Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 4-6 (1997), 773–783 © 1997 Universitat de Barcelona

Extrapolation theorem on L^p spaces over infinite measure space: An approach $p \searrow p_0$

TAKUYA SOBUKAWA

Department of Mathematics, Faculty of Education, Okayama University 3-1-1 Tsushima-naka, Okayama 700, Japan

Abstract

After S.Yano's classical work [10], several extrapolation theorems on L^p spaces have been proved to approach to the "singular" spaces, L^1 and L^∞ . We sometimes find such "singularity" on L^{p_0} , $1 < p_0 < \infty$. In this paper, we shall prove some extrapolation theorem in the case $p \searrow p_0$.

1. Extrapolation theory on quasi-normed L^p -spaces: An approach to L^1

In [3, §2], Σ -extrapolation space was defined for some suitable family of Banach spaces as follows:

DEFINITION. Let $\{A_{\theta}\}_{0 < \theta < 1}$ be a family of Banach spaces which satisfies (1) (strongly compatible) there exist two Banach spaces Δ and Σ such that

 $\Delta \subset A_{\theta} \subset \Sigma \qquad \text{for any} \quad 0 < \theta < 1$

with continuous embeddings, and

(2) $(\Sigma$ -condition)

$$\sup_{\theta} \sup_{a \in A_{\theta}} \frac{\|a\|_{\Sigma}}{\|a\|_{A_{\theta}}} < \infty$$

Then, for any $1 \leq r < \infty$, we define $\sum_{r} \{A_{\theta} : 0 < \theta < 1\}$ as the set of all $a \in \Sigma$ which have a representation $a = \sum_{i=1}^{\infty} a_i$ (with absolute convergence in Σ),

where $a_i \in A_{\theta_i}$ for some $0 < \theta_i < 1$ such that

$$||a||_{\Sigma_r\{A_\theta: 0 < \theta < 1\}} = \inf\left[\sum_{i=1}^{\infty} ||a_i||_{A_{\theta_i}}^r\right]^{1/r} < \infty.$$

Here the infimum is taken over all representations $a = \sum_{i=1}^{\infty} a_i$, $a_i \in A_{\theta_i}$. We sometimes write $\Sigma_1 \{ A_{\theta} : 0 < \theta < 1 \}$ as $\Sigma \{ A_{\theta} : 0 < \theta < 1 \}$ simply.

Moreover, by using it, the following result has been shown.

Theorem A

Let (Ω, μ) be a probability space and let α be any non-negative real number. Then, the following conditions are equivalent:

(1) $f \in \sum \{(p-1)^{-\alpha} L^p(\Omega, \mu) : 1$

(2) $\int_{\Omega} |f(x)| (1 + \log^+ |f(x)|)^{\alpha} d\mu(x) < \infty.$ Here, $(p-1)^{-\alpha} L^p(\Omega, \mu)$ is the space $L^p(\Omega, \mu)$ with norm

(1.1)
$$||f||_{(p-1)^{-\alpha}L^{p}(\Omega)} = (p-1)^{-\alpha} \left[\int_{\Omega} |f(x)|^{p} d\mu(x) \right]^{1/p}$$

This theorem yields S. Yano's classical extrapolation theorem ([10]).

On the other hand, the author tried to prove Yano's type extrapolation theorem on L^p -spaces over σ -finite measure space by using Yano's original idea, but did not get sharp results ([5], [6]).

Of course, even if (Ω, μ) is an infinite measure space, it is possible to define the Banach space $\sum \{(p-1)^{-\alpha}L^p(\Omega,\mu) : 1 . But the author had failed$ to characterize it as a function space explicitly. Now, on each $L^p(\Omega, \mu)$, we shall consider non-homogeneous quasi-norms

$$||f||_p^{\gamma} = \left[\int_{\Omega} |f(x)|^p d\mu(x)\right]^{\gamma/p}. \qquad (\gamma > 0)$$

We denote such quasi-normed L^p -space by $(L^p)^{\gamma}$. And we shall also investigate the following quasi-normed function spaces:

DEFINITION. Let $\alpha \geq 0$ and $1 < q < \infty$. We say that $f \in \mathbb{Z}_{q,\alpha}^{\dagger}$ if and only if

$$(1.2) \quad \|f\|_{\mathcal{Z}_{q,\alpha}^{\dagger}} \equiv \left[\int_{\|f| \le 1} |f(x)|^{q} d\mu(x) + \int_{\|f| > 1} |f(x)| (1 + \log|f(x)|)^{\alpha} d\mu(x) \right]^{1/q} < \infty$$

(see [5]).

