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ABSTRACT

After S.Yano’s classical work [10], several extrapolation theorems on L? spaces
have been proved to approach to the “singular” spaces, L' and L>. We some-
times find such “singularity” on LP°, 1 < py < oo. In this paper, we shall
prove some extrapolation theorem in the case p \, pg.

1. Extrapolation theory on quasi-normed L?-spaces: An approach to L!

In [3, §2], ¥-extrapolation space was defined for some suitable family of Banach
spaces as follows:
DEFINITION. Let {Ap}o<o<1 be a family of Banach spaces which satisfies
(1) (strongly compatible) there exist two Banach spaces A and ¥ such that
AC Ay CX forany 0<6<1

with continuous embeddings, and
(2) (3-condition)

sup sup lalls < 00

0 acA, llafla,
Then, for any 1 < r < oo, we define 3,{A4p : 0 < § < 1} as the set of all

[ee]
a € X which have a representation @ = ) a; (with absolute convergence in X),
i=1
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where a; € Ay, for some 0 < 0; < 1 such that

0o 1/r
znain;ej o

lalls, {a5:0<0<1} = inf
i=1

Here the infimum is taken over all representations a = 221 a;, a; € Ag,. We
sometimes write 31{Ap:0 <0 <1} as ¥{Ap : 0 < 0 < 1} simply.

Moreover, by using it, the following result has been shown.

Theorem A

Let (2, 1) be a probability space and let o be any non-negative real number.
Then, the following conditions are equivalent:
(1) f€ S {(p—1)"0LP(Q ) : 1 < p < oo}
(2) Jo 1F(@)I(L +log™ | f(z))*dp(z) < oo.

Here, (p — 1)~ *LP(Q, p) is the space LP (2, ) with norm

1/p
(L1) 1 llgpt) e toey = (= 1) [ / |f<a:>\pdu<a:>] |

This theorem yields S. Yano’s classical extrapolation theorem ([10]).

On the other hand, the author tried to prove Yano’s type extrapolation theorem
on LP-spaces over o-finite measure space by using Yano’s original idea, but did not
get sharp results ([5], [6]).

Of course, even if (€2, p) is an infinite measure space, it is possible to define
the Banach space > {(p —1)"*LP(Q,u) : 1 < p < oco}. But the author had failed
to characterize it as a function space explicitly. Now, on each LP(Q, u), we shall
consider non-homogeneous quasi-norms

i3 = [ f<x>|pdu<x>]w. (> 0)

We denote such quasi-normed LP-space by (LP)7. And we shall also investigate the
following quasi-normed function spaces:

DEFINITION. Let a > 0 and 1 < ¢ < co. We say that f € Z;f if and only if

1/q
12) [z, = | [ W@lda@)+ [ 15@I0+ gl dute) | < oo
IfI<1 [f]>1

(see [5]).
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By using the results from of [1 §4], we shall investigate the extrapolation theory
on the family of quasi-normed LP-spaces {(LP)?/9}, and get the following results:

Theorem 1.1 ([8])
Let (Q, ) be a o-finite measure space, 1 < ¢ < oo and o > 0. Then,
S {(= )L @)"" 1 <p<af = 2.

and their quasi-norms are equivalent to each others.

From the definition of Extrapolation spaces, we can, as a corollary of this the-
orem, get the following extrapolation theorem.

Corollary 1.2 ([8])

Let (Q,u) be a o-finite measure space and 1 < q¢ < co. And let T be a sub-
additive operator on LP(Q, u) for 1 < Vp < q, i.e. |T(f+g)| <|Tf|+ |Tg| a.e. for
any f,g € LP(Q, u). Suppose

(13) [ >] g%{ / !f(w)lpdu(w)r/p

for all f € LP(Q,p). Here positive constants A and « are independent of p and f.
IffeZz then Tf € Zq o- Moreover,

/ ITF ()| 9dpu(z) + / T () dps()
ITfI<1 |Tf|>1

/ (@) fdu(z) + / !f(af)!(l+10g!f(w)!)“du(x)] .
[fI<1 |f]>1

Here, the constant C , , depends on only q, o and A.

