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Abstract

Estimation of the Jung constants of Orlicz function spaces equipped with either
Luxemburg norm or Orlicz norm is given. The exact values of the Jung constants
of a class of reflexive Orlicz function spaces have been found by using a new
quantitative index of N-functions.

§ 1. Preliminaries

Let X be a normed linear space and A ⊂ X be a bounded set. The diameter of A
is d(A) = sup{‖x− y‖ : x, y ∈ A}. If z ∈ X, we set r(A, z) = sup{‖x− z‖ : x ∈ A}.
For A,B ⊂ X, r(A,B) = inf{r(A, z) : z ∈ B} is the relative Chebyshev radius of
A with respect to B and r(A,X) is the absolute Chebyshev radius of A. Clearly,
r(A, z) = r(co(A), z), r(A,B) = r(co(A), B) and r(A,X) = r(co(A), X).

Definition 1.1. (Jung[8]) The Jung constant JC(X) of a normed linear space X
is defined to be

JC(X) = sup
{
r(A,X)
d(A)

: A ⊂ X bounded, d(A) > 0
}
. (1)
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Clearly, 1/2 ≤ JC(X) ≤ 1 always holds. Pichugov [12] computed JC(Lp)(see also
Corollary 4.5 in Section 4). Amir [1] proved that if X is a dual space, then

JC(X) = sup
{
r(A,X)
d(A)

: A ⊂ X finite , d(A) > 0
}
. (2)

By using (2), Amir obtained the following.

Lemma 1.2 (see [1, Proposition 2.5 (b)])

Let (Xα)α∈D be a net of linear subspaces of the Banach space X, directed by

inclusion, such that ∪α∈DXα = X. If X is a dual space and each Xα admits a

norm-1 linear projection Pα, then JC(X) = supα∈D JC(Xα) = limα∈D JC(Xα).

Lemma 1.3 (Pichugov [12])

Let Xn be a real n-dimensional normed space and let A be a bounded closed

convex set in X with r(A,Xn) being its Chebyshev radius. Then the point x is its

Chebyshev center if and only if there exists an integer N ≤ n+ 1 for which

(a) there are xi ∈ A, i ≤ N such that ‖xi − x‖ = r(A,Xn) for all i ≤ N ;

(b) there are fi ∈ X∗
n, the dual space of Xn, i ≤ N such that ‖fi‖ = 1 and

〈xi − x, fi〉 = ‖xi − x‖ for all i ≤ N ;

(c) there are ci ≥ 0, i ≤ N such that
∑N
i=1 ci = 1 and

∑N
i=1 cifi = 0.

In this case,
∑N
i=1

∑N
j=1 cicj〈xi − xj , fi − fj〉 = 2r(A,Xn). If 1 ≤ λ ≤ 2 and

Λ =
N∑
i=1

N∑
j=1

cicj{〈xi − xj , fi − fj〉}λ,

then

2λ[r(A,Xn)]λ(
n
n+1

)λ−1
≤ Λ ≤ [d(A)]λ

N∑
i=1

N∑
j=1

cicj‖fi − fj‖λ . (3)

Lemma 1.4 (Pichugov[12])

Let X be a separable and dual space. If {x1, x2, · · ·} is a dense set in X and

Xn = span {xi : 1 ≤ i ≤ n}, then

JC(X) ≤ lim inf
n→∞

JC(Xn) . (4)
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Recall that Bynum [2] defined the normal structure coefficientN(X) of a Banach
space X by

N(X) = inf
{
d(A)
r(A,A)

: A ⊂ X closed bounded convex , d(A) > 0
}
.

Maluta [11] denoted [N(X)]−1 by Ñ(X) and proved that 2−1/2 ≤ Ñ(X) for every
infinite-dimensional Banach space X. Amir [1] pointed out that for every Banach
space X,

1
2
≤ JC(X) ≤ Ñ(X) ≤ 1 . (5)

Next we introduce some basic facts on Orlicz space. Let

Φ(u) =
∫ |u|

0

φ(t)dt and Ψ(v) =
∫ |v|

0

ψ(s)ds

be a pair of complementary N-functions. The Orlicz function space LΦ(Ω) on Ω =
[0, 1] or [0,∞) is defined to be the set {x : x is Lebesgue measurable on Ω and
ρΦ(λx) =

∫
Ω

Φ[λx(t)]dt < ∞ for some λ > 0}. The Luxemburg norm and the
Orlicz norm are defined respectively by

‖x‖(Φ) = inf
{
c > 0 : ρΦ

(x
c

)
≤ 1

}

and

‖x‖Φ = sup
{∫

Ω

|x(t)y(t)|dt : ρΨ(y) ≤ 1
}
.

The norms are equivalent: ‖x‖(Φ) ≤ ‖x‖Φ ≤ 2‖x‖(Φ). The closed separable subspace
EΦ(Ω) of LΦ(Ω) is defined to be the set {x ∈ LΦ(Ω) : ρΦ(λx) < ∞ for all λ > 0}.
By the same way we define the Orlicz sequence space !Φ and its closed separable
subspace hΦ. An important parameter for analysis in an Orlicz space is the rate of
growth of the underling N-function. An N-function Φ(u) is said to satisfy the ∆2-
condition for large u (for small u or for all u ≥ 0), in symbol Φ ∈ ∆2(∞)(Φ ∈ ∆2(0)
or Φ ∈ ∆2), if there exist u0 > 0 and K > 2 such that Φ(2u) ≤ KΦ(u) for
u ≥ u0 (for 0 ≤ u ≤ u0 or for u ≥ 0). An N-function Φ(u) is said to satisfy
the �2-condition for large u, in symbol Φ ∈ �2(∞), if there exist u0 > 0 and
a > 1 such that Φ(u) ≤ 1

2aΦ(au) for u ≥ u0. Similarly we define Φ ∈ �2(0) and
Φ ∈ �2. The basic facts on Orlicz spaces can be found in [9], [10] and [14]. For
instance, LΦ[0, 1] (LΦ[0,∞) or !Φ) is separable if and only if Φ ∈ ∆2(∞) (Φ ∈ ∆2 or
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Φ ∈ ∆2(0)); LΦ[0, 1] (LΦ[0,∞) or !Φ) is reflexive if and only if Φ ∈ �2(∞)
⋂�2(∞)

(Φ ∈ �2

⋂�2 or Φ ∈ �2(0)
⋂�2(0)).

A new quantitative index of Φ(u) is provided by the following six constants:

αΦ = lim inf
u→∞

Φ−1(u)
Φ−1(2u)

, βΦ = lim sup
u→∞

Φ−1(u)
Φ−1(2u)

, (6)

α0
Φ = lim inf

u→0

Φ−1(u)
Φ−1(2u)

, β0
Φ = lim sup

u→0

Φ−1(u)
Φ−1(2u)

(7)

and

ᾱΦ = inf
{

Φ−1(u)
Φ−1(2u)

: 0 < u <∞
}
, β̄Φ = sup

{
Φ−1(u)
Φ−1(2u)

: 0 < u <∞
}
. (8)

The following result will play the leading role in this paper.

Theorem 1.5

(i) Φ �∈ �2(∞) ⇔ βΦ = 1,Φ �∈ �2(∞) ⇔ αΦ = 1/2;

(ii) Φ �∈ �2(0) ⇔ β0
Φ = 1,Φ �∈ �2(0) ⇔ α0

Φ = 1/2;

(iii) Φ �∈ �2 ⇔ β̄Φ = 1,Φ �∈ �2 ⇔ ᾱΦ = 1/2.

