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Abstract

Let T be a k-simplex in R
s, where 0 ≤ k < n, and let Sa and Sb be two

adjacent s-simplices with T = Sa ∩ Sb. Suppose that F (x) ∈ C(Sa ∪ Sb)
with

F (x)|Sa = Pn(x),
F (x)|Sb

= Qn(x),

where Pn i Qn are Bezier polynomials in R
s with total degree n. The con-

ditions, which must be required to function F be in class Cr across T , are
introduced by C.K. Chui and M. Lai ([3], [4]). In the present note the im-
provement of those conditions is obtained. As an application, algorithm for
computation of polynomial coefficients is shown.

Introduction

Let x0, x1, x2, . . . , xs be linear independent points in R
s. Then its convex hull

(1) 〈x0, . . . , xs〉 =
{ s∑

i=0

λix
i :

s∑
i=0

λi = 1, λ0, . . . , λs ≥ 0
}

is a simplex. It is called an s-simplex. Then any x ∈ R
s can be identified with an

(s + 1)-tuple (λ0, . . . , λs) where

(2) λi = λi(x) =
vols〈x0, . . . , xi−1, x, xi+1, . . . , xs〉

vols〈x0, . . . , xs〉 ,
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and

(3) vols〈x0, . . . , xs〉 =
1
s!

∣∣∣∣∣∣
1 x0

1 . . . x0
s

. . . . . . . . . . . . . . .
1 xs

1 . . . xs
s

∣∣∣∣∣∣ ,

where xi = (xi
1, . . . , x

i
s) and x = (x1, . . . , xs). The numbers λ0, . . . , λs are called

the barycentric coordinate of x relative to the simplex 〈x0, . . . , xs〉. Since each
λi = λi(x) and by using the notation λβ = λβ0

0 . . . λβs
s and β! = β0! . . . βs! for any

β = (β0, . . . , βs) ∈ Z
s+1
+ , where Z+ = {0, 1, . . .}, the Bezier polynomial is defined by

(4) Pn(x) =
∑
|β|=n

aβΦn
β(λ),

where Φn
β(λ) are the Bernstein polynomials of degree n

(5) Φn
β(λ) =

n!
β!

λβ , |β| = β0 + . . . + βs = n .

The set
{(

β0
n , · · · , βs

n , aβ

)
: |β| = n

}
is called the Bezier net of Pn(x). Let T =

〈x0, . . . , xk〉 be a k-simplex in R
s where 0 ≤ k < s, and let

(6)
Sa = 〈x0, . . . , xk, xk+1, . . . , xs〉,
Sb = 〈x0, . . . , xk, yk+1, . . . , ys〉,

be two adjacent s-simplices with T = Sa∩Sb. Suppose that F (x) ∈ C(Sa∪Sb) with

(7)

F (x)|Sa
= Pn(x) =

∑
|α|=n

aαΦn
α

(
λ0(x), . . . , λs(x)

)
,

F (x)|Sb
= Qn(x) =

∑
|β|=n

aβΦn
β

(
η0(x), . . . , ηs(x)

)
,

where λ = (λ0, . . . , λs) and η = (η0, . . . , ηs) are the barycentric coordinate of x

relative to Sa and Sb respectively.
Let si(α) = (α0, . . . , αi−1, αi + 1, αi+1, . . . , αs) and ∆ijaα = asiα − asjα. Using

above notation, one can formulate the following smoothing conditions:
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Theorem 1 (C.K. Chui and M.J. Lai)

Let

(8) cji =
vols〈x0, . . . , xi−1, yj , xi+1, . . . , xs〉

vols〈x0, . . . , xs〉 .

Then for any r ∈ Z+, F (x) ∈ Cr(Sa ∪ Sb) if and only if

(9)

∆γk+1
k+1,0 . . .∆

γs

s,0bα0...αk0...0

=
( s∑
i=1

ck+1,i ∆i0

)γk+1

· · ·
( s∑
i=1

cs,i ∆i0

)γs

aα0...αk0...0

for all γk+1 + . . . + γs = l, α0 + . . . + αk = n− l, and l = 0, . . . , r.

Results

Let Ei (0 ≤ i < s) be the partial shift operator defined by Ei aα = asiα. Thus the
Bezier polynomial (4) can be expressed in terms of these operators by

(10) Pn(x) =
( s∑
i=0

λiEi

)n

a0,...,0,

where λ0, λ1, . . . , λs are barycentric coordinates of x (see [1] and [2]). The right side
of equality (10) may be evaluated by recursion formula:

(11)
( s∑
i=0

λiEi

)n

a0,...,0 =
s∑

j=0

(
λj

( s∑
i=0

λi Ei

)n−1

Ej a0,...,0

)
.

Applying above notation, the smoothing conditions (9) can be formulated as:

Theorem 2

Under the same assumptions as in Theorem 1 the condition (9) may be replaced

by the following formula

(12) bα0,...,αk,γk+1,...,γs
=

( s∑
i=0

ck+1,i Ei

)γk+1

· · ·
( s∑
i=0

cs,i Ei

)γs

aα0,...,αk,0,...,0,

for all γk+1 + · · · + γs = l, α0 + . . . + αk = n− l, and l = 0, . . . , r.