By using the results from of [1 §4], we shall investigate the extrapolation theory on the family of quasi-normed L^p -spaces $\{(L^p)^{p/q}\}$, and get the following results:

Theorem 1.1 ([8])

Let (Ω, μ) be a σ -finite measure space, $1 < q < \infty$ and $\alpha \ge 0$. Then,

$$\sum \left\{ \left((p-1)^{-\alpha} L^p(\Omega) \right)^{p/q} : 1$$

and their quasi-norms are equivalent to each others.

From the definition of Extrapolation spaces, we can, as a corollary of this theorem, get the following extrapolation theorem.

Corollary 1.2 ([8])

Let (Ω, μ) be a σ -finite measure space and $1 < q < \infty$. And let T be a subadditive operator on $L^p(\Omega, \mu)$ for $1 < \forall p < q$, *i.e.* $|T(f+g)| \le |Tf| + |Tg|$ a.e. for any $f, g \in L^p(\Omega, \mu)$. Suppose

(1.3)
$$\left[\int_{\Omega} |Tf(x)|^{p} d\mu(x)\right]^{1/p} \leq \frac{A}{(p-1)^{\alpha}} \left[\int_{\Omega} |f(x)|^{p} d\mu(x)\right]^{1/p}$$

for all $f \in L^p(\Omega, \mu)$. Here, positive constants A and α are independent of p and f. If $f \in \mathbb{Z}_{q,\alpha}^{\dagger}$ then $Tf \in \mathbb{Z}_{q,0}^{\dagger}$. Moreover,

(1.4)
$$\int_{|Tf| \le 1} |Tf(x)|^q d\mu(x) + \int_{|Tf| > 1} |Tf(x)| d\mu(x) \\ \le C_{q,\alpha,A} \left[\int_{|f| \le 1} |f(x)|^q d\mu(x) + \int_{|f| > 1} |f(x)| (1 + \log |f(x)|)^\alpha d\mu(x) \right].$$

Here, the constant $C_{q,\alpha,a}$ depends on only q, α and A.

From this corollary, we can get Yano's theorem immediately. However, the original purpose of these studies is the approach to $L^1(\Omega)$. As is known, we can never get (1.4) for q = 1. For example, we shall consider the Hilbert transform H. Let $\chi(x) = 1$ for $0 \le x \le 1$, and $\chi(x) = 0$ elsewhere. Then it is easy to show $H\chi \in L^p(\mathbf{R})$ for p > 1 but $\notin L^1(\mathbb{R})$. So, instead of the case q = 1, we shall investigate the following function classes.

DEFINITION (c.f. [5]). Let $\alpha, \beta \geq 0$. $f \in \mathbb{Z}^*_{\beta,\alpha}$ if and only if f is measurable function on Ω such that

$$\int_{|f| \le 1} \frac{|f(x)|}{(1 - \log|f(x)|)^{\beta}} d\mu(x) + \int_{|f| > 1} |f(x)| (1 + \log|f(x)|)^{\alpha} d\mu(x) < \infty.$$

Once, the author tried to get some estimation on these classes ([3, Theorem 2]). From Theorem 1, we can get the following result, which is the sharpened one.