The proof of Theorem 1.5 can be found in [14, p. 23] and [15].
Another quantitative index of Φ is well known and is provided by the following

six constants:

AΦ = lim inf
t→∞

tφ(t)
Φ(t)

, BΦ = lim sup
t→∞

tφ(t)
Φ(t)

, (9)

A0
Φ = lim inf

t→0

tφ(t)
Φ(t)

, B0
Φ = lim sup

t→0

tφ(t)
Φ(t)

(10)

and

ĀΦ = inf
{
tφ(t)
Φ(t)

: 0 < t <∞
}
, B̄Φ = sup

{
tφ(t)
Φ(t)

: 0 < t <∞
}
. (11)

It is also known that Φ �∈ �2(∞) ⇔ BΦ = ∞, Φ �∈ �2(∞) ⇔ AΦ = 1, Φ �∈ �2(0) ⇔
B0

Φ = ∞, Φ �∈ �2(0) ⇔ A0
Φ = 1, Φ �∈ �2 ⇔ B̄Φ = ∞ and Φ �∈ �2 ⇔ ĀΦ = 1.

Furthermore, we have the following.
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Proposition 1.6

Let Φ and Ψ be a pair of complementary N-functions. Then

1
AΦ

+
1
BΨ

=
1
A0

Φ

+
1
B0

Ψ

=
1
ĀΦ

+
1
B̄Ψ

= 1 . (12)

Proposition 1.7

Let Φ(u) be an N-function. Then

2−1/AΦ ≤ αΦ ≤ βΦ ≤ 2−1/BΦ , (13)

2−1/A0
Φ ≤ α0

Φ ≤ β0
Φ ≤ 2−1/B0

Φ (14)

and

2−1/ĀΦ ≤ ᾱΦ ≤ β̄Φ ≤ 2−1/B̄Φ . (15)

The proofs of Propositions 1.6 and 1.7 can be found in [14, p. 27], [10] and [15].
In this paper, we only deal with Orlicz function spaces. The Jung constants of Orlicz
sequence spaces will be discussed in another paper.

Finally, we need some properties of Hadamard matrix, which can be found
in [12], [7] and [6]. The Hadamard matrix H(n+1)×(n+1) of order (n+1) is defined to
be a square matrix with entries ±1 and with pairwise orthogonal rows. H(n+1)×(n+1)

is said to be in normalized form, if its first column and row consist only of one.
Removing the first column of H(n+1)×(n+1), we obtain matrix Hn×(n+1), which is
used in [12] and [7, Lemma 2].

Example 1.8: If n+ 1 = 4, one has

H4×4 =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




and

H3×4 =




1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


 .

Let Φ,Ψ be a pair of complementary N-functions and Ω = [0, 1] with the usual
Lebesgue measure µ. For any given u ≥ 1, we divide the interval [0, 1/u] into four
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parts: G1 = [0, 1/4u), G2 = [1/4u, 2/4u), G3 = [2/4u, 3/4u) and G4 = [3/4u, 1/u].
Let χGi

be the characteristic function of Gi and a = Φ−1(4u/3). By

(x1, x2, x3, x4) = a(χG2 , χG3 , χG4)H3×4

we denote
x1(t) = a[χG2(t) + χG3(t) + χG4(t)] ,

x2(t) = a[χG2(t) − χG3(t) − χG4(t)] ,

x3(t) = a[−χG2(t) + χG3(t) − χG4(t)] ,

x4(t) = a[−χG2(t) − χG3(t) + χG4(t)] .

Since µ(
⋃4
i=2Gi) = 3/4u and 1/2µ(

⋃4
i=1Gi) = 1/2u, we have ‖xi‖(Φ) = 1, 1 ≤ i ≤ 4

and for i �= j

‖xi − xj‖(Φ) =
2a

Φ−1(2u)
.

Put b = 3
4uΦ−1( 4u

3 ), yi(t) = 1
abxi(t) and ci = 1/4 for 1 ≤ i ≤ 4. Then

∑4
i=1 ci = 1,

‖yi‖Ψ = 1,
∑4
i=1 ciyi = 0 and 〈xi − 0, yi〉 =

∫ 1

0
xi(t)yi(t)dt = 1 = ‖xi − 0‖(Φ).

Therefore, by Lemma 1.3, the set A4 = co{xi : 1 ≤ i ≤ 4} has zero as its Chebyshev
center in X4[0, 1

u ] = span {χGi
: 1 ≤ i ≤ 4} ⊂ L(Φ)[0, 1

u ] (see also Lemma 2 in [7]).
It follows from (1) that

JC

(
X4

[
0,

1
u

])
≥ r

(
A4, X4[0, 1

u ]
)

d(A4)
≥ Φ−1(2u)

2Φ−1( 4u
3 )
.

In general, if n + 1 = 2m for some m ≥ 1, we choose an = Φ−1(n+1
n u), bn =

n
(n+1)u Φ−1(n+1

n u),

(x1, x2, · · · , xn+1) = an(χG2 , χG3 , · · · , χGn+1)Hn×(n+1)

and yi = 1
anbn

xi, ci = 1
n+1 . Finally, it follows from Lemma 1.3 that

JC

(
Xn+1

[
0,

1
u

])
≥ Φ−1(2u)

2Φ−1(n+1
n u)

>
Φ−1(2u)

2(n+1
n )Φ−1(u)

. (16)

We conclude this section by the following.

Remark 1.9. Let X be a Banach space and let A ⊂ S(X) = {x ∈ X : ‖x‖ = 1}. If
there exists a z0 ∈ X such that r(A, z0) ≤ 2, then

‖z0‖ ≤ 3 . (17)



Jung constants of Orlicz function spaces 749

In fact, if ‖z0‖ > 3, one has

r(A, z0) = sup
[
‖x− z0‖ : x ∈ A

]
≥ sup

[
‖z0‖ − ‖x‖ : x ∈ A

]
> 2 ,

which is a contradiction.

§ 2. Lower Bounds of JC(L(Φ)(Ω))

Theorem 2.1

Let Φ be an N-function. Then the Jung constant of L(Φ)[0, 1] = (LΦ[0, 1], ‖·‖(Φ))
satisfies

βΦ ≤ JC
(
L(Φ)[0, 1]

)
. (18)

Furthermore, if Φ ∈ �2(∞), we also have

1
2αΦ

≤ JC
(
L(Φ)[0, 1]

)
. (19)

Proof. We first show (18). By (6), there exist 1 < vk ↗ ∞ such that

lim
k→∞

Φ−1(vk)
Φ−1(2vk)

= βΦ . (20)

For any given 1/2 > ε > 0, there is a v0 ∈ {vk : k ≥ 1} such that

Φ−1(v0
Φ−1(2v0)

> βΦ − ε (21)

and

Φ−1(2v0) >
6Φ−1(2)

ε
. (22)

An integer n0 > 1 can be found such that 2v0 − 1 < n0 ≤ 2v0. Thus,

2v0
n0

< 1 +
1
n0
< 2 . (23)

Put ei = [ i−1
2v0
, i

2v0
) for 1 ≤ i ≤ n0 and define A = {xi : 1 ≤ i ≤ n0}, where

xi(t) = Φ−1(2v0)χei(t) .
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Then ‖xi‖(Φ) = 1 for all i ≤ n0. By (21) one has for i �= j

‖xi − xj‖(Φ) = Φ−1(2v0)‖χei∪ej‖(Φ) =
Φ−1(2v0)
Φ−1(v0)

<
1

βΦ − ε ,

i.e., d(A) < 1/(βΦ − ε).
Let r0 = r(A,L(Φ)[0, 1]). Then there exists some z ∈ L(Φ)[0, 1] such that for all

1 ≤ i ≤ n0

‖xi − z‖(Φ) ≤ r(A, z) < r0 +
ε

2
. (24)

Put z1(t) = z(t)χe(t), where e = ∪n0
i=1ei = [0, n0

2v0
) ⊂ [0, 1]. Then |xi(t) − z1(t)| =

|(xi(t) − z(t))χe(t)| ≤ |xi(t) − z(t)| for t ∈ [0, 1] and 1 ≤ i ≤ n0. Therefore,
r(A, z1) ≤ r(A, z) . (25)

Further, let Fi = {t ∈ ei : z1(t) ≤ Φ−1(2v0)} and put

z2(t) =
n0∑
j=1

{
z1(t)χFj

(t) +
[
2Φ−1(2v0) − z1(t)

]
χej−Fj

(t)
}
.

