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ABSTRACT
Estimation of the Jung constants of Orlicz function spaces equipped with either
Luxemburg norm or Orlicz norm is given. The exact values of the Jung constants
of a class of reflexive Orlicz function spaces have been found by using a new
quantitative index of N-functions.

§ 1. Preliminaries

Let X be a normed linear space and A C X be a bounded set. The diameter of A
is d(A) = sup{||lz — y|| : z,y € A}. If z € X, we set r(A, z) = sup{||z — 2| : z € A}.
For A,B C X, r(A,B) = inf{r(4, z) : z € B} is the relative Chebyshev radius of
A with respect to B and r(A, X) is the absolute Chebyshev radius of A. Clearly,
r(A,z) =r(co(A),z), r(A,B) =r(co(A), B) and r(A, X) = r(co(A), X).

DEFINITION 1.1. (Jung[8]) The Jung constant JC'(X) of a normed linear space X
is defined to be

r(A, X)

JC(X) = sup{w

: A C X bounded,d(A) > O} . (1)
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744 REN AND CHEN

Clearly, 1/2 < JC(X) < 1 always holds. Pichugov [12] computed JC(L?)(see also
Corollary 4.5 in Section 4). Amir [1] proved that if X is a dual space, then

r(A, X)
d(A)

JC'(X):sup{ : A C X finite, d(A) >0}. (2)

By using (2), Amir obtained the following.

Lemma 1.2 (see [1, Proposition 2.5 (b)])

Let (X4)aep be a net of linear subspaces of the Banach space X, directed by
inclusion, such that U,ep Xy = X. If X is a dual space and each X, admits a
norm-1 linear projection P,, then JC(X) = sup,cp JC(X4) = limaep JO(Xa).

Lemma 1.3 (Pichugov [12])

Let X,, be a real n-dimensional normed space and let A be a bounded closed
convex set in X with r(A, X,,) being its Chebyshev radius. Then the point x is its
Chebyshev center if and only if there exists an integer N < n + 1 for which

(a) there are x; € A, i < N such that ||z, — z|| = r(A, X,,) for all i < N;

(b) there are f; € X}, the dual space of X,,, i < N such that |f;]] = 1 and
(x; —x, fi) = ||z; — || for all i < N;

(c) there are ¢; > 0, i < N such that Zil c; =1 and Zf\il cifi =0.

In this case, S, Z;VZI cici(x, —xj, fi — f5) =2r(A, X,,). If 1 <A <2 and

N N
A= chicj{<$i —xj, fi — )}

then
M <A< [d AP chicj”fi — flI* (3)

A—1
n L L
(n—-i-l) w=1i=1

Lemma 1.4 (Pichugov[12])

Let X be a separable and dual space. If {x1,x2,---} Is a dense set in X and
X, =span{z; : 1 <i<n}, then

JC(X) <liminf JC(X,,). (4)

n—oo
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Recall that Bynum [2] defined the normal structure coefficient N (X) of a Banach
space X by

d(A
N(X) = inf { r(zfl, /)1) : A C X closed bounded convex, d(A) > 0} .
Maluta [11] denoted [N(X)]~! by N(X) and proved that 2712 < N(X) for every
infinite-dimensional Banach space X. Amir [1] pointed out that for every Banach

space X,
<JO(X)<N(X)<1. (5)

N =

Next we introduce some basic facts on Orlicz space. Let

Jul [l
O(u) = ; o(t)dt and U(v) = i P(s)ds

be a pair of complementary N-functions. The Orlicz function space L®(£2) on Q =
[0,1] or [0,00) is defined to be the set {x : x is Lebesgue measurable on 2 and
pa(Ar) = [ ®[Az(t)]dt < oo for some A > 0}. The Luxemburg norm and the
Orlicz norm are defined respectively by

||| (®) = inf {c >0: pq;(%) < 1}

and

lalls = sup { [ latowtolat : puiv) < 1} .