Sobukawa

Theorem 1.3 ([9])

Let (Ω, μ) be a σ -finite measure space and let T be an operator satisfying the assumption above. If $f \in \mathcal{Z}^*_{\varepsilon,\alpha}$, then $Tf \in \mathcal{Z}^*_{\alpha+\varepsilon,0}$ for arbitrary $\varepsilon > 0$. Moreover, (1.5)

$$\begin{split} &\int_{|Tf| \le 1} \frac{|Tf(x)|}{(1 - \log |Tf(x)|)^{\alpha + \varepsilon}} d\mu(x) + \int_{|Tf| > 1} |Tf(x)| d\mu(x) \\ &\le C_{q,\alpha,\varepsilon,A} \left[\int_{|f| \le 1} \frac{|f(x)|}{(1 - \log |f(x)|)^{\varepsilon}} d\mu(x) + \int_{|f| > 1} |f(x)| (1 + \log |f(x)|)^{\alpha} d\mu(x) \right]. \end{split}$$

Here, the positive constant $C_{q,\alpha,\varepsilon,A}$ depends only on q, α, ε and A.

Remark. T. Miyamoto ([4]) has proved the following:

Let q > 1. If T is bounded on L^q and satisfies (1.5) or (1.4), then T satisfies (1.3).

So, we may regard the space $\mathcal{Z}^*_{\beta,\alpha}$ as an "extreme space" of the family $\{(p-1)^{-\alpha}L^q\}$.

2. An approach to L^p , $p \searrow p_0$ $(p_0 \ge 1)$

M. Milman has given some comment to our results (in our private communications). He asserted we *can* characterize the Σ -space explicitly:

$$\sum_{p_0} \left\{ (p - p_0)^{-\alpha} L^p(\Omega) : p_0$$

for $1 \le p_0 < p_1 \le \infty$ and any measure space Ω . But we cannot get the result similar to Corollary 1.2 when $p_0 > 1$ from it. Moreover, in his method, it has not been succeeded to characterize the space

$$\sum\nolimits_1 \left\{ (p - p_0)^{-\alpha} L^p : \, p_0$$

for $p_0 > 1$, explicitly. However, in our method, we can grow up Theorem 1.1 and Corollary 1.2 as follows:

Theorem 2.1

Let (Ω, μ) be a σ -finite measure space, $1 \leq p_0 < p_1 < \infty$ and $\alpha \geq 0$. Then,

$$\sum \left\{ \left((p - p_0)^{-\alpha} L^p(\Omega) \right)^{p/p_1} : p_0$$

is the space $L^{p_0} \log^{p_0 \alpha} L + L^{p_1}$ with quasi-norm

(2.1)
$$\left[\int_{|f|\leq 1} |f(x)|^{p_1} d\mu(x) + \int_{|f|> 1} |f(x)|^{p_0} (1+\log|f(x)|)^{p_0\alpha} d\mu(x)\right]^{1/p_1}.$$

Corollary 2.2

Let (Ω, μ) be a σ -finite measure space and $1 \leq p_0 < p_1 < \infty$. And let T be a sub-additive operator on $L^p(\Omega, \mu)$ for $p_0 . Suppose$

(2.2)
$$\left[\int_{\Omega} |Tf(x)|^{p} d\mu(x)\right]^{1/p} \leq \frac{A}{(p-p_{0})^{\alpha}} \left[\int_{\Omega} |f(x)|^{p} d\mu(x)\right]^{1/p}$$

for all $f \in L^p(\Omega, \mu)$. Then, T satisfies

(2.3)
$$\int_{|Tf| \le 1} |Tf(x)|^{p_1} d\mu(x) + \int_{|Tf| > 1} |Tf(x)|^{p_0} d\mu(x) \\ \le C \left[\int_{|f| \le 1} |f(x)|^{p_1} d\mu(x) + \int_{|f| > 1} |f(x)|^{p_0} (1 + \log |f(x)|)^{p_0 \alpha} d\mu(x) \right].$$

Proof of Theorem 2.1. Modifying the proof of Theorem 1.1 ([8]), we can prove Theorem 2.1. First, we prepare some lemmas.

Lemma 2.3

Let $p = (1 - \theta)p_0 + \theta p_1$ (0 < θ < 1). Then

(2.4)
$$((L^{p_0})^{p_0/p_1}, L^{p_1})_{\theta, p_1; K} = (L^p)^{p/p_1}.$$

Moreover, the norms satisfy

(2.5)
$$(\theta(1-\theta))^{1/p_1} ||f||_{\theta,p_1;K} \approx ||f||_p^{p/p_1}$$

for any $f \in L^p(\Omega, \mu)$.