Then z2(t) ≤ Φ−1(2v0) and |xi(t)− z2(t)| ≤ |xi(t)− z1(t)| for all 1 ≤ i ≤ n0 and all
t ∈ e. Thus,

r(A, z2) ≤ r(A, z1) . (26)
Put F = {t ∈ e : 0 ≤ z2(t)} and define z3(t) = z2(t)χF (t). Then 0 ≤ z3(t) ≤
Φ−1(2v0), |xi(t) − z3(t)| ≤ |xi(t) − z2(t)| and

r(A, z3) ≤ r(A, z2) . (27)
Now let us define z0(t) =

∑n0
j=1 bjχej (t), where

bj =
1

µ(ej)

∫
ej

z3(t)dt .

For each 1 ≤ i ≤ n0 and any Ri > ‖xi − z3‖(Φ), we have from Jensen integral
inequality(see [9, p. 62])

1 ≥ ρΦ

(
xi − z3
Ri

)

=
∑
j 	=i

∫
ej

Φ
(

0 − z3(t)
Ri

)
dt+

∫
ei

Φ
(

Φ−1(2v0) − z3(t)
Ri

)
dt

≥
∑
j 	=i

µ(ej)Φ

(
1

µ(ej)

∫
ej

z3(t)
Ri

dt

)
+ µ(ei)Φ

(
1

µ(ei)

∫
ei

Φ−1(2v0) − z3(t)
Ri

dt

)

=
∑
j 	=i

µ(ej)Φ
(
bj
Ri

)
+ µ(ei)Φ

(
Φ−1(2v0) − bi

Ri

)

= ρΦ

(
xi − z0
Ri

)
,
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i.e., ‖xi−z0‖(Φ) < Ri and ‖xi−z0‖(Φ) ≤ ‖xi−z3‖(Φ) for every i or r(A, z0) ≤ r(A, z3).
Note that r0 ≤ r(A, 0) = 1. It follows from (24)-(27) that

r(A, z0) < r0 +
ε

2
< 2 . (28)

Put λi = bi/Φ−1(2v0) and let λi0 = min{λi : 1 ≤ i ≤ n0}. Then 0 ≤ λi ≤ 1 and
z0(t) =

∑n0
i=1 λixi(t) ≥ λi0Φ

−1(2v0)χe(t). By (17), (22) and (23) we have

3 ≥ ‖z0‖(Φ) ≥
λi0Φ

−1(2v0)
Φ−1( 2v0

n0
)
>

6λi0
ε
,

i.e., λi0 < ε/2. Therefore,

r0 +
ε

2
> r(A, z0) = max

1≤i≤n0
‖xi − z0‖(Φ) ≥ ‖(xi0 − z0)χei0‖(Φ)

= ‖(1 − λi0)xi0‖(Φ) = 1 − λi0 > 1 − ε

2
,

i.e., r0 > 1 − ε. Finally,

JC
(
L(Φ)[0, 1]

)
≥ r0
d(A)

> (1 − ε)(βΦ − ε) .

We have thus proved (18) since ε is arbitrary.

Next we show (19), if Φ ∈ �2(∞). In this case, L(Φ)[0, 1] is a separable dual
space. By (6), there exist 1 ≤ uk ↗ ∞ such that limk→∞

Φ−1(uk)
Φ−1(2uk) = αΦ. For any

given ε > 0, there is a u0 ∈ {uk : k ≥ 1} such that

Φ−1(u0)
Φ−1(2u0)

< αΦ + ε . (29)

Put D = {n + 1 ∈ N : Hadamard matrix H(n+1)×(n+1) exists}. Note that D is an
infinite set since n + 1 = 2m ∈ D for every integer m. If n + 1 ∈ D, we divide
the interval [0, 1

u0
] ⊂ [0, 1] into n + 1 parts: G(n+1)

1 = [0, 1
(n+1)u0

), · · · , G(n+1)
n+1 =

[ n
(n+1)u0

, 1
u0

]. Then µ(G(n+1)
i ) = 1

(n+1)u0
for all 1 ≤ i ≤ n + 1. Put Xn+1[0, 1

u0
] =

span {χ
G

(n+1)
i

: 1 ≤ i ≤ n+ 1} ⊂ L(Φ)[0, 1
u0

]. One has Xn1+1[0, 1
u0

] ⊂ Xn2+1[0, 1
u0

] if

n1 < n2 and n1, n2 ∈ D. The separability of L(Φ)[0, 1] implies that

⋃
n+1∈D

Xn+1

[
0,

1
u0

]
= L(Φ)

[
0,

1
u0

]
.



752 Ren and Chen

Define Pn+1 : L(Φ)[0, 1
u0

] �−→ Xn+1[0, 1
u0

] by Pn+1z(t) =
∑n+1
j=1 bjχ

(n+1)
Gj

(t), where

bj =
1

µ(G(n+1)
j )

∫
G

(n+1)
j

z(t)dt .

If ‖z‖(Φ) = 1, we have from Jensen integral inequality

∫ 1/u0

0

Φ
[
Pn+1z(t)

]
dt =

n+1∑
j=1

µ(G(n+1)
j )Φ

[
1

µ(G(n+1)
j )

∫
G

(n+1)
j

z(t)dt

]

≤
∫ 1/u0

0

Φ[z(t)]dt = 1 ,

i.e., ‖Pn+1‖ ≤ 1. On the other hand, if z(t) = χ[0,1/u0](t) ∈ L(Φ)[0, 1/u0] we have
Pn+1z = z. Therefore, ‖Pn+1‖ = 1. It follows from Lemma 1.2 that for every
n+ 1 ∈ D

JC

(
L(Φ)

[
0,

1
u0

])
≥ JC

(
Xn+1

[
0,

1
u0

])
. (30)

Now let us choose n0 + 1 ∈ D such that 1/n0 < ε. Removing the first column of
H(n0+1)×(n0+1), we obtain Hn0×(n0+1). Define An0+1 = co {xi : 1 ≤ i ≤ n0 + 1} ⊂
Xn0+1[0, 1/u0] = span {χGi : 1 ≤ i ≤ n0 + 1}, where

(x1, x2, · · · , xn0+1) = Φ−1

(
n0 + 1
n0

u0

)
(χG2 , χG3 , · · · , χGn0+1)Hn0×(n0+1) ,

and Gi = G
(n0+1)
i for simplicity. Then, for all 1 ≤ i ≤ n0 + 1

‖xi‖(Φ) = Φ−1

(
n0 + 1
n0

u0

)
‖χ∪n0+1

i=2 Gi
‖(Φ) = 1

and for i �= j, by (29)

‖xi − xj‖(Φ) =
2Φ−1(n0+1

n0
u0)

Φ−1(2u0)
<

(
1 +

1
n0

)
2Φ−1(u0)
Φ−1(2u0)

< 2(1 + ε)(αΦ + ε) ,

i.e., d(An0+1) < 2(1 + ε)(αΦ + ε). In view of Example 1.8, the Chebyshev center of
An0+1 lies at 0 in Xn0+1[0, 1/u0]. One has from (1) and (16) that

JC

(
Xn0+1

[
0,

1
u0

])
≥
r
(
An0+1, Xn0+1[0, 1

u0
]
)

d(An0+1)
>

1
2(1 + ε)(αΦ + ε)

. (31)
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Finally, we must prove

JC
(
L(Φ)[0, 1]

)
≥ JC

(
L(Φ)

[
0,

1
u0

)]
. (32)

Put D′ = (0, 1], Ys = L(Φ)[0, s] and define Qs : L(Φ)[0, 1] �−→ Ys by Qsz = zχ[0,s].
Then ‖Qs‖ = 1 and ∪s∈D′Ys = L(Φ)[0, 1]. It follows from Lemma 1.2 that
JC(L(Φ)[0, 1]) ≥ JC(Ys) for every s ∈ D′. In particular, setting s0 = 1

u0
we get

(32). We have proved (19) by (32), (30) and (31) since ε is arbitrary. �

Corollary 2.2

Let Φ be an N-function and let E(Φ)[0, 1] be the closed separable subspase of

L(Φ)[0, 1]. Then

βΦ ≤ JC
(
E(Φ)[0, 1]