The norms are equivalent: ||z||(¢) < [|2]|le < 2||z|/(3). The closed separable subspace
E®(Q) of L®(Q) is defined to be the set {z € L*(Q) : pg(A\z) < oo for all A > 0}.
By the same way we define the Orlicz sequence space ¢* and its closed separable
subspace h®. An important parameter for analysis in an Orlicz space is the rate of
growth of the underling N-function. An N-function ®(u) is said to satisfy the Ao-
condition for large u (for small u or for all u > 0), in symbol ® € Ay(c0)(® € A2(0)
or & € Ay), if there exist ug > 0 and K > 2 such that ®(2u) < K®(u) for
u > ug (for 0 < u < ug or for u > 0). An N-function ®(u) is said to satisfy
the 72-condition for large u, in symbol & € w3(00), if there exist up > 0 and
a > 1 such that ®(u) < =®(au) for u > ug. Similarly we define ® € 7»(0) and
® € /2. The basic facts on Orlicz spaces can be found in [9], [10] and [14]. For
instance, L®[0,1] (L*[0, 00) or £%) is separable if and only if ® € Ay(c0) (® € Ay or
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® € Ay(0)); L®[0,1] (L]0, 00) or £%) is reflexive if and only if ® € Ay (c0) () V2(c0)

(Cb S AgﬂVg or d € AQ(O)HVQ(O))
A new quantitative index of ®(u) is provided by the following six constants:

o 27 (u) : o' (u)
ap = llunigf m ) Be = hin_?;l)p @_1(2711) > (6)
O~ 1(u) O~ 1(u)
0 _ qsi s 0 _ 1:
Oéq, = llznjglf m, IBCI) = hl;?j})lp @71(2’11) (7)

and

a@:inf{sT(zu):O<u<oo}, ﬂ@zsup{g)_l;((;;)):o<u<oo}. (8)

The following result will play the leading role in this paper.

Theorem 1.5

(i) @ & Na(o0) & fo = 1,P & V2(0) & ag = 1/2;
(i) @ & N2(0) & By = 1,8 & v2(0) & ag = 1/2;
(i) @ ¢ Do fo=1,0 ¢ 7o & ag = 1/2.

The proof of Theorem 1.5 can be found in [14, p. 23] and [15].
Another quantitative index of ® is well known and is provided by the following
six constants:

Ay = liminf % . Bo=limsup tg((g : (9)
Ag = liminf f((;) , By = lim sup 25((;) (10)
and
A¢:inf{m:0<t<oo}, Bq>:sup{w:0<t<oo}. (11)
0) o(t)

It is also known that ® € As(00) & By = 00, ® € Va(0) & As =1, € Ay(0) &
B(%:OO,®¢V2(O)<Z>AO :1,(I>€A2<:>B¢:ooand<1>€V2<:)A¢:1.
Furthermore, we have the following.
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Proposition 1.6
Let ® and ¥ be a pair of complementary N-functions. Then

S S A I (12)

Proposition 1.7
Let ®(u) be an N-function. Then

2714 < ag < B <27V/P7, (13)

27145 <o < g3 <27V/Ps (14)
and ) )

27 VAY < G4 < Bp < 27V B, (15)

The proofs of Propositions 1.6 and 1.7 can be found in [14, p. 27], [10] and [15].
In this paper, we only deal with Orlicz function spaces. The Jung constants of Orlicz
sequence spaces will be discussed in another paper.

Finally, we need some properties of Hadamard matrix, which can be found
in [12], [7] and [6]. The Hadamard matrix H,1)x (n41) of order (n41) is defined to
be a square matrix with entries +1 and with pairwise orthogonal rows. H(,,11)x (n+1)
is said to be in normalized form, if its first column and row consist only of one.
Removing the first column of H(;,11)x(n+1), We obtain matrix H,,y(n41), which is
used in [12] and [7, Lemma 2].

ExamMpPLE 1.8: If n + 1 =4, one has

Hyvq =

[ S T
|
—
[S—
|
—

and

H3yy=11 -1 1 -1
1 -1 -1 1

Let ®, ¥ be a pair of complementary N-functions and € = [0, 1] with the usual
Lebesgue measure p. For any given u > 1, we divide the interval [0,1/u] into four
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parts: G1 = [0,1/4u), Gy = [1/4u,2/4u),Gs = [2/4u,3/4u) and G4 = [3/4u, 1/u).
Let xq, be the characteristic function of G; and a = ®~!(4u/3). By

(xlv x2,T3, x4) = a(XG27XG37XG4)H3><4

e denere 21(0) = alxea(t) + xa (1) + xa (0],
z2(t) = alxea, (1) — Xas (t) — xa. (D]
z3(t) = a[—xa, (1) + xas (1) — xa. (1))
z4(t) = a[—xG, (t) — Xas (1) + xa. (1)) -

Since M(U?Z2 G;) =3/4uand 1/2 ,u(U;l:1 G;) = 1/2u, we have ||z;]|(p) = 1,1 <i < 4

and for i # j
2a

sz - 33j||(<1>) = m .