Sobukawa

Proof. From the definition of K functional, we have

(2.6)
$$2^{(1/p_1)-1}K(t^{1/p_1}, f; (L^{p_0})^{p_0/p_1}, L^{p_1}) \le K(t, f; (L^{p_0})^{p_0}, (L^{p_1})^{p_1})^{1/p_1} \le 2K(t^{1/p_1}, f; (L^{p_0})^{p_0/p_1}, L^{p_1}).$$

Hence,

$$\begin{aligned} \left(\theta(1-\theta)\right)^{1/p_1} &\|f\|_{K_{\theta,p_1}((L^{p_0})^{p_0/p_1},L^{p_1})} \\ &= \left[\theta(1-\theta)\sum_{n=-\infty}^{\infty} \left(\frac{K(2^{n/p_1},f(L^{p_0})^{p_0/p_1},L^{p_1})}{2^{n\theta/p_1}}\right)^{p_1}\right]^{1/p_1} \\ &\approx \left[\theta(1-\theta)\sum_{n=-\infty}^{\infty} \frac{K(2^n,f;(L^{p_0})^{p_0},(L^{p_1})^{p_1})}{2^{n\theta}}\right]^{1/p_1} \end{aligned}$$

and by [1, Theorem 5.2.2], this is equivalent to $(||f||_p^p)^{1/p_1}$.

From this fact, we can get the following relation.

Lemma 2.4

Let
$$1 \leq p_0 and $p = (1 - \theta)p_0 + \theta p_1$. Then, we have embeddings
 $J_{\theta,1}((L^{p_0})^{p_0/p_1}, L^{p_1}) \hookrightarrow (L^p)^{p/p_1} \hookrightarrow K_{\theta,\infty}((L^{p_0})^{p_0/p_1}, L^{p_1}).$$$

Moreover, there exist some M > 0 such that all of their operator norms are dominated by M.

Proof. From [1, Theorem 3.11.3, Theorem 3.1.2, Theorem 3.4.1(b)], we have

$$\|f\|_{\theta,1;J} \ge \left(\theta(1-\theta)\right)\|f\|_{\theta,1;K} \ge \left(\theta(1-\theta)\right)^{1/p_1}\|f\|_{\theta,p_1;K} \approx \|f\|_p^{p/p_1}$$

and we get the first embedding. By [1, Theorem 3.1.2], we can get the second embedding easily. \Box

We state one more fact.

Fact ([8, Lemma 3.4])

Let $\overline{A} = (A_0, A_1)$ be a mutually closed pair of quasi-Banach spaces such that $A_0 \cap A_1$ is dense in both A_0 and A_1 . For any $f \in J_{\rho_\beta,1}(A_0, A_1)$,

(2.7)
$$||f||_{\rho_{\beta},1;J} \approx \sum_{\mu=-\infty}^{0} (1-\mu)^{\beta-1} K(2^{\mu}, f; A_0, A_1).$$

Now, we shall prove Theorem 2.1 in several steps.

Proposition 2.5

Let $1 \le p_0 and <math>\alpha > 0$. Then,

(2.8)
$$\sum \left\{ (p-p_0)^{-\alpha p/p_1} (L^p)^{p/p_1} : p_0$$

Proof. From the extremal property of the functors $J_{\theta,1}$ and $K_{\theta,\infty}$ ([1, Theorem 3.11.4]), we have embeddings

$$J_{\theta,1}((L^{p_0})^{p_0/p_1}, L^{p_1}) \hookrightarrow J_{\theta,p_1}((L^{p_0})^{p_0/p_1}, L^{p_1}) \hookrightarrow K_{\theta,\infty}((L^{p_0})^{p_0/p_1}, L^{p_1})$$

and all of their norms are uniformly bounded. So, with Lemma 2.4, it is enough to prove