)
. (33)

Furthermore, if Φ ∈ �2(∞), we also have

1
2αΦ

≤ JC
(
E(Φ)[0, 1]

)
. (34)

Proof. It follows from the proof of Theorem 2.1. In addition, we give a short proof
of (33). Let vk, k ≥ 1 satisfy (20). Without loss of generality, we may assume∑∞
i=1

1
2vi

≤ 1. Choose Gi ⊂ [0, 1] such that Gi ∩ Gj = ∅ if i �= j and µ(Gi) = 1
2vi

for all i ≥ 1. Put B = {xi : i ≥ 1}, where xi(t) = Φ−1(vi)χGi(t). Then d(B) = 1
since ‖xi−xj‖(Φ) = 1 if i �= j. Every z ∈ E(Φ)[0, 1] has absolutely continuous norm,
which implies that limi→∞ ‖zχGi‖(Φ) = 0 in virtue of limi→∞ µ(Gi) = 0. Therefore,
by (20),

r(B, z) = sup
{
‖x− z‖(Φ) : x ∈ B

}
≥ lim sup

i→∞
‖xi − z‖(Φ)

≥ lim sup
i→∞

‖(xi − z)χGi‖(Φ) ≥ lim sup
i→∞

{‖xi‖(Φ) − ‖zχGi‖(Φ)}

= lim
i→∞

‖xi‖(Φ) = βΦ .

Since z ∈ E(Φ)[0, 1] is arbitrary, we have r(B,E(Φ)[0, 1]) ≥ βΦ which implies (33). �

Corollary 2.3

(i) If Φ �∈ �2(∞)
⋂�2(∞), then JC(L(Φ)[0, 1]) = JC(E(Φ)[0, 1]) = 1.

(ii) For every N-function Φ, we always have JC(L(Φ)[0, 1]) = JC(E(Φ)[0, 1]) and

1√
2
≤ JC

(
L(Φ)[0, 1]

)
.
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Proof. (i) By Theorem 1.5 (i), Φ �∈ �2(∞)
⋂�2(∞) implies that either βΦ = 1 or

βΦ < 1 but αΦ = 1
2 , i.e., max(βΦ, 1/2αΦ) = 1. Therefore, the conclusion follows

from (18), (19), (33), (34) and (5).
(ii) It is sufficient to show

1√
2
≤ max

(
βΦ,

1
2αΦ

)
.

If not, 1√
2
> βΦ and 1√

2
> 1

2αΦ
. We have thus reached a contradiction: αΦ >

1/
√

2 > βΦ, since αΦ ≤ βΦ always holds. �

Theorem 2.4
Let Φ be an N-function. Then the Jung constant of L(Φ)[0,∞) = (LΦ[0,∞), ‖ ·

‖(Φ)) satisfies
β̄Φ ≤ JC

(
L(Φ)[0,∞)

)
. (35)

Furthermore, if Φ ∈ �2, we have also

1
2ᾱΦ

≤ J
(
E(Φ)[0,∞)

)
. (36)

Proof. We first prove (35). By (8), for any given 1
2 > ε > 0 there exists 0 < v0 <∞

such that
Φ−1(v0)
Φ−1(2v0)

> β̄Φ − ε . (37)

Since limn→∞ Φ−1(2v0/n) = 0, an integer n0 can be found such that

Φ−1
(2v0
n0

)
<
ε

6
Φ−1(2v0) . (38)

Put ei = [ i−1
2v0
, i

2v0
) ⊂ [0,∞) for 1 ≤ i ≤ n0 and define A = {xi : 1 ≤ i ≤ n0}, where

xi(t) = Φ−1(2v0)χGi
(t). Then A ⊂ S(L(Φ)[0,∞)) and d(A) < 1/(β̄Φ − ε) by (37).

Let r0 = r(A,L(Φ)[0,∞)). By the same way as in the proof of (18), we can find a
z0 ∈ L(Φ)[0,∞) such that r(A, z0) < r0 + ε/2 < 2, where z0(t) =

∑n0
i=1 λixi(t) with

0 ≤ λi ≤ 1. Letting λi0 = min {λi : 1 ≤ i ≤ n0}, we have from (17) and (38) that

3 ≥ ‖z0‖(Φ) =
λi0Φ

−1(2v0)
Φ−1( 2v0

n0
)
>

6λi0
ε
,

i.e., λi0 < ε/2. Therefore, r(A, z0) ≥ 1 − λi0 > 1 − ε/2 and r0 > 1 − ε. Thus,

JC
(
L(Φ)[0,∞)

)
≥ r0
d(A)

> (1 − ε)(β̄Φ − ε) .

We have proved (35) since ε is arbitrary.
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Next we show (36) under the assumption that Φ ∈ �2. By (8), for any given
ε > 0, there is a 0 < u0 <∞ such that

Φ−1(u0)
Φ−1(2u0)

< ᾱΦ + ε .

Choose n0 ≥ 3 such that 1
n0
< ε and the Hadamard matrix H(n0+1)×(n0+1) exists.

Divide the interval [0, 1
u0

) ⊂ [0,∞) into n0 + 1 parts: Gi = [ i−1
(n0+1)u0

, i
(n0+1)u0

), 1 ≤
i ≤ n0 + 1. Define An0+1 ⊂ Xn0+1[0, 1

u0
] as in Example 1.8. It is easily seen that

JC

(
Xn0+1

[
0,

1
u0

])
≥ 1

2(1 + ε)(ᾱΦ + ε)
.

By using Lemma 1.2, we can verify

JC
(
L(Φ)[0,∞)

)
≥ JC

(
L(Φ)

[
0,

1
u0

))
≥ JC

(
Xn0+1

[
0,

1
u0

))
.

Therefore, we obtain (36). �

Corollary 2.5

Let Φ be an N-function and let E(Φ)[0,∞) be the closed separable subspase of

L(Φ)[0,∞). Then

β̄Φ ≤ JC
(
E(Φ)[0,∞)

)
. (39)

Furthermore, if Φ ∈ �2, we also have

1
2ᾱΦ

≤ JC
(
E(Φ)[0,∞)

)
. (40)

Proof. The assertion follows from the proof of Theorem 2.4. In addition, we give a
different proof of (39). By (8), there exist 0 < ui <∞ such that

lim
i→∞

Φ−1(ui)
Φ−1(2ui)

= β̄Φ . (41)

Choose e1 = [0, 1
2u1

) and ei = [
∑i−1
j=1

1
2uj
,
∑i
j=1

1
2uj

) for i ≥ 2. Put B = {xi : i ≥ 1},
where xi(t) = Φ−1(ui)χei(t). Then d(B) = 1 since ‖xi − xj‖(Φ) = 1 if i �= j. We
must prove that for every z ∈ E(Φ)[0, 1]

lim
i→∞

‖zχei‖(Φ) = 0 . (42)
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In the case
∑∞
i=1

1
2ui

< ∞, we have µ(ei) = 1
2ui

→ 0 as i → ∞, which implies
(42).

In the case
∑∞
i=1

1
2ui

= ∞, we have limi→∞
∑i−1
j=1

1
2uj

= ∞. Let Ei =

[
∑i−1
j=1

1
2uj
,∞). Then ei ⊂ Ei for all i ≥ 1. Since z ∈ E(Φ)[0,∞), one has∫ ∞

0
Φ[λz(t)]dt <∞ for any given λ > 1 and so,

ρΦ(λzχei) ≤
∫
Ei

Φ
[
λz(t)

]
dt→ 0

as i → ∞. Therefore, (42) holds again by the fact that ρΦ(λyi) → 0 for any given
λ > 1 if and only if ‖yi‖(Φ) → 0.(see [14, p. 87])

It follows from (42) and (41) that

r(B, z) ≥ lim
i→∞

‖xi‖(Φ) = β̄Φ

for every z ∈ E(Φ)[0,∞), which implies (39). �

Corollary 2.6

(i) If Φ �∈ �2

⋂�2 then JC(L(Φ)[0,∞)) = JC(E(Φ)[0,∞)) = 1.