Put b= 2 & 1(4%) y;(t) = Lx;(t) and ¢; = 1/4 for 1 <i < 4. Then Zle ci =1,
lyille = 1, iy ciyi = 0 and (z; — 0,43) = [y z:(B)yi(t)dt = 1 = ||z — 0] ().
Therefore, by Lemma 1.3, the set Ay = co{x; : 1 < i < 4} has zero as its Chebyshev
center in X4[0,2] = span{xg, : 1 <i <4} C L®)[0, 1] (see also Lemma 2 in [7]).
It follows from (1) that

1 r(Ag, X4[0,1]) @7 1(2u)
Jo (x [o, —] > ul) 5 .
< 1 > T dA) T2
In general, if n + 1 = 2™ for some m > 1, we choose a, = <I>_1(”T+1u), b, =
(n+1)u n ’

(.fCl,.TQ, e 7xn+1) - an(XG27XG37 Ty XGn+1)Hn><(n+1)

and y; = ﬁ Tiy Cp = n+_1 Finally, it follows from Lemma 1.3 that

1]> - d~1(2u) O~ 1(2u (16)

JC (Xni1 [0, > .
< Pul) T 20 () T 2(2E) 9 (u)
We conclude this section by the following.

Remark 1.9. Let X be a Banach space and let A C S(X) ={z € X : |z]| =1}. If
there exists a zp € X such that (A4, zp) < 2, then

20l < 3. (17)
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In fact, if ||zo|| > 3, one has
(A, z0) = sup [||z — 20| : @ € A] > sup [[|z0]| — ||z|| : x € A] > 2,

which is a contradiction.

§ 2. Lower Bounds of JC(L{®)(Q))

Theorem 2.1

Let ® be an N-function. Then the Jung constant of L(®)[0,1] = (L®[0,1], ||||(s))
satisfies
B < JO(L®P[0,1]). (18)

Furthermore, if ® € Ny(00), we also have

i < JC(L™[0,1]). (19)

Proof. We first show (18). By (6), there exist 1 < v " oo such that

1
lim )

koo O 1(205) fe. (20)

For any given 1/2 > ¢ > 0, there is a vy € {vj : k > 1} such that

o~ 1(v
W%‘;) > Bp — € (21)
and i
O (2u0) > M. (22)

€

An integer ng > 1 can be found such that 2vg — 1 < ng < 2vg. Thus,

2 1
o= <2 (23)
no No

Put e; = [&1, 54 for 1 <i < ng and define A = {z; : 1 <i < ng}, where

21}0 ) 2’U0

zi(t) = @71 (2v0)xe, (1)
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Then ||z;[|(¢) = 1 for all i < ng. By (21) one has for i # j
(1371(21}0) < 1
‘1)71(1)0) ﬁq:. —¢’

;= 2]l @) = 2 (2v0) [ Xe,ue, | (@) =

ie., d(A) < 1/(Bs — e).
Let 79 = r(A, L(®)[0,1]). Then there exists some z € L(®)[0, 1] such that for all

€

lz: — 2[|(@) < r(A,2) <710+ 3" (24)

Put 21(t) = 2(t)xe(t), where e = Ui e; = [0, :¢) C [0,1]. Then |z;(t) — 21 (t)] =
|(xi(t) — z(t))xe(t)| < |zi(t) — 2(¢)| for t € [0,1] and 1 < i < ng. Therefore,

r(A,z1) <r(A,z). (25)

Further, let F; = {t € ¢; : 21(t) < ®71(2v9)} and put
2(t) = Z {z1(0)xF, (1) + [287(200) — 21(t) | Xe,—F; (1) } -

Then 23(t) < ®71(2vg) and |x;(t) — 22(t)| < |2:(t) — 21(¢)] for all 1 < i < ng and all
t € e. Thus,
T(A7 Z2> < T<A7 Zl) . (26)
Put F = {t € e : 0 < 2(t)} and define 23(t) = 22(¢t)xr(t). Then 0 < z3(t) <
71 (2v0), |i(t) — 23(t)] < |2i(t) — 22(t)| and
r(A, z3) <r(A, z). (27)
Now let us define zo(t) = 372, bjxe, (t), where

bj = ﬁej) / Zg(t)dt.