(1.4)
SCq,a,A

From this corollary, we can get Yano’s theorem immediately. However, the
original purpose of these studies is the approach to L!'(€). As is known, we can
never get (1.4) for ¢ = 1. For example, we shall consider the Hilbert transform
H. Let x(x) = 1 for 0 < 2z < 1, and x(x) = 0 elsewhere. Then it is easy to
show Hx € LP(R) for p > 1 but ¢ L'(R). So, instead of the case ¢ = 1, we shall
investigate the following function classes.

DEFINITION (c.f. [5]). Let o, 8 > 0. f € Zj , if and only if f is measurable function
on €2 such that

/,f|<1 (1- 1’5fg(f;|(x)|)g dp(z) + /|f|>1 £ (2)|(1 + log | f(x))*dp(z) < oo.

Once, the author tried to get some estimation on these classes ([3, Theorem 2J).
From Theorem 1, we can get the following result, which is the sharpened one.
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Theorem 1.3 ([9])

Let (2, ) be a o-finite measure space and let T be an operator satisfying the
assumption above. If f € ZZ ,, then T'f € Z; . _ , for arbitrary € > 0. Moreover,
(1.5)

T f(x)]
/le|§1 (1 —log |Tf(x)|)>+e dp(z) + /Tf|>1 T f(x)|dp(x)

/(@) .
< Cpen [ L T o+ [ I s @) dute) |

Here, the positive constant Cj o ., 4 depends only on q, o, € and A.
Remark. T. Miyamoto ([4]) has proved the following:

Let ¢ > 1. If T is bounded on L7 and satisfies (1.5) or (1.4), then T satis-
fies (1.3).

So, we may regard the space Zj; , as an “extreme space” of the family {(p—1)~*L%}.

2. An approachto L?, p \, po (po > 1)

M. Milman has given some comment to our results (in our private communications).
He asserted we can characterize the Y-space explicitly:

Zm {(p —po)"“LP(Q) : po <p <p1} = L™ log” L + L"*(Q)

for 1 < pg < p1 < oo and any measure space 2. But we cannot get the result similar
to Corollary 1.2 when py > 1 from it. Moreover, in his method, it has not been
succeeded to characterize the space

Zl {(p_PO)_aLp tpo <P <p1}

for pg > 1, explicitly. However, in our method, we can grow up Theorem 1.1 and
Corollary 1.2 as follows:
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Theorem 2.1
Let (2, 1) be a o-finite measure space, 1 < py < p; < oo and « > 0. Then,

Z {((p - pO)_aLp(Q))p/pl tpo<p< Pl}

is the space LP°logP*® L + LP* with quasi-norm
1/p1

(2.1) / @) P () + / F(@) [P (1 + log | £(2) )P dp(z)

|fl1<1 [F1>1

Corollary 2.2

Let (2, ) be a o-finite measure space and 1 < pg < p; < co. And let T be a
sub-additive operator on LP (), 1) for py < p < p1. Suppose

(2) I ITf(x)Ipdu(m)]l/pS —f |f<x>|ﬁdu<x>}1/p

for all f € LP(Q, ). Then, T satisfies

/ T f(2) P du(z) + / T ()P dpu(z)
ITfI<1 |Tf]>1
(2.3)

<C

/ @) P () + / (@) (1 + log f(ﬂf)!)p°adﬂ(w)] |
[fI<1 [fI>1

Proof of Theorem 2.1. Modifying the proof of Theorem 1.1 ([8]), we can prove
Theorem 2.1. First, we prepare some lemmas.