(ii) For every N-function Φ, we always have JC(L(Φ)[0,∞)) = JC(E(Φ)[0,∞)) and

1√
2
≤ JC

(
L(Φ)[0,∞)

)
.

Proof. Similar to Corollary 2.3. �

Lemma 2.7 (Chen and Sun [3])

If L(Φ)(Ω) is reflexive, then Ñ(L(Φ)(Ω)) < 1, where Ω = [0, 1] or [0,∞) with

the usual Lebesgue measure.

Theorem 2.8

L(Φ)(Ω) is reflexive if and only if JC(L(Φ)(Ω) < 1, where Ω is as in Lemma 2.7.

Proof. The assertion follows from Corollary 2.2 (i), Corollary 2.6 (i), Lemma 2.7
and (5). �
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§ 3. Lower Bounds of JC(LΦ(Ω))

Now let us turn to the Orlicz function space LΦ[0, 1] = (LΦ[0, 1], ‖ · ‖Φ) equipped
with Orlicz norm.

Theorem 3.1

For every N-function Φ, we have

1
2αΨ

≤ JC
(
LΦ[0, 1]

)
, (43)

where Ψ is the complementary N-function to Φ. Furthermore, if Φ ∈ �2(∞), we

also have

βΨ ≤ JC
(
LΦ[0, 1]

)
. (44)

Proof. We first show (43). By (6), there exist 1 ≤ vk ↗ ∞ such that limk→∞
Ψ−1(vk)
Ψ−1(2vk) = αΨ. Note that limv→∞

v
Ψ−1(v) = ∞. Therefore, for any given ε > 0 there

exists v0 ∈ {vk : k ≥ 1} such that

Ψ−1(v0)
Ψ−1(2v0)

< αΨ + ε (45)

and
2v0

Ψ−1(2v0)
>

12
εΨ−1(1)

. (46)

Let n0 be an integer satisfying 2v0 − 1 < n0 ≤ 2v0. Then

1
2
< 1 − 1

2v0
<
n0

2v0
≤ 1 . (47)

Put ei = [ i−1
2v0
, i

2v0
) for all 1 ≤ i ≤ n0. Define A = {xi : 1 ≤ i ≤ n0}, where

xi(t) =
2v0

Ψ−1(2v0)
χei(t) .

Then A ⊂ S(LΦ[0, 1]) since µ(ei) = 1
2v0

. If i �= j, one has from (45) that

‖xi − xj‖Φ =
2v0

Ψ−1(2v0)
‖χei∪ej‖Φ =

2Ψ−1(v0)
Ψ−1(2v0)

< 2(αΨ + ε) ,

i.e., d(A) < 2(αΨ + ε).
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Let r0 = r(A,LΦ[0, 1]). Then there exists z ∈ LΦ[0, 1] such that

max
{
‖xi − z‖Φ : 1 ≤ i ≤ n0

}
= r(A, z) < r0 +

ε

2
.

Put z1(t) = z(t)χe(t), where e = ∪n0
i=1ei = [0, n0

2v0
). Then r(A, z1) ≤ r(A, z).

Secondly, let Fi = {t ∈ ei : z1(t) ≤ 2v0/Ψ−1(2v0)} and put

z2(t) =
n0∑
j=1

{
z1(t)χFj (t) +

[ 4v0
Ψ−1(2v0)

− z1(t)
]
χej−Fj (t)

}
.

Then z2(t) ≤ 2v0/Ψ−1(2v0) and |xi(t) − z2(t)| ≤ |xi(t) − z1(t)| for all 1 ≤ i ≤ n0

and t ∈ e. Thus, r(A, z2) ≤ r(A, z1). Thirdly, set F = {t ∈ e : 0 ≤ z2(t)} and
z3(t) = z2(t)χF (t). It is easily seen that 0 ≤ z3(t) ≤ 2v0/Ψ−1(2v0) and |xi(t) −
z3(t)| ≤ |xi(t) − z2(t)| for all 1 ≤ i ≤ n0 and t ∈ e. Therefore, r(A, z3) ≤ r(A, z2).
Finally, we define z0(t) =

∑n0
j=1 bjχej (t), where bj = 1

µ(ej)

∫
ej
z3(t)dt as in the proof

of Theorem 2.1. In virtue of Theorem 13 in [14, p. 69], for each i if ‖xi − z3‖Φ �= 0,
there exists ki > 0 such that

‖xi − z3‖Φ =
1
ki

[
1 + ρΦ(ki(xi − z3))

]
.

By Jensen integral inequality, we have

‖xi − z3‖Φ

=
1
ki

{
1 +

∑
j 	=i

∫
ej

Φ[ki(0 − z3(t))]dt+
∫
ei

Φ
[
ki

( 2v0
Ψ−1(2v0)

− z3(t)
)]
dt

}

≥ 1
ki

{
1 +

∑
j 	=i

µ(ej)Φ
[ 1
µ(ej)

∫
ej

kiz3(t)dt
]

+ µ(ei)Φ
[ 1
µ(ei)

∫
ei

ki

( 2v0
Ψ−1(2v0)

− z3(t)
)
dt

]}

=
1
ki

{
1 +

∑
j 	=i

µ(ej)Φ(kibj) + µ(ei)Φ
[
ki

( 2v0
Ψ−1(2v0)

− bi
)]}

=
1
ki

{
1 + ρΦ(ki(xi − z0))

}
≥ ‖xi − z0‖Φ .
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Therefore,
r(A, z0) ≤ r(A, z3) < r0 +

ε

2
< 2 . (48)

Putting λi = biΨ−1(2v0)/2v0 and letting λi0 = min{λi : 1 ≤ i ≤ n0}, we have
0 ≤ λi ≤ 1 and

z0(t) =
n0∑
i=1

λixi(t) ≥ λi0
2v0

Ψ−1(2v0)
χe(t) .

It follows from (17), (47) and (46) that

3 ≥ ‖z0‖Φ ≥ λi02v0
Ψ−1(2v0)

[
n0

2v0
Ψ−1

(
2v0
n0

)]
>

6λi0
ε
,

i.e., λi0 <
ε
2 . Hence, by (48) one has r0 + ε

2 ≥ r(A, z0) ≥ ‖xi0 − z0‖Φ ≥ ‖(xi0 −
z0)χei0‖Φ = 1 − λi0 > 1 − ε

2 , i. e., r0 > 1 − ε. Finally,

JC
(
LΦ[0, 1]

)
≥ r0
d(A)

>
1 − ε

2(αΦ + ε)
.

We have thus proved (43) since ε is arbitrary.

Next we prove (44) under the assumption Φ ∈ �2(∞). In this case, LΦ[0, 1]
is a separable dual space. By (6), there exist 1 ≤ uk ↗ ∞ such that limk→∞
[Ψ−1(uk)/Ψ−1(2uk)] = βΨ. Therefore, for any given 1

2 > ε > 0, there is a u0 ∈ {uk :
k ≥ 1} satisfying

Ψ−1(u0)
Ψ−1(2u0)

> βΨ − ε . (49)

Choose n0 such that 1
n0
< ε and the Hadamard matrix H(n0+1)×(n0+1) exists. Divide

[0, 1
v0

] ⊂ [0, 1] into n0 + 1 parts {Gi : 1 ≤ i ≤ n0 + 1} such that Gi ∩Gj = ∅ if i �= j

and µ(Gi) = 1
(n0+1)u0

. Put An0+1 = co{xi : 1 ≤ i ≤ n0 + 1}, where

(x1, x2, · · · , xn0+1) =
(n0 + 1)u0

n0Ψ−1(n0+1
n0

u0)
(χG2 , χG3 , · · · , χGn0+1)Hn0×(n0+1) .