For each 1 < i < ng and any R; > ||z; — 23//(#), we have from Jensen integral
inequality (see [9, p. 62])

1> ps (ngzzi)

_ Z/ej ® <O_sz(t)> dH/ei P <¢_1<2”§%_ Z3(t)> dt

J#i
> ;M(eg‘)@ (u(lej) /ej Zg}g(f) dt) + pule;)® <,u,(1ei) /e (I._l(%})%)i_ 25(t) dt)

o T, — 20
= pPe R; )
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ie., |zi—20/(@) < Riand |[z;—20| (@) < [|[zi—23/(a) for every i or 7(A, 20) < r(A, 23).
Note that ro < r(A4,0) = 1. It follows from (24)-(27) that

r(A, zg) <ro+ % <2. (28)

Put \; = b;/® 1 (2vg) and let \;; = min{\; : 1 <i < ng}. Then 0 < \; < 1 and

2o(t) = D00 Niwi(t) > Nig @1 (2v9)xe(t). By (17), (22) and (23) we have

Aip @7 (2 6
H(2v0)

10 10
32 eoll@r 2 =g =iy " > =
no

i.e., A\, < €/2. Therefore,

ro+ < 5 > T(A 20) = max |zi = 20ll(@) = [(Zio — 20)Xes,

1<i<n (@)

€
=11 - )\io)l’z‘oH(@) =1-Xj;>1- 2
i.e., rg > 1 — €. Finally,

JC(L®0,1]) > da) >(1-€)(Bs —e).

We have thus proved (18) since € is arbitrary.
Next we show (19), if ® € Ay(oo). In this case, L(®)|0, 1] is a separable dual

space. By (6), there exist 1 < ug " 0o such that limy_, % = ag. For any
given € > 0, there is a ug € {uy : k > 1} such that
" (uo)
— < . 29
B 1(2ug) T (29)

Put D = {n+1 € N : Hadamard matrix H(,1)x(n+1) exists}. Note that D is an
infinite set since n + 1 = 2™ € D for every integer m. If n 4+ 1 € D, we divide

the interval [0, ui] [0,1] into n + 1 parts: ng—H) = [0, (n+11)uo) Ggf:—ll) =

n+1
[m, ulo] Then M(G( )) = (n+1)u forall 1 <i<n+1. Put X, [0, u—o] =
span {Xc(n+1) 1<i<n+1}c L®)o,-! ] One has X, (1[0, - ] C Xnp41[0, 5] if

ni1 < ng and ny,ne € D. The Separablhty of L(®)[0,1] implies that

U Xnn [0 —] =L [0, uio] .

n+1leD
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Define P, ;1 : L(®)0, uio] — Xp41]0, 1] by Poyqz(t) = S0 bjxg?jﬂ)(t), where

7 ug Jj=1

1
b:i/ S()dt .
J M(G§n+1)) G§n+1>

If ||z][(#) = 1, we have from Jensen integral inequality

1/uo n+1 1
B[P, 12(t)]dt = MG(.”“)(I)—/ 2(t)dt
/(; [ +1 ( ):| ]Zl ( J ) M(G§n+1)) G§n+1) ( )

1/uo
< / Pa(t))dt =1,

i.e., [|Pry1]] < 1. On the other hand, if 2(t) = X[0,1/u0](t) € L®)[0,1/ug] we have

P11z = z. Therefore, ||P,41|| = 1. It follows from Lemma 1.2 that for every
n+leD
1 1
JC <L<<I>> [0, —]) > JC (Xn+1 [0, —]) : (30)
Uuop Uo

Now let us choose ng + 1 € D such that 1/ny < e. Removing the first column of
H o 11)x (no+1)s We obtain H,, y (no+1). Define Ay 11 =co{z; : 1 <i<ng+1} C
Xn0+l[05 ]-/UO] = span {XG7 1<e< no + 1}7 where

n0+1
o

($1,x2, o 7$n0+1) - ®_1 < UQ> (XGQ?XG37 Tt )XGnO+1)Hn0><(n0+1) )

and G; = ng“ﬂ) for simplicity. Then, for all 1 <7 <ng+1

ng+ 1

sty = 07 ("2 200 ) I, oy = 1

and for i # 7, by (29)

