier polynomial is defined by

$$
\begin{equation*}
P_{n}(x)=\sum_{|\beta|=n} a_{\beta} \Phi_{\beta}^{n}(\lambda), \tag{4}
\end{equation*}
$$

where $\Phi_{\beta}^{n}(\lambda)$ are the Bernstein polynomials of degree n

$$
\begin{equation*}
\Phi_{\beta}^{n}(\lambda)=\frac{n!}{\beta!} \lambda^{\beta}, \quad|\beta|=\beta_{0}+\ldots+\beta_{s}=n \tag{5}
\end{equation*}
$$

The set $\left\{\left(\frac{\beta_{0}}{n}, \cdots, \frac{\beta_{s}}{n}, a_{\beta}\right):|\beta|=n\right\}$ is called the Bezier net of $P_{n}(x)$. Let $T=$ $\left\langle x^{0}, \ldots, x^{k}\right\rangle$ be a k-simplex in \mathbb{R}^{s} where $0 \leq k<s$, and let

$$
\begin{align*}
S_{a} & =\left\langle x^{0}, \ldots, x^{k}, x^{k+1}, \ldots, x^{s}\right\rangle \\
S_{b} & =\left\langle x^{0}, \ldots, x^{k}, y^{k+1}, \ldots, y^{s}\right\rangle \tag{6}
\end{align*}
$$

be two adjacent s-simplices with $T=S_{a} \cap S_{b}$. Suppose that $F(x) \in C\left(S_{a} \cup S_{b}\right)$ with

$$
\begin{align*}
& \left.F(x)\right|_{S_{a}}=P_{n}(x)=\sum_{|\alpha|=n} a_{\alpha} \Phi_{\alpha}^{n}\left(\lambda_{0}(x), \ldots, \lambda_{s}(x)\right), \\
& \left.F(x)\right|_{S_{b}}=Q_{n}(x)=\sum_{|\beta|=n} a_{\beta} \Phi_{\beta}^{n}\left(\eta_{0}(x), \ldots, \eta_{s}(x)\right), \tag{7}
\end{align*}
$$

where $\lambda=\left(\lambda_{0}, \ldots, \lambda_{s}\right)$ and $\eta=\left(\eta_{0}, \ldots, \eta_{s}\right)$ are the barycentric coordinate of x relative to S_{a} and S_{b} respectively.

Let $s_{i}(\alpha)=\left(\alpha_{0}, \ldots, \alpha_{i-1}, \alpha_{i}+1, \alpha_{i+1}, \ldots, \alpha_{s}\right)$ and $\Delta_{i j} a_{\alpha}=a_{s_{i} \alpha}-a_{s_{j} \alpha}$. Using above notation, one can formulate the following smoothing conditions:

Theorem 1 (C.K. Chui and M.J. Lai)
Let

$$
\begin{equation*}
c_{j i}=\frac{\operatorname{vol}_{s}\left\langle x^{0}, \ldots, x^{i-1}, y^{j}, x^{i+1}, \ldots, x^{s}\right\rangle}{\operatorname{vol}_{s}\left\langle x^{0}, \ldots, x^{s}\right\rangle} \tag{8}
\end{equation*}
$$

Then for any $r \in \mathbb{Z}_{+}, F(x) \in C^{r}\left(S_{a} \cup S_{b}\right)$ if and only if

$$
\begin{align*}
& \Delta_{k+1,0}^{\gamma_{k+1}} \ldots \Delta_{s, 0}^{\gamma_{s}} b_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \\
= & \left(\sum_{i=1}^{s} c_{k+1, i} \Delta_{i 0}\right)^{\gamma_{k+1}} \cdots\left(\sum_{i=1}^{s} c_{s, i} \Delta_{i 0}\right)^{\gamma_{s}} a_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \tag{9}
\end{align*}
$$

for all $\gamma_{k+1}+\ldots+\gamma_{s}=l, \alpha_{0}+\ldots+\alpha_{k}=n-l$, and $l=0, \ldots, r$.

Results

Let $E_{i} \quad(0 \leq i<s)$ be the partial shift operator defined by $E_{i} a_{\alpha}=a_{s_{i} \alpha}$. Thus the Bezier polynomial (4) can be expressed in terms of these operators by

$$
\begin{equation*}
P_{n}(x)=\left(\sum_{i=0}^{s} \lambda_{i} E_{i}\right)^{n} a_{0, \ldots, 0} \tag{10}
\end{equation*}
$$

where $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s}$ are barycentric coordinates of x (see [1] and [2]). The right side of equality (10) may be evaluated by recursion formula:

$$
\begin{equation*}
\left(\sum_{i=0}^{s} \lambda_{i} E_{i}\right)^{n} a_{0, \ldots, 0}=\sum_{j=0}^{s}\left(\lambda_{j}\left(\sum_{i=0}^{s} \lambda_{i} E_{i}\right)^{n-1} E_{j} a_{0, \ldots, 0}\right) . \tag{11}
\end{equation*}
$$