(2.9)
$$\sum \left\{ \theta^{-\alpha p_0/p_1} J_{\theta,1} \left((L^{p_0})^{p_0/p_1}, L^{p_1} \right) : 0 < \theta < 1 \right\} \\ \hookrightarrow \sum \left\{ \theta^{-\alpha p_0/p_1} K_{\theta,\infty} \left((L^{p_0})^{p_0/p_1}, L^{p_1} \right) : 0 < \theta < 1 \right\}.$$

By using (2.7) for $\beta = \frac{\alpha p_0}{p_1}$, we have

$$\|f\|_{\sum\{\theta^{-\alpha p_0/p_1} J_{\theta,1}((L^{p_0})^{p_0/p_1}, L^{p_1})\}} \leq C \sum_{\mu=-\infty}^{0} (1-\mu)^{(p_0\alpha/p_1)-1} K(2^{\mu}, f; (L^{p_0})^{p_0/p_1}, L^{p_1}) \\ \leq C \sum_{\mu=-\infty}^{0} (1-\mu)^{(p_0\alpha/p_1)-1} 2^{\mu\theta} \|f\|_{K_{\theta,\infty}((L^{p_0})^{p_0/p_1}, L^{p_1})} \\ \leq C' \theta^{-\alpha p_0/p_1} \|f\|_{K_{\theta,\infty}((L^{p_0})^{p_0/p_1}, L^{p_1})}$$

and we get (2.9) easily. \Box

Proposition 2.6

Let $\overline{A} = (A_0, A_1)$ be a pair of quasi-Banach spaces and let $1 \leq r < \infty$ and $\beta > 0$. Then,

(2.11)
$$\sum \left\{ \theta^{-\beta} J_{\theta,r}(A_0, A_1) : 0 < \theta < 1 \right\} = J_{\rho_{\beta},r}(A_0, A_1)$$

where

$$\rho_{\beta}(t) = \sup_{0 < \theta < 1} t^{\theta} \theta^{\beta} \sim \begin{cases} (1 - \log t)^{-\beta} & (0 < t \le 1) \\ t & (t > 1). \end{cases}$$

Moreover, these quasi-norms are equivalent.

Proof. This can be proved similarly to [8 Lemma 3.3] and we omit it (*c.f.* [3 Theorem 3.1 and (5.1.1)]). \Box

Proposition 2.7

For any $f \in \bar{A}_{\rho_{(p_0 \alpha/p_1)}, p_1; J}$, (2.12)

$$\|f\|_{J_{\rho_{(p_0\alpha}p_1),p_1}((L^{p_0})^{p_0/p_1},L^{p_1})} \approx \left[\sum_{\mu=-\infty}^0 (1-\mu)^{p_0\alpha-1} K(2^{\mu},f;(L^{p_0})^{p_0},(L^{p_1})^{p_1})\right]^{1/p_1}.$$

Proof. From the definition of J functional, we can get

$$J(t^{1/p_1}, f; (L^{p_0})^{p_0/p_1}, L^{p_1}) \leq J(t, f; (L^{p_0})^{p_0}, (L^{p_1})^{p_1})^{1/p_1} \leq 2J(t^{1/p_1}, f; (L^{p_0})^{p_0/p_1}, L^{p_1}).$$

Hence, we have (2.13)

$$\begin{split} \|f\|_{J_{\rho_{(p_0\alpha/p_1)},p_1}((L^{p_0})^{(p_0/p_1)},L^{p_1})}^{p_1} &= \inf \sum_{n=-\infty}^{\infty} \left(\frac{J((2^{1/p_1})^n, f_n(L^{p_0})^{p_0/p_1},L^{p_1})}{\rho_{p_0\alpha/p_1}((2^{1/p_1})^n)} \right)^{p_1} \\ &\approx \inf \sum_{n=-\infty}^{\infty} \frac{J(2^n, f_n(L^{p_0})^{p_0},(L^{p_1})^{p_1})}{\rho_{p_0\alpha/p_1}(2^{n/p_1})^{p_1}} \\ &\approx \inf \sum_{n=-\infty}^{\infty} \frac{J(2^n, f_n(L^{p_0})^{p_0},(L^{p_1})^{p_1})}{\rho_{p_0\alpha}(2^n)} \\ &= \|f\|_{J_{\rho_{p_0\alpha},1}((L^{p_0})^{p_0},(L^{p_1})^{p_1})}. \end{split}$$