20~ (et lyg) (1+ i) 261 (uq)

i — Ly = =15 5 < —< < 2(1
lzs — 5 (@) B1(2up) no ) BT (2uy) (14 ¢€)(ap +e),

ie., d(Any+1) < 2(1 4+ €)(as + €). In view of Example 1.8, the Chebyshev center of
Apg+1 lies at 0 in X,,,11[0,1/up]. One has from (1) and (16) that

JjC <X |0 iD > Tt Koo nl05) ! .
ot [Pl ) = d(Angs1) 21+ ) (e + €)
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Finally, we must prove

1
JC(L™0,1]) > JC <L(‘I’) o, —)} . (32)

Uo
Put D’ = (0,1],Y; = L(®)[0,s] and define Q, : LI®)[0,1] — Y, by Qsz = 2x]o,4-
Then ||Qs]| = 1 and Usep'Y, = L®[0,1]. Tt follows from Lemma 1.2 that
JC(L®[0,1]) > JO(Y,) for every s € D'. In particular, setting sp = 1 we get

uo

(32). We have proved (19) by (32), (30) and (31) since € is arbitrary. OJ

Corollary 2.2

Let ® be an N-function and let E(®)[0,1] be the closed separable subspase of
L(®)0,1]. Then
Be < JC(E®]0,1]). (33)

Furthermore, if ® € Ay(00), we also have

LT JC(E®]0,1]). (34)
20éq>

Proof. It follows from the proof of Theorem 2.1. In addition, we give a short proof
of (33). Let vk, k > 1 satisfy (20). Without loss of generality, we may assume
pOya 2%1 < 1. Choose G; C [0,1] such that G; NG, = 0 if i # j and p(G;) = ﬁ
for all i > 1. Put B = {z; : i > 1}, where x;(t) = ® (v;)xq,(t). Then d(B) =1
since ||lz; — 2]/(@) = 1if i # j. Every z € E(®[0,1] has absolutely continuous norm,
which implies that lim; . [|2x¢;[|(#) = 0 in virtue of lim; o p(G;) = 0. Therefore,
by (20),

r(B,z) =sup {||z — z|/(¢): z € B} > limsup [|z; — 2(a)

1— 00

> limsup || (z; — 2)xa,

71— 00

= lim 23]l (2) = Ba -

(@) > limsup{|illa) — [|2xc. @)}

Since z € E(®)[0,1] is arbitrary, we have (B, E(*)[0,1]) > Bp which implies (33). O

Corollary 2.3
(i) If & ¢ Ny(00) N v2(00), then JO(L®)0,1]) = JO(E®)[0,1]) = 1.
(ii) For every N-function ®, we always have JC(L(®)[0,1]) = JC(E®)][0,1]) and

% < JC(L®[0,1]).
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Proof. (i) By Theorem 1.5 (i), ® ¢ Az(00) () V2(0c0) implies that either Sp = 1 or
B < 1 but ag = %, i.e., max(fg,1/2as) = 1. Therefore, the conclusion follows
from (18), (19), (33), (34) and (5).

(ii) It is sufficient to show

1 < <5 1)

— < max ,— .

\/5_ ¢’2a¢>
Ifnot,\%>ﬁq> and%>ﬁ.

1/ V2 > B, since ag < B¢ always holds. O

We have thus reached a contradiction: ag >

Theorem 2.4

Let ® be an N-function. Then the Jung constant of L(®)[0,00) = (L*[0, 00), || -
l|(@)) satisfies

Bo < JO(L®[0,0)) . (35)
Furthermore, if ® € Ay, we have also
1
— < J(EW :
g = J( [0, 00)) (36)

Proof. We first prove (35). By (8), for any given 1 > € > 0 there exists 0 < vy < 00
such that

@ '(vo) _ -
@_1(21}0) > ﬂq?‘ — €. (37)
Since lim,, o, ®7!(2vg/n) = 0, an integer ny can be found such that
209 €
o7 (Z0) < Lo (2u). 3
) < ot u) )
Put e; = [;;;, ﬁ) C [0,00) for 1 <14 <mng and define A = {x; : 1 <i <ng}, where

zi(t) = &1 (2v9)xq, (t). Then A C S(L(®)[0,00)) and d(A) < 1/(Bs — €) by (37).
Let ro = 7(A, L(®)[0, 00)). By the same way as in the proof of (18), we can find a
29 € L0, 00) such that r(4, 20) < ro + €/2 < 2, where z(t) = Y%, X\ix;(t) with
0 < \; < 1. Letting A, = min{\; : 1 <i <ng}, we have from (17) and (38) that

)\Z‘O(I)_l (2’00) GAZO
d—1(2w) e’

no

i.e., A, < €/2. Therefore, 7(A,2z9) >1—X;; >1—¢/2 and 9 > 1 — €. Thus,

32> |lzoll(e) =

JC (L0, 00)) > % >(1—e)(Bo—e).