Lemma 2.3
Let p=(1—0)po+6p1 (0<6 <1). Then

(2.4) ((Lpo)pO/p17Lp1)9,p1;K - (Lp)p/pl_
Moreover, the norms satisfy

1/p1
(2:5) (61 =6)"" |1 Fllowpsac = [1£1/

for any f € LP(Q, p).
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Proof. From the definition of K functional, we have

(2 6) 2(1/;01)—1K(t1/171,f; (Lpo)po/plepl) < K(t, f; (LPO)PO7 (LP1>p1)1/p1
) < 2K(t1/p1,f; (LPO)PO/ZH’LIH)_

Hence,

1/
(0(1 —9)) pl||f||K67p1((Lpo)po/P17LP1)

= 6(1-0) i <K(2n/p1,f(L;Uo)PO/pl’Lpl))pl]

1/p1

onb/p1
n=-—oo

(1 — 0) i K (2", f; (LPo)Po (LPr)Pr)

2n9

1/p1

Q

n=—oo

and by [1, Theorem 5.2.2], this is equivalent to (Hng)l/pl. O
From this fact, we can get the following relation.

Lemma 2.4
Let 1 <py<p<p; <ooandp=(1—60)py+ 0py. Then, we have embeddings
Jo 1((Lpo)po/p1’Lp1) AN (Lp)p/pl — Ky Oo((Lpo)po/p17Lp1)_
Moreover, there exist some M > 0 such that all of their operator norms are domi-
nated by M.
Proof. From [1, Theorem 3.11.3, Theorem 3.1.2, Theorem 3.4.1(b)], we have

1floss = (61 = )| f o > (01— 0P| fllopusrc ~ || 1157

and we get the first embedding. By [1, Theorem 3.1.2], we can get the second
embedding easily. [

We state one more fact.

Fact ([8, Lemma 3.4])

Let A = (Ag, A1) be a mutually closed pair of quasi-Banach spaces such that
Ag N Ay is dense in both Ay and A;. For any f € J,; 1(Ao, A1),

0
(2.7) £l pprso = > (L= )P K (2%, f; Ao, Ar).

p==—00

Now, we shall prove Theorem 2.1 in several steps.
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Proposition 2.5
Let 1 <pg <p<p; <ooanda>0. Then,

E:{(p—po)*o"’“‘“(Lp)”/p1 L po <p<p1}

(2.8)
— (; _po)fa/m Z {Qfapo/pg]@’p1 ((LPO)po/pl’Lpl) 0<f < 1}'

Proof. From the extremal property of the functors Jy; and Ky ([1, Theo-
rem 3.11.4]), we have embeddings

Jeyl((Lpo)po/m?Lm) — Jo.p, ((Lp())po/pl’Lpl) — Kp oo ((Lpo)pO/pl’Lpl)

and all of their norms are uniformly bounded. So, with Lemma 2.4, it is enough to
prove

Z {e—apo/Plje’l((LPO)PO/M’Lpl) 0< < 1}
(2.9)
=3 {g—apo/mKem((Lpo)Po/Pl,LPI) 1 0<0< 1} :

By using (2.7) for 8 = <%, we have

||f||z{9—apo/p1 Jo 1 ((LPo)Po/P1 LP1)}
0

<C Z (1— ,u)(poa/pl)—l K(?“, f; (Lpo)po/plprl)
(2.10) “:O_OO
<C Z (1-— ,u)(poa/pl)—l 2#‘9HfHKe,oo((L?’o)Po/m,Lm)
pu=—o00

< C'gero/m 1 f 1 iy oo ((LPoYPo/wr Lo1)

and we get (2.9) easily. O

Proposition 2.6

Let A = (Ao, A1) be a pair of quasi-Banach spaces and let 1 < r < oo and
B > 0. Then,

(2.11) > {070Jpr(Ag, A1) s 0 <0 <1} =T, (A, A1)

where
(1 —logt)™" 0<t<1)

polt) = sup 70 { ¢ (t>1).

0<o<1

Moreover, these quasi-norms are equivalent.
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Proof. This can be proved similarly to [8 Lemma 3.3] and we omit it (c.f. [3 Theorem
3.1 and (5.1.1)]). O

Proposition 2.7

For any f € flp(ma/m),pl;J,
(2.12)
0 1/p1
”fHJP(p()(,m),pl((Lpo)pO/pl’Lpl) ~ Z (1-— ,Ua)poaflK(Q/" f; (LPo)Po (LPr)Pr)
p=—00

Proof. From the definition of J functional, we can get

J(tl/pljf; (Lpo)po/p17Lp1) < J(t,f; (Lpo)po’ (Lpl)pl)l/pl
< 2J(t1/p1,f; (LPO)pO/pl,LPI)'