788 Stankiewicz

Proof. The proof is based on the following observation: the equalities (9) form
a consistent system of linear equations. Hence, it is sufficient to show that the
equalities (12) are solution of this system.

First, we note that

(13) ∆n
i,j = Ei∆n−1

i,j − Ej∆n−1
i,j where ∆i,j = Ei − Ej .

Applying (13) to the left side of (9) we obtain:

(14)

∆γk+1
k+1,0 · · ·∆

γs

s,0 Bα0...αk0...0

= (Ek+1 − E0)γk+1 · · · (Es − E0)γs bα0...αk0...0

=
( γk+1∑
ik+1=0

(
γk+1

ik+1

)
E

ik+1
k+1 (−E0)γk+1−ik+1

)

· · ·
( γs∑
is=0

(
γs
is

)
Eis

s (−E0)γs−is
)
bα0...αk0...0.

Changing order of summation and using definition of Ei, expression (14) may be
written as:

(15)

γk+1∑
ik+1=0

· · ·
γs∑

is=0

(
γk+1

ik+1

)
· · ·

(
γs
is

)
(Ek+1)ik+1 · · · (Es)is

· (−E0)γk+1+···+γs−ik+1−···−isbα0...αk0...0

=
γk+1∑

ik+1=0

· · ·
γs∑

is=0

(
γk+1

ik+1

)

· · ·
(
γs
is

)
bα0+(γk+1+···+γs−ik+1−···−is),α1,...,αk,ik+1,...,iss .

Replacing bα0+(γk+1+···+γ2−ik+1−···−is),α1,...,αk,ik+1,...,is by right side of (12), formula
(15) may be written as:

(16)

γk+1∑
ik+1=0

· · ·
γs∑

is=0

(
γk+1

ik+1

)
· · ·

(
γs
is

)( s∑
i=0

ck+1,i Ek+1

)ik+1

· · ·
( s∑
i=0

cs,i Es

)is
· (−E0)γk+1+···+γs−ik+1−···−is aα0...αk0...0

=
( s∑
i=0

ck+1,i Ei − E0

)γk+1

· · ·
( s∑
i=0

cs,i Ei − E0

)γs

aα0...αk0...0.
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It suffices to note that if cj,i are barycentric coordinate then 1 =
s∑

i=0

cj,i. Applying

this identity to (16) we obtain right side of the equality (9):

(17)

( s∑
i=0

ck+1,i (Ei − E0)
)γk+1

· · ·
( s∑
i=0

cs,i(Ei − E0)
)γs

aα0...αk0...0

=
( s∑
i=0

ck+1,i ∆i0

)γk+1

· · ·
( s∑
i=0

cs,i ∆i0

)γs

aα0...αk0...0. �

Application

We now turn to the case k = s− 1, then conditions (11) can be expressed as:

bα0,...,αs−1,γ =
( s∑
i=0

cs,i Ei

)γ

aα0,...,αs−1,0

=
s∑

j=0

(
cs,j

( s∑
i=0

cs,i Ei

)γ1

Ej aα0,...,αs−1,0

)
,

for all α0 + . . . + αs−1 = n− γ, and γ = 0, . . . , r. The above formula has following
interpretation: bα0,...,αs−1,γ may be obtained by evaluation of a Bezier polynomial
of degree γ with some coefficients of Pn at ys. On the other hand, recursion formula
(11) provides de Casteljeu algorithm for the evaluation of Pn(x) at given point x.
Let (λ0, . . . , λs) be barycentric coordinates of x. Algorithm de Casteljeu may be
written as:

(19)

a0
α0,...,αs

= aα0,...,αs
,

aγα0,...,αs
=

s∑
i=0

λi Ei a
γ−1
α0,...,αs

, for γ = 1, . . . , n,

where aγα0,...,αs
(γ = 0, . . . , n) are auxiliary points with

s∑
i=0

αi = n− γ. It is easy to

show that Pn(x) = an0,...,0 (see [5]). Applying above algorithm to point ys we obtain
the following formula:

(20)

a0
α0,...,αs

= aα0,...,αs
,

aγα0,...,αs
=

s∑
i=0

cs,i Ei a
γ−1
α0,...,αs

, for γ = 1, . . . , n,
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where cs,i (i = 0, . . . , s) are barycentric coordinates of ys. Now, it is sufficient to
note that bα0,...,αs−1,γ = aγα0,...,αs−1,0

(γ = 0, . . . , r). Since r ≤ n, the algorithm (20)
can be expressed as:

(21)

a0
α0,...,αs

= aα0,...,αs ,

aγα0,...,αs
=

s∑
i=0

cs,i Ei a
γ−1
α0,...,αs

, for γ = 1, . . . , r,

where cs,i (i = 0, . . . , s) are barycentric coordinates of ys.
Discussion of the algorithm for evaluation of the coefficients in general case will

be given in other paper.
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