We have proved (35) since € is arbitrary.
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Next we show (36) under the assumption that ® € A,. By (8), for any given
€ > 0, there is a 0 < ug < oo such that

' (u)
D1 (2ug)

< Qg t+€.

Choose ng > 3 such that no <€ and the Hadamard matrix H,,41)x (no+1) €xists.

Divide the interval [0, -1 +=) € [0,00) into ng + 1 parts: G; = [(n01+11)u07 (n0+1)u0) 1<

i <mng+ 1. Define A,,,+1 C Xy,+1[0, uio] as in Example 1.8. It is easily seen that

¢ (XnOH [07 uio}> = 2(1+ e)l(acp +e€)

By using Lemma 1.2, we can verify

JC(L®[0,00)) > JC <L(‘I’) [o, i)) > JC (le [0, %)) .

Uo 0

Therefore, we obtain (36). O

Corollary 2.5

Let ® be an N-function and let E(®)[0,00) be the closed separable subspase of
L®)][0,00). Then
Bs < JC(E®|0,0)). (39)

Furthermore, if ® € Ay, we also have

ﬁ < JC(E®0,00)). (40)

Proof. The assertion follows from the proof of Theorem 2.4. In addition, we give a
different proof of (39). By (8), there exist 0 < u; < oo such that

O Mw) _
lim ————~= 41
A STy, ~ P (41)
Choose e; = [0, Qi )and e; = [Z;;ll ﬁ,zz 1 2u ) fori > 2. Put B ={z; :i> 1},
where x;(t) = &~ (u;)xe, (). Then d(B) = 1 since ||a; — z;]j@) = 1 if i # j. We

must prove that for every z € E(®)[0, 1]

T |2xe, |y = 0. (42)
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In the case Y ;o) 5 < oo, we have y(e;) = 5~ — 0 as i — oo, which implies
(42).
In the case Y oo, 271“ = 00, we have lim;_, o Z;;ll ﬁ = o0o0. Let E;, =

[Z;;ll %,oo). Then e; C E; for all i > 1. Since z € E®]0,00), one has

IS @[Az(t)]dt < oo for any given A > 1 and so,

pa(AzXe,;) < [E ®[Az(t)]dt — 0

as i — o0o. Therefore, (42) holds again by the fact that pg(Ay;) — 0 for any given
A > 1if and only if [|y; (@) — 0.(see [14, p. 87])
It follows from (42) and (41) that

r(B,z) > lliglo |zl (@) = Ba
for every z € E(®)[0, 00), which implies (39). O

Corollary 2.6

(i) If ® & Ny 72 then JC(L®)0,00)) = JO(E®)[0,00)) = 1.
(ii) For every N-function ®, we always have JC(L(®)[0, 00)) = JC(E(®)[0,00)) and

L .
75 =

Proof. Similar to Corollary 2.3. [

JC (L0, c0)).

Lemma 2.7 (Chen and Sun [3])

If L(®)(Q) is reflexive, then N(L(®)(Q)) < 1, where Q = [0,1] or [0,00) with
the usual Lebesgue measure.

Theorem 2.8
L(®)(Q) is reflexive if and only if JC(L(®)(Q) < 1, where § is as in Lemma 2.7.

Proof. The assertion follows from Corollary 2.2 (i), Corollary 2.6 (i), Lemma 2.7
and (5). O
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§ 3. Lower Bounds of JC(L®(Q))

Now let us turn to the Orlicz function space L®[0,1] = (L®[0,1],] - |l¢) equipped
with Orlicz norm.