Hence, we have

(2.13)
o n 0\Po/P1 1 p1
117 g 30 (LU (L L)
J"(poa/m)’pl((Lpo)(pO/pl)VLpl) n=-—o00 Ppoa/p1 ((21/p1)n)
> nof (LPo)po (LP1)Pi
n=-—o0 ppooé/pl (2n P )pl

n o J(Qn7 fn (LPo)PO, (Lpl)pl)
~ inf Z Ppoa(27)

n=-—oo
= ||f”Jpp0a71((LP0)Po,(Lm)m)-

Now, applying (2.7), we get our conclusion. [J

Proposition 2.8

For any 8 > 0,
0
ST = nP (2 (e ()
(2.14) y=—00

x/ \ﬂmmmw+/’\ﬂ@muﬂwuwm%mm
[f1<1

[f1>1
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Proof. First,

K(t,f;(LPO)pov(L“)pl)Zmef (Ifollps + tllF2115:)

_/Q fo(x)+f1(x) e )(|f0( 2)|P0 + t| f1(z)[P*) du(z)

:/Q [F(@)[PoF(t]f ()P 7)du(a)

where F'(s) = infy, 4y, =1(|y0|P° + s|y1/P*) =~ min(1, s) (see [1, Theorem 5.2.2]). So,
we have

K (t, f; (LPo)Po (LP1)PY) = / |f(z)|P°dp(z)

|f>t1/70 =51

xr jlld ).
/|f<t1/p0 1 |f( )| ,U/( )

Now,

0

ST (L= )R (2 f (L), (L))

0
= 1—v)ft |2V
30y [2 /If

+ (@) dp( )]

|f1>2 /701

0
5 Lov )P du(x
=X - /|f|<1|f( )P dpa(z)

-V p-1 v )P T . "
+VZ_:OO(1 ) !2 /1<|f§2u/po—m | f ()P dpu( )+/,f|>2w0_p1 | £ () |dp( )]

=51+ 52, say.

@) dpa(a) + 27 / @) P ()

<1 1<|f|<2v/Po—r1

Simply we have
S; = 1—v)B-1ov )P du(z) = M )P du(z
(Z (1-) )/m @) () (ﬂ)/f.gl @) ()

where M () is defined in (3.7). Next, we estimate So. Put

Iy = |f (@) [P dp().

/Qu/pom <|f|L2r—1/Po—P1
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If 24/Po=P1 < | f(z)| < 2~ 1/Po=P1 e have 27# < |f(z)[Pr~Po < 27#*1. So, we have

201, < [ @) du(e) <2741,
21/ Po—P1 | f|<2m—1/P0—P1

Therefore,

—1 v+1
S~ Y (1-v)" [ 22“I+ZI +ZI

V=—00 H=—00 H=—00
0 0
= > Doa=-nity Z (1- 1/)5_12”_”] I,
p=—00 LU= v=—00
0
- Z S lu
H=—00

where S, has been defined in (3.6). Now, we can get

0
Som M(B) Y (1- )L,

p==—00

S (1-p) / (@) Podu(z)

. w/Po—P1 | f|<20—1/Po—P1

= M'(B)

~ M'(8) /W @) (1 + log | £(2)) du(z)

and complete the proof. [J
With these propositions, we conclude Theorem 2.1.

Proof of Corollary 2.2. If T is linear operator satisfying (2.2), we can get (2.3) in con-
sequence of the general result ([3 §2]). Let T satisfy the subadditive property only.

Suppose f € > {((p — po)_aLi‘)(Q))p/p1 ipo < p< pl} and it has a representation
f=>, fn: fn € L™ po <1y < p1. Then, we have

||Tf”z{(LP(Q))P/p1;p0<p<p1} < H <Z ’Tfn|> H
< Z qunH::/“

< CZ anHT”/pl

S {(Lr(@))r/P1:po<p<p: }



Extrapolation theorem on LP spaces over infinite measure space 783

Take infimum over all representation f = f,, we get our conclusion. [J

W N

10.

n
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