Applying above notation, the smoothing conditions (9) can be formulated as:

Theorem 2

Under the same assumptions as in Theorem 1 the condition (9) may be replaced by the following formula

$$
\begin{equation*}
b_{\alpha_{0}, \ldots, \alpha_{k}, \gamma_{k+1}, \ldots, \gamma_{s}}=\left(\sum_{i=0}^{s} c_{k+1, i} E_{i}\right)^{\gamma_{k+1}} \cdots\left(\sum_{i=0}^{s} c_{s, i} E_{i}\right)^{\gamma_{s}} a_{\alpha_{0}, \ldots, \alpha_{k}, 0, \ldots, 0} \tag{12}
\end{equation*}
$$

for all $\gamma_{k+1}+\cdots+\gamma_{s}=l, \alpha_{0}+\ldots+\alpha_{k}=n-l$, and $l=0, \ldots, r$.

Proof. The proof is based on the following observation: the equalities (9) form a consistent system of linear equations. Hence, it is sufficient to show that the equalities (12) are solution of this system.

First, we note that

$$
\begin{equation*}
\Delta_{i, j}^{n}=E_{i} \Delta_{i, j}^{n-1}-E_{j} \Delta_{i, j}^{n-1} \quad \text { where } \quad \Delta_{i, j}=E_{i}-E_{j} \tag{13}
\end{equation*}
$$

Applying (13) to the left side of (9) we obtain:

$$
\begin{gather*}
\Delta_{k+1,0}^{\gamma_{k+1}} \cdots \Delta_{s, 0}^{\gamma_{s}} B_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \\
=\left(E_{k+1}-E_{0}\right)^{\gamma_{k+1}} \cdots\left(E_{s}-E_{0}\right)^{\gamma_{s}} b_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \\
=\left(\sum_{i_{k+1}=0}^{\gamma_{k+1}}\binom{\gamma_{k+1}}{i_{k+1}} E_{k+1}^{i_{k+1}}\left(-E_{0}\right)^{\gamma_{k+1}-i_{k+1}}\right) \tag{14}\\
\quad \cdots\left(\sum_{i_{s}=0}^{\gamma_{s}}\binom{\gamma_{s}}{i_{s}} E_{s}^{i_{s}}\left(-E_{0}\right)^{\gamma_{s}-i_{s}}\right) b_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0}
\end{gather*}
$$

Changing order of summation and using definition of E_{i}, expression (14) may be written as:

$$
\begin{align*}
& \sum_{i_{k+1}=0}^{\gamma_{k+1}} \cdots \sum_{i_{s}=0}^{\gamma_{s}}\binom{\gamma_{k+1}}{i_{k+1}} \cdots\binom{\gamma_{s}}{i_{s}}\left(E_{k+1}\right)^{i_{k+1}} \cdots\left(E_{s}\right)^{i_{s}} \\
& \cdot\left(-E_{0}\right)^{\gamma_{k+1}+\cdots+\gamma_{s}-i_{k+1}-\cdots-i_{s}} b_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \\
&=\sum_{i_{k+1}=0}^{\gamma_{k+1}} \cdots \sum_{i_{s}=0}^{\gamma_{s}}\binom{\gamma_{k+1}}{i_{k+1}} \tag{15}\\
& \cdots\binom{\gamma_{s}}{i_{s}} b_{\alpha_{0}+\left(\gamma_{k+1}+\cdots+\gamma_{s}-i_{k+1}-\cdots-i_{s}\right), \alpha_{1}, \ldots, \alpha_{k}, i_{k+1}, \ldots, i_{s}}
\end{align*}
$$

Replacing $b_{\alpha_{0}+\left(\gamma_{k+1}+\cdots+\gamma_{2}-i_{k+1}-\cdots-i_{s}\right), \alpha_{1}, \ldots, \alpha_{k}, i_{k+1}, \ldots, i_{s}}$ by right side of (12), formula (15) may be written as:

$$
\begin{align*}
& \sum_{i_{k+1}=0}^{\gamma_{k+1}} \ldots \sum_{i_{s}=0}^{\gamma_{s}}\binom{\gamma_{k+1}}{i_{k+1}} \cdots\binom{\gamma_{s}}{i_{s}}\left(\sum_{i=0}^{s} c_{k+1, i} E_{k+1}\right)^{i_{k+1}} \\
& \cdots\left(\sum_{i=0}^{s} c_{s, i} E_{s}\right)^{i_{s}} \cdot\left(-E_{0}\right)^{\gamma_{k+1}+\cdots+\gamma_{s}-i_{k+1}-\cdots-i_{s}} a_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \tag{16}\\
& =\left(\sum_{i=0}^{s} c_{k+1, i} E_{i}-E_{0}\right)^{\gamma_{k+1}} \cdots\left(\sum_{i=0}^{s} c_{s, i} E_{i}-E_{0}\right)^{\gamma_{s}} a_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0}
\end{align*}
$$