Now, applying (2.7), we get our conclusion. \Box

Proposition 2.8

For any $\beta > 0$,

(2.14)
$$\sum_{\nu=-\infty}^{0} (1-\nu)^{\beta-1} K\left(2^{\nu}, f; (L^{p_0})^{p_0}, (L^{p_1})^{p_1}\right) \approx \int_{|f| \le 1} |f(x)|^{p_1} d\mu(x) + \int_{|f| > 1} |f(x)|^{p_0} \left(1 + \log|f(x)|\right)^{\beta} d\mu(x).$$

Proof. First,

$$\begin{split} K\big(t,f;(L^{p_0})^{p_0},(L^{p_1})^{p_1}\big) &= \inf_{f_0+f_1=f} \left(\|f_0\|_{p_0}^{p_0} + t\|f_1\|_{p_1}^{p_1} \right) \\ &= \int_{\Omega} \inf_{f_0(x)+f_1(x)=f(x)} \left(|f_0(x)|^{p_0} + t|f_1(x)|^{p_1} \right) d\mu(x) \\ &= \int_{\Omega} |f(x)|^{p_0} F(t|f(x)|^{p_1-p_0}) d\mu(x) \end{split}$$

where $F(s) = \inf_{y_0+y_1=1}(|y_0|^{p_0} + s|y_1|^{p_1}) \approx \min(1,s)$ (see [1, Theorem 5.2.2]). So, we have

(2.15)
$$K(t, f; (L^{p_0})^{p_0}, (L^{p_1})^{p_1}) \approx \int_{|f| > t^{1/p_0 - p_1}} |f(x)|^{p_0} d\mu(x) + t \int_{|f| \le t^{1/p_0 - p_1}} |f(x)|^{p_1} d\mu(x).$$

Now,

$$\begin{split} &\sum_{\nu=-\infty}^{0} (1-\nu)^{\beta-1} K \left(2^{\nu}, f; (L^{p_0})^{p_0}, (L^{p_1})^{p_1} \right) \\ &= \sum_{\nu=-\infty}^{0} (1-\nu)^{\beta-1} \left[2^{\nu} \int_{|f| \le 1} |f(x)|^{p_1} d\mu(x) + 2^{\nu} \int_{1 < |f| \le 2^{\nu/p_0 - p_1}} |f(x)|^{p_1} d\mu(x) \right. \\ &+ \int_{|f| > 2^{\nu/p_0 - p_1}} |f(x)|^{p_0} d\mu(x) \right] \\ &= \sum_{\nu=-\infty}^{0} (1-\nu)^{\beta-1} 2^{\nu} \int_{|f| \le 1} |f(x)|^{p_1} d\mu(x) \\ &+ \sum_{\nu=-\infty}^{0} (1-\nu)^{\beta-1} \left[2^{\nu} \int_{1 < |f| \le 2^{\nu/p_0 - p_1}} |f(x)|^{p_1} d\mu(x) + \int_{|f| > 2^{\nu/p_0 - p_1}} |f(x)| d\mu(x) \right] \\ &= S_1 + S_2, \quad \text{say.} \end{split}$$

Simply we have

$$S_1 = \left(\sum_{\nu = -\infty}^0 (1 - \nu)^{\beta - 1} 2^\nu\right) \int_{|f| \le 1} |f(x)|^{p_1} d\mu(x) = M(\beta) \int_{|f| \le 1} |f(x)|^{p_1} d\mu(x)$$

where $M(\beta)$ is defined in (3.7). Next, we estimate S_2 . Put

$$I_{\mu} = \int_{2^{\mu/p_0 - p_1} < |f| \le 2^{\mu - 1/p_0 - p_1}} |f(x)|^{p_0} d\mu(x).$$