Similarly to the proof of (19), An0+1 has 0 as its Chebyshev center in Xn0+1

[0, 1
u0

] = span {χGi
: 1 ≤ i ≤ n0 + 1}. Since ‖xi‖Φ = 1 for all i ≤ n0 + 1 and,

by (49),

‖xi − xj‖Φ =
(n0 + 1)Ψ−1(2u0)
n0Ψ−1(n0+1

n0
u0)

<
(
1 +

1
n0

)Ψ−1(2u0)
Ψ−1(u0)

<
1 + ε
βΨ − ε
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if i �= j, one has r(An0+1, Xn0+1[0, 1
u0

]) = 1 and

JC

(
Xn0+1

[
0,

1
u0

])
>
βΨ − ε
1 + ε

. (50)

To complete the proof, we must show

JC
(
LΦ[0, 1]

)
≥ JC

(
LΦ

[
0,

1
u0

])
≥ JC

(
Xn0+1

[
0,

1
u0

])
. (51)

Let D,Xn+1[0, 1
u0

] and Pn+1 : LΦ[0, 1] �−→ Xn+1[0, 1
u0

] be as in the proof
of Theorem 2.1. If z ∈ LΦ[0, 1] with ‖z‖Φ �= 0, there exists k > 0 satisfying
‖z‖Φ = 1

k [1 + ρΦ(kz)]. The Jensen integral inequality implies that

‖Pn+1z‖Φ ≤ 1
k

[
1 + ρΦ(kPn+1z)

]

=
1
k


1 +

n+1∑
j=1

µ
(
G

(n+1)
j

)
Φ

[
1

µ(G(n+1)
j )

∫
G

(n+1)
j

kz(t)dt

]


≤ 1
k


1 +

n+1∑
j=1

∫
G

(n+1)
j

Φ
[
kz(t)

]
dt




= ‖z‖Φ ,

i.e., ‖Pn+1‖ ≤ 1. It is easily seen that ‖Pn+1‖ = 1. By Lemma 1.2 we have

JC

(
LΦ

[
0,

1
u0

])
= sup
n+1∈D

JC

(
Xn+1

[
0,

1
u0

])
≥ JC

(
Xn0+1

[
0,

1
u0

])
,

which is the right inequality of (51). The proof of the left inequality of (51) is similar
to that of (32). We have thus proved (44) by (50) and (51) since ε is arbitrary. �

Corollary 3.2

Let Φ be an N-function and let EΦ[0, 1] be the closed separable subspase of

LΦ[0, 1]. Then
1

2αΨ
≤ JC

(
EΦ[0, 1]

)
. (52)

Furthermore, if Φ ∈ �2(∞), we also have

βΨ ≤ JC
(
EΦ[0, 1]

)
. (53)

Proof. The result follows from the proof of Theorem 3.1. �
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Corollary 3.3

(i) If Φ �∈ �2(∞)
⋂�2(∞), then JC(LΦ[0, 1]) = JC

(
EΦ[0, 1]

)
= 1.

(ii) For every N-function Φ, we have always JC(LΦ[0, 1]) = JC(EΦ[0, 1]) and

1√
2
≤ JC

(
LΦ[0, 1]

)
.

Proof. Similar to that of Corollary 2.3. �

Theorem 3.4
Let Φ be an N-function. Then the Jung constant of LΦ[0,∞) = (LΦ[0,∞), ‖·‖Φ)

satisfies
1

2ᾱΨ
≤ JC

(
LΦ[0,∞)

)
. (54)

Furthermore, if Φ ∈ �2, we have also

β̄Ψ ≤ JC
(
LΦ[0,∞)

)
. (55)

Proof. We first show (54). For any given ε > 0 there exists a v0 > 0 such that

Ψ−1(v0)
Ψ−1(2v0)

< ᾱΨ + ε . (56)

Since limn→∞
n

2v0
Ψ−1( 2v0

n ) = ∞, an integer n0 can be found such that

n0

2v0
Ψ−1

(
2v0
n0

)
>

3Ψ−1(2v0)
εv0

. (57)

Put ei = [ i−1
2v0
, i

2v0
) ⊂ [0,∞), 1 ≤ i ≤ n0 and define A = {xi : 1 ≤ i ≤ n0}, where

xi(t) = [2v0/Ψ−1(2v0)]χei(t). Then A ⊂ S(LΦ[0,∞)) and d(A) < 2(ᾱΨ + ε) by
(56). If r0 = r(A,LΦ[0,∞)), similarly to the proof of Theorem 3.1, there exists a
function z0 ∈ LΦ[0,∞) in the form z0(t) =

∑n0
i=1 λixi(t) with 0 ≤ λi ≤ 1 such that

r(A, z0) < r0 + ε
2 . Let λi0 = min {λi : 1 ≤ i ≤ n0}. Then we have from (17) and (57)

that

3 ≥ ‖z0‖Φ ≥ λi0

∥∥∥∥∥
n0∑
i=1

xi

∥∥∥∥∥
Φ

>
6λi0
ε
,

i.e., λi0 <
ε
2 . Therefore, r0 + ε

2 > r(A, z0) ≥ ‖(xi0 − z0)χi0‖Φ = 1− λi0 > 1− ε
2 and

JC
(
LΦ[0,∞)

)
≥ r0
d(A)

>
1 − ε

2(ᾱΨ + ε)
,

which implies (54) since ε is arbitrary.
The proof of (55) is similar to that of (44). �
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Corollary 3.5

Let Φ be an N-function and let EΦ[0,∞) be the closed separable subspase of

LΦ[0,∞). Then
1

2ᾱΨ
≤ JC

(
EΦ[0,∞)

)
. (58)

Furthermore, if Φ ∈ �2, we also have

β̄Ψ ≤ JC
(
EΦ[0,∞)

)
. (59)

Proof. It follows from the proof of Theorem 3.4. �

Corollary 3.6

(i) If Φ �∈ �2

⋂�2, then JC(LΦ[0,∞)) = JC(EΦ[0,∞)) = 1.

(ii) For every N-function Φ, we always have JC(LΦ[0,∞)) = JC(EΦ[0,∞)) and

1√
2
≤ JC

(
LΦ[0,∞)

)
.

Lemma 3.7 (Wang and Shi [18])

If LΦ(Ω) is reflexive, then Ñ(LΦ(Ω)) < 1, where Ω = [0, 1] or [0,∞) with the

usual Lebesgue measure.

Theorem 3.8

LΦ(Ω) is reflexive if and only if JC(LΦ(Ω) < 1, where Ω is as in Lemma 3.7.

Proof. The assertion follows from Corollary 3.2 (i), Corollary 3.6 (i), Lemma 3.7
and (5). �

Now we can sum up the main results on lower bound of the Jung constant of
reflexive Orlicz function space L(Φ)(Ω) together with its dual space in the following.

Theorem 3.9

Let Φ and Ψ be a pair of complementary N-functions.

(a) If Φ ∈ �2(∞)
⋂�2(∞), then

max
(

1
2αΦ

, βΦ

)
≤ min

{
JC(L(Φ)[0, 1]), JC(LΨ[0, 1])

}
. (60)
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(b) If Φ ∈ �2

⋂�2, then

max
(

1
2ᾱΦ

, β̄Φ

)
≤ min

{
JC(L(Φ)[0,∞)), JC(LΨ[0,∞))

}
. (61)

Proof. Note that Φ ∈ �2(∞) ⇐⇒ Ψ ∈ �2(∞) and Φ ∈ �2 ⇐⇒ Ψ ∈ �2. Hence,
(a) follows from Theorem 2.1 and Theorem 3.1 while (b) follows from Theorem 2.4
and Theorem 3.4. �

§ 4. Main Theorems

In 1966, Rao [13] obtained Riesz-Thorin interpolation theorem between Orlicz spaces
equipped with Orlicz norm (see also [14, p. 226] ). In 1972, Cleaver [4] generalized
Rao’s interpolation theorem and obtained the LΦ-inequalities ( see also [5, Theo-
rem 3.2] and [14, p. 240, Corollary 11]). In 1985, the first named author proved that
these results are still valid for L(Φ) spaces equipped with Luxemburg norm (see [14,
p. 226, p. 256] ). In fact, we have the following.