It suffices to note that if $c_{j, i}$ are barycentric coordinate then $1=\sum_{i=0}^{s} c_{j, i}$. Applying this identity to (16) we obtain right side of the equality (9):

$$
\begin{align*}
& \left(\sum_{i=0}^{s} c_{k+1, i}\left(E_{i}-E_{0}\right)\right)^{\gamma_{k+1}} \cdots\left(\sum_{i=0}^{s} c_{s, i}\left(E_{i}-E_{0}\right)\right)^{\gamma_{s}} a_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \tag{17}\\
& \quad=\left(\sum_{i=0}^{s} c_{k+1, i} \Delta_{i 0}\right)^{\gamma_{k+1}} \cdots\left(\sum_{i=0}^{s} c_{s, i} \Delta_{i 0}\right)^{\gamma_{s}} a_{\alpha_{0} \ldots \alpha_{k} 0 \ldots 0} \square
\end{align*}
$$

Application

We now turn to the case $k=s-1$, then conditions (11) can be expressed as:

$$
\begin{aligned}
b_{\alpha_{0}, \ldots, \alpha_{s-1}, \gamma} & =\left(\sum_{i=0}^{s} c_{s, i} E_{i}\right)^{\gamma} a_{\alpha_{0}, \ldots, \alpha_{s-1}, 0} \\
& =\sum_{j=0}^{s}\left(c_{s, j}\left(\sum_{i=0}^{s} c_{s, i} E_{i}\right)^{\gamma_{1}} E_{j} a_{\alpha_{0}, \ldots, \alpha_{s-1}, 0}\right)
\end{aligned}
$$

for all $\alpha_{0}+\ldots+\alpha_{s-1}=n-\gamma$, and $\gamma=0, \ldots, r$. The above formula has following interpretation: $b_{\alpha_{0}, \ldots, \alpha_{s-1}, \gamma}$ may be obtained by evaluation of a Bezier polynomial of degree γ with some coefficients of P_{n} at y_{s}. On the other hand, recursion formula (11) provides de Casteljeu algorithm for the evaluation of $P_{n}(x)$ at given point x. Let $\left(\lambda_{0}, \ldots, \lambda_{s}\right)$ be barycentric coordinates of x. Algorithm de Casteljeu may be written as:

$$
\begin{align*}
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{0}=a_{\alpha_{0}, \ldots, \alpha_{s}} \\
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma}=\sum_{i=0}^{s} \lambda_{i} E_{i} a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma-1}, \text { for } \gamma=1, \ldots, n, \tag{19}
\end{align*}
$$

where $a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma}(\gamma=0, \ldots, n)$ are auxiliary points with $\sum_{i=0}^{s} \alpha_{i}=n-\gamma$. It is easy to show that $P_{n}(x)=a_{0, \ldots, 0}^{n}$ (see [5]). Applying above algorithm to point y_{s} we obtain the following formula:

$$
\begin{align*}
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{0}=a_{\alpha_{0}, \ldots, \alpha_{s}} \\
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma}=\sum_{i=0}^{s} c_{s, i} E_{i} a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma-1}, \text { for } \gamma=1, \ldots, n, \tag{20}
\end{align*}
$$

where $c_{s, i}(i=0, \ldots, s)$ are barycentric coordinates of y_{s}. Now, it is sufficient to note that $b_{\alpha_{0}, \ldots, \alpha_{s-1}, \gamma}=a_{\alpha_{0}, \ldots, \alpha_{s-1}, 0}^{\gamma}(\gamma=0, \ldots, r)$. Since $r \leq n$, the algorithm (20) can be expressed as:

$$
\begin{align*}
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{0}=a_{\alpha_{0}, \ldots, \alpha_{s}} \\
& a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma}=\sum_{i=0}^{s} c_{s, i} E_{i} a_{\alpha_{0}, \ldots, \alpha_{s}}^{\gamma-1}, \quad \text { for } \gamma=1, \ldots, r \tag{21}
\end{align*}
$$

where $c_{s, i} \quad(i=0, \ldots, s)$ are barycentric coordinates of y_{s}.
Discussion of the algorithm for evaluation of the coefficients in general case will be given in other paper.

References

1. M. Beśka, Convexity and variation diminishing property for Bernstein polynomials in higher dimentions, Banach Center Publ. 22 (1989), 45-53.
2. G. Chang and J. Hoschek, Convexity and variation diminishing property of Bernstein polynomials over triangles, Internat. Ser. Numer. Math. 75 (1985), 61-70.
3. C.K. Chui and M.J. Lai, On bivariate vertex splines, Internat. Ser. Numer. Math. 75 (1985), 84-115.
4. C.K. Chui and L.J. Lai, On multicariate vertex splines and applications, Topics in Multivariate Approximation (1987), 19-36.
5. W. Bohm, G. Farin and J. Kahman, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 4 (1984), 1-60.