If $2^{\mu/p_0-p_1} < |f(x)| \le 2^{\mu-1/p_0-p_1}$, we have $2^{-\mu} < |f(x)|^{p_1-p_0} \le 2^{-\mu+1}$. So, we have

$$2^{-\mu}I_{\mu} < \int_{2^{\mu/p_0-p_1} < |f| \le 2^{\mu-1/p_0-p_1}} |f(x)|^{p_1} d\mu(x) \le 2^{-\mu+1}I_{\mu}.$$

Therefore,

$$S_{2} \approx \sum_{\nu=-\infty}^{-1} (1-\nu)^{\beta-1} \left[2^{\nu} \sum_{\mu=0}^{\nu+1} 2^{-\mu} I_{\mu} + \sum_{\mu=-\infty}^{\nu} I_{\mu} \right] + \sum_{\mu=-\infty}^{0} I_{\mu}$$
$$= \sum_{\mu=-\infty}^{0} \left[\sum_{\nu=\mu}^{0} (1-\nu)^{\beta-1} + \sum_{\nu=-\infty}^{\mu-1} (1-\nu)^{\beta-1} 2^{\nu-\mu} \right] I_{\mu}$$
$$= \sum_{\mu=-\infty}^{0} S_{\mu}^{-} I_{\mu},$$

where S^{-}_{μ} has been defined in (3.6). Now, we can get

$$S_{2} \approx M'(\beta) \sum_{\mu = -\infty}^{0} (1 - \mu)^{\beta} I_{\mu}$$

= $M'(\beta) \sum_{\mu = -\infty}^{0} (1 - \mu)^{\beta} \int_{2^{\mu/p_{0} - p_{1}} <|f| \le 2^{\mu - 1/p_{0} - p_{1}}} |f(x)|^{p_{0}} d\mu(x)$
 $\approx M'(\beta) \int_{|f| > 1} |f(x)|^{p_{0}} (1 + \log |f(x)|)^{\beta} d\mu(x)$

and complete the proof. \Box

With these propositions, we conclude Theorem 2.1.

Proof of Corollary 2.2. If T is linear operator satisfying (2.2), we can get (2.3) in consequence of the general result ([3 §2]). Let T satisfy the subadditive property only. Suppose $f \in \sum \left\{ \left((p - p_0)^{-\alpha} L^p(\Omega) \right)^{p/p_1} : p_0 and it has a representation <math>f = \sum_n f_n, f_n \in L^{r_n} p_0 < r_n < p_1$. Then, we have

$$\begin{aligned} \|Tf\|_{\sum\{(L^{p}(\Omega))^{p/p_{1}}:p_{0}$$

Take infimum over all representation $f = \sum_{n} f_n$, we get our conclusion. \Box

References

- 1. J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
- 2. M. Cwikel and J. Peetre, Abstract K and J spaces, Mat. Pures Appl. 60 (1981), 1–50.
- 3. B. Jawerth and M. Milman, *Extrapolation theory with applications*, Mem. Amer. Math. Soc. **89** (1991).
- 4. T. Miyamoto, Interpolation Theorems of Operators on Zygmund Classes, Doctoral thesis, Keio University, (1994).
- 5. T. Sobukawa, Extrapolation Theorem on L^p -spaces over infinite measure space, *Math. Japon.* **38** (1993), 781–789.
- 6. T. Sobukawa, Extrapolation Theorem on L^p -spaces over infinite measure space II, *Math. Japon.* **39** (1994), 147–156.
- 7. T. Sobukawa, Extrapolation Theorem and Orlicz spaces, Math. Japon. 41 (1995), 331-338.
- 8. T. Sobukawa, Extrapolation Theorem on quasi-normed L^p -spaces, *Math. Japon.* **43** (1996), 241–252.
- 9. T. Sobukawa, Extrapolation Theorem on some quasi-normed Spaces, *Tokyo J. Math.* **18** (1995), 417–423.
- 10. S. Yano, Notes on Fourier Analysis (XXIX): An Extrapolation Theorem, *J. Math. Soc. Japan* **3** (1951).