Lemma 4.1

Let Φ be an N-function and Ω = [0, 1] or Ω = [0,∞). Suppose that Φ0(u) =
u2, 0 ≤ s ≤ 1 and Φs(u) is defined to be the inverse of

Φ−1
s (u) =

[
Φ−1(u)

]1−s[Φ−1
0 (u)

]s
. (62)

Then, for any collection {yi : 1 ≤ i ≤ N} ⊂ E(Φs)(Ω) and any {ci ≥ 0}N1 with∑N
i=1 ci = 1, we have

N∑
i=1

N∑
j=1

cicj‖yi − yj‖2/(2−s)
(Φs)

≤ 2c2(1−s)/(2−s)
N∑
i=1

ci‖yi‖2/(2−s)
(Φs)

, (63)

where c = max
{
1 − ci : 1 ≤ i ≤ N} . Similarly, we have for

{
yi : 1 ≤ i ≤ N

}
⊂

EΦs(Ω)

N∑
i=1

N∑
j=1

cicj‖yi − yj‖2/(2−s)
Φs

≤ 2c2(1−s)/(2−s)
N∑
i=1

ci‖yi‖2/(2−s)
Φs

, (64)

Lemma 4.2 (Ren [16, Lemma 3.3])
Let Φ be an N-function and let Φs(u) be the inverse of (62). If 0 < s ≤ 1, then

Φs ∈ �2

⋂�2.
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Lemma 4.3 (Ren [16, Theorem 3.4])
Let Φ be an N-function and let Φs be the inverse of (62). If 0 < s ≤ 1 and

Ω = [0, 1] or Ω = [0,∞), then

2s/2 ≤ N
(
L(Φs)(Ω)

)
(65)

and

2s/2 ≤ N
(
LΦs(Ω)

)
. (66)

Only the proof of (65) was given in [16]. By the same way of the proof of (65)
we can verify (66).

Theorem 4.4

Let Φ be an N-function and let Φs be the inverse of (62). Further let Ψ+
s be the

complementary N-function to Φs. If 0 < s ≤ 1 and Ω = [0, 1] or Ω = [0,∞), then

we have

max
{
JC(L(Φs)(Ω)), JC(LΦs(Ω))

}
≤ 2−s/2 (67)

and

max
{
JC(LΨ+

s (Ω)), JC(L(Ψ+
s )(Ω))

}
≤ 2−s/2 . (68)

Proof. (67) follows directly from (65), (66), (5) and the notation Ñ(X) = 1/N(X).
To prove (68) we first show

JC
(
LΨ+

s (Ω)
)
≤ 2−s/2 . (69)

By Lemma 4.2, LΨ+
s (Ω) is reflexive, of course, it is a separable dual space. Let

{zi : i ≥ 1} be a dense set in LΨ+
s (Ω) and put Xn = span {zi : 1 ≤ i ≤ n}. For

any given bounded closed convex set A ⊂ Xn with r(A,Xn) being its Chebyshev
radius and d(A) being its diameter, there always exists some x as its Chebyshev
center. In view of Lemma 1.3, there exist an integer N ≤ n, {xi : i ≤ N} ⊂ LΨ+

s (Ω),
{yi : i ≤ N} ⊂ S((LΨ+

s (Ω))∗) = S(L(Φs)(Ω)) and {ci ≥ 0 : i ≤ N} with
∑N
i=1 ci = 1,

which satisfy conditions (a), (b) and (c) in Lemma 1.3. Putting λ = 2
2−s in (3), we

have from (63) that

22/(2−s)[r(A,Xn)]2/(2−s)(
n
n+1

)2/(2−s)−1
≤

[
d(A)

]2/(2−s) N∑
i=1

N∑
j=1

cicj‖yi − yj‖2/(2−s)
(Φs)

≤
[
d(A)

]2/(2−s) 2
N∑
i=1

ci‖yi‖2/(2−s)
(Φs)

= 2
[
d(A)

]2/(2−s)
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or
r(A,Xn)
d(A)

≤ 2−s/2
(

n

n+ 1

)s/2
.

Since A is arbitrary, we obtain

JC(Xn) ≤ 2−s/2
(

n

n+ 1

)s/2
.

Hence, (69) follows from (4). Similarly, by using (64) and (4) we can prove

JC
(
L(Ψ+

s )(Ω)
)
≤ 2−s/2. (70)

Finally, (68) follows from (69) and (70). �

Corollary 4.5 (Pichugov [12])

If 1 < p <∞, 1
p + 1

q = 1 and Ω = [0, 1] or Ω = [0,∞), then

JC
(
Lp(Ω)

)
= JC

(
Lq(Ω)

)
= max

(
21/p−1 , 2−1/p

)
. (71)

Proof. We first show

max
(
21/p−1, 2−1/p) ≤ min

{
JC(Lp(Ω)), JC(Lq(Ω))

}
. (72)

In fact, putting M(u) = |u|p, we have L(M)(Ω) = Lp(Ω), ‖ · ‖(M) = ‖ · ‖p, LN (Ω) =
Lq(Ω) and ‖ · ‖N = ‖ · ‖q, where

N(v) =
(q − 1)q−1

qq
|v|q

is the complementary N-function to M(u). Since αM = βM = ᾱM = β̄M = 2−1/p,
we obtain (72) from (60) and (61).

Next we prove

max
{
JC(Lp(Ω)), JC(Lq(Ω))

}
≤ max

(
21/p−1 , 2−1/p

)
. (73)

If 1 < p ≤ 2, we choose 1 < a < p ≤ 2. Putting Φ(u) = |u|a, Φ0(u) = u2 and
s = 2(p−a)

p(2−a) in Theorem 4.4, we have 0 < s ≤ 1 and for u ≥ 0

Φ−1
s (u) = u1−s/a+s/2 = u1/p ,
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i.e., Φs(u) = |u|p. Since L(Φs)(Ω) = Lp(Ω), LΨ+
s (Ω) = Lq(Ω) and lima↘1(− s

2 ) =
1
p − 1, we have from (67) and (68) that

max
{
JC(Lp(Ω)), JC(Lq(Ω))} ≤ 21/p−1 . (74)

If 2 ≤ p < ∞, we choose 2 ≤ p < b < ∞. Letting Φ(u) = |u|b and s = 2(b−p)
p(b−2) ,

again we have 0 < s ≤ 1 and Φs(u) = |u|p. Note that limb↗∞(− s
2 ) = − 1

p . By (67)
and (68) we get

max
{
JC(Lp(Ω)), JC(Lq(Ω))

}
≤ 2−1/p . (75)

Thus, (73) follows from (74) and (75). Finally, (71) follows from (72) and (73). �

Example 4.6: If 1 < p <∞ and Φ(u) = |u|2p+2|u|p, then Φ−1(u) = (
√
u+ 1−1)1/p

for u ≥ 0 and for 0 < s ≤ 1

Φ−1
s (u) = (

√
u+ 1 − 1)1−s/pus/2 .

It is easily seen that

αΦs
= βΦs

= lim
u→∞

Φ−1
s (u)

Φ−1
s (2u)

=
(

1
2

)1−s/2p+s/2
,

β̄Φs
= βΦs

and

ᾱΦs
= α0

Φs
= lim
u→0

Φ−1
s (u)

Φ−1
s (2u)

=
(

1
2

)1−s/p+s/2
.

Therefore, by Lemma 4.2, Theorem 3.9 and Theorem 4.4 we have

2−s/2 ≥ {JC(L(Φs)[0, 1]), JC(LΨ+
s [0, 1])

}
≥ 2−(1−s/2p)−s/2

and

2−s/2 ≥
{
JC(L(Φs)[0,∞)), JC(LΨ+

s [0,∞))
}
≥

{
21−s/p+s/2−1, if 1 < p ≤ 3

2

2−(1−s/2p)−s/2, if 3
2 ≤ p <∞ .

In this paper we denote a ≤ b ≤ d and a ≤ c ≤ d by a ≤ {c, b} ≤ d for simplicity.
Now we can find the exact values of Jung constants of a class of reflexive Orlicz

function spaces equipped with Luxemburg norm and their dual spaces. The first
main theorem of this paper is as follows.
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Theorem 4.7

Let Φ be an N-function and let Φs be the inverse of (62) with 0 < s ≤ 1.

(i) If Φ �∈ �2(∞)
⋂�2(∞), then

JC
(
L(Φs)[0, 1]

)
= JC

(
LΨ+

s [0, 1]
)

= 2−s/2 . (76)

(ii) If Φ �∈ �2

⋂�2, then

JC
(
L(Φs)[0,∞)

)
= JC

(
LΨ+

s [0,∞)
)

= 2−s/2 . (77)

Proof. (i) In virtue of (60), (67) and (68), one has

max
(

1
2αΦs

, βΦs

)
≤

{
JC(L(Φs)[0, 1]), JC(LΨ+

s [0, 1])
}
≤ 2−s/2. (78)

Note that (62) implies that for u > 0

Φ−1
s (u)

Φ−1
s (2u)

=
[

Φ−1(u)
Φ−1(2u)

]1−s [ √
u√
2u

]s
. (79)

If Φ �∈ �2(∞), then 1
2 ≤ αΦ ≤ βΦ = 1 by Theorem 1.5 (i). Therefore, by (79) we

have

2αΦs
= 2(αΦ)1−s

(
1
2

)s/2
≥

(
1
2

)−s/2
,

βΦs
= (βΦ)1−s

(
1
2

)s/2
= 2−s/2

and so,

max
(

1
2αΦs

, βΦs

)
= 2−s/2 . (80)

If Φ �∈ �2(∞), then 1
2 = αΦ ≤ βΦ ≤ 1 by Theorem 1.5 (i). Because

1
2αΦs

= 2−s/2 ≥ βΦs ,

again (80) holds. Finally, (76) follows from (78) and (80).
(ii) The proof is similar to that of (i). �

To find the exact values of Jung constants of a class of reflexive Orlicz function
spaces equipped with Orlicz norm and their dual spaces, we need the following two
lemmas.
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Lemma 4.8 (Ren [17, Lemma 4.5])

Let Φ be an N-function and let Φs be the inverse of (62). Then

1
AΦs

=
1 − s
AΦ

+
s

2
,

1
BΦs

=
1 − s
BΦ

+
s

2
, (81)

1
A0

Φs

=
1 − s
A0

Φ

+
s

2
,

1
B0

Φs

=
1 − s
B0

Φ

+
s

2
(82)

and
1
ĀΦs

=
1 − s
ĀΦ

+
s

2
,

1
B̄Φs

=
1 − s
B̄Φ

+
s

2
. (83)

Lemma 4.9

Let Φ,Ψ be a pair of complementary N-functions. Suppose that

CΦ = lim
t→∞

tφ(t)
Φ(t)

(84)

exists. Then

(i) γΦ = limu→∞
Φ−1(u)
Φ−1(2u) exists and γΦ = 2−1/CΦ ;

(ii) CΨ = limt→∞
tψ(t)
Ψ(t) exists and γΨ = limv→∞

Ψ−1(v)
Ψ−1(2v) = 2−1/CΨ ;

(iii) 2γΦγΨ = 1 .

Similarly, if C0
Φ = limt→0

tφ(t)
Φ(t) exists, then γ0

Φ = limu→0
Φ−1(u)
Φ−1(2u) = 2−1/C0

Φ ,

C0
Ψ = limt→0

tψ(t)
Ψ(t) exists, γ0

Ψ = 2−1/C0
Ψ and 2γ0

Φγ
0
Ψ = 1 .

Proof. The assertions follow from Propositions 1.6 and 1.7. �

The second main theorem of this paper is as follows.

Theorem 4.10

Let Φ, Φs and s be as in Theorem 4.7.

(i) If Φ �∈ �2(∞)
⋂�2(∞) and CΦ defined by (84) exists, then

JC
(
LΦs [0, 1]

)
= JC

(
L(Ψ+

s )[0, 1]
)

= 2−s/2 . (85)

(ii) If Φ �∈ �2

⋂�2 and CΦ exists in the case that Φ �∈ �2(∞)
⋂�2(∞) or C0

Φ

exists in the case that Φ �∈ �2(0)
⋂�2(0), then

J
(
LΦs [0,∞)

)
= JC

(
L(Ψ+

s )[0,∞)
)

= 2−s/2 . (86)
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Proof. (i) By Lemma 4.2, (60), (67) and (68), we have

max

(
1

2αΨ+
s

, βΨ+
s

)
≤

{
JC(LΦs [0, 1]), JC(L(Ψ+

s )[0, 1])
}
≤ 2−s/2 . (87)

The conditions given in (i) imply that CΦ = ∞ or CΦ = 1.
In the case that CΦ = ∞, we have 1

CΦs
= 1−s

CΦ
+ s

2 = s
2 by (81), 1

C
Ψ+

s

= 1− 1
CΦs

=

1 − s
2 by (12) and so, in view of Lemma 4.9,

αΨ+
s

= βΨ+
s

= γΨ+
s

= 2
−1/C

Ψ+
s = 2s/2−1 .

Therefore,

max

(
1

2αΨ+
s

, βΨ+
s

)
= 2−s/2 . (88)

In the case that CΦ = 1, one has 1
CΦs

= 1 − s
2 , 1

C
Ψ+

s

= s
2 and αΨ+

s
= βΨ+

s
=

γΨ+
s

= 2−s/2. Again (88) holds. Thus, (85) follows from (87) and (88).
(ii) By Lemma 4.2, (61), (67) and (68), we have

max

(
1
ᾱΨ+

s

, β̄Ψ+
s

)
≤

{
JC(LΦs [0,∞)), JC(L(Ψ+

s )[0,∞))
}
≤ 2−s/2 . (89)

Note that Φ �∈ �2

⋂�2 if and only if Φ �∈ �2(∞)
⋂�2(∞) or Φ �∈ �2(0)

⋂�2(0).
In the case that C0

Φ = ∞ or C0
Φ = 1, one has

max

(
1

2α0
Ψ+

s

, β0
Ψ+

s

)
= 2−s/2 . (90)

Since max (βΨ+
s
, β0

Ψ+
s
) ≤ β̄Ψ+

s
and ᾱΨ+

s
≤ min (αΨ+

s
, α0

Ψ+
s
) always hold, we have

max

(
1

2αΨ+
s

,
1

2α0
Ψ+

s

, βΨ+
s
, β0

Ψ+
s

)
≤ max

(
1

2ᾱΨ+
s

, β̄Ψ+
s

)
. (91)

The conditions given in (ii) imply that (88) holds or (90) holds. Finally, (86)
follows from (89), (91) and (88) or (90). �

Example 4.11: Let 1 < p <∞ and let M(u) be the inverse of

M−1(u) = [ln(1 + u)]1/2p u1/4, u ≥ 0 .
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Further, let N(v) be the complementary N-function to M(u). Then

JC(L(M)[0, 1]) = JC(LN [0, 1]) = 2−1/4 ,

JC(L(M)[0,∞)) = JC(LN [0,∞)) = 2−1/4 ,

JC(LM [0, 1]) = JC(L(N)[0, 1]) = 2−1/4

and
J
(
LM [0,∞)

)
= J

(
L(N)[0,∞)

)
= 2−1/4 .

In fact, putting Φ(u) = e|u|
p − 1, we have Φ−1(u) = [ln(1+u)]1/p for u ≥ 0 and

Φ−1
s (u) = [ln(1 + u)]1−s/p us/2 .

Therefore, M(u) = Φs(u)|s=1/2 and N(v) = Ψ+
s (v)|s=1/2. Since CΦ = ∞, the

conclusion follows from Theorem 4.7 and Theorem 4.10.
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