Theorem 3.1

For every N-function ®, we have

Qé;;chwL¢m,uy (43)

where W is the complementary N-function to ®. Furthermore, if ® € Ay(o0), we

also have
By < JC(L®[0,1]). (44)
Proof. We first show (43). By (6), there exist 1 < v " oo such that limg_
-1
\1?*1((2?:) = avy. Note that lim,_. \1/+(U) = 0o. Therefore, for any given € > 0 there

exists vy € {vy : k > 1} such that

T (o)
_— 4
1 (2u0) <oayte (45)
and
2v9 12 (46)

U1 (200) ~ el-1(1)

Let ng be an integer satisfying 2vg — 1 < ng < 2vg. Then

Sl — <2<, (47)

Put e; = [£2, 54 ) for all 1 <4 < ng. Define A = {z; : 1 <i < ng}, where

21}0 ’ 2’Uo

(1) = g (1)

‘11_1(2’00
Then A C S(L®[0,1]) since u(e;) = ﬁ If i # j, one has from (45) that

2v 20~ (vg)

0
i~ Tille = = Xeive, |6 = T—m—t < 2 :
Hx x]H© \:[171(2,1)0)“X iJ JH© \1171(21)0) (Oé\j[l"’ﬁ)

ie., d(A) < 2(ay +€).
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Let 79 = 7(A, L*®[0,1]). Then there exists z € L*[0, 1] such that
max{Hxi—qu;:lgigno}:r(A’Z)<To+§‘

Put z1(t) = 2z(t)x(t), where e = U e; = [0,5=). Then r(A,2z1) < r(4,2).

’ 2U0

Secondly, let F; = {t € e; : 21(t) < 2vg/¥~1(2vg)} and put

-0 4v
z(t) = Z {Zl(t)XFj (t)+ W;Uo) - Zl(t)}Xej_Fj (75)}

Jj=1

Then 25(t) < 2v/V 1 (2ug) and |x;(t) — 22(t)| < |xi(t) — 21(t)] for all 1 < i < ng
and t € e. Thus, 7(4,22) < r(A,z1). Thirdly, set FF = {t € e : 0 < 22(¢)} and
23(t) = 22(t)xr(t). It is easily seen that 0 < 23(¢t) < 2v9/¥~1(2vg) and |z;(t) —
23(t)] < |zi(t) — z2(t)| for all 1 < i < mg and ¢t € e. Therefore, r(A4, z3) < r(A, z2).
Finally, we define 20(t) = 3_7°, bjxe, (t), where b; = ﬁej) fej z3(t)dt as in the proof
of Theorem 2.1. In virtue of Theorem 13 in [14, p. 69], for each i if ||x; — 2z3||e # O,
there exists k; > 0 such that

1
|lz; — 23]|0 = T [1 + pa (ki(z; — 23))] :

By Jensen integral inequality, we have

lz: — 23l®

_ kli{HZL@[ki(o—ZB(t))]dt+/ @[ki(%—zg(t))}dt}

€4
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Therefore,
r(A, z0) <r(A, z3) <719+ % <2. (48)

Putting \; = b; U1 (209)/2v0 and letting \;, = min{)\; : 1 < i < ng}, we have
0< X <1and

10 2v
t) = Z Aixi(t) > Ag W;U())Xe(t) .
i=1

It follows from (17), (47) and (46) that

)\i 2,00 no _ 2U0 6)\2
> > Ty —U = —
32 [|zolle = U1 (2v) [QUO <”0 >] T

le, A\, < % Hence, by (48) one has ro + § > 7(A4,20) > x5, — 20/l > [[(zs —
ZO)XeiO

E3 —Aip >1— 5,1 e, rg >1— e Finally,

To 1—c¢
JC(L*[0,1]) > iD” Aot o)

We have thus proved (43) since € is arbitrary.

Next we prove (44) under the assumption ® € Ay(oco). In this case, L®[0,1]
is a separable dual space. By (6), there exist 1 < up /" 0o such that limy_ oo
(@ (ug) /¥ (2uy)] = Bw. Therefore, for any given 3 > € > 0, there is a ug € {uy :
k > 1} satisfying
U (uo)

T (2up) > Py — €. (49)

Choose ng such that 1 < € and the Hadamard matrix H(, 11)x (no+1) €xists. Divide
[O,v | € [0,1] mtono—l—lparts {Gi:1<i<ng+1}suchthat G;NG,; =0if i #j

and ,u(G ) = m Put A, +1 = co{z; : 1 <i<mng+ 1}, where
(no + 1)UQ
([L’l, % P 7xn0+1) - no\I’il(n%—‘rlUO) (XG27XG37 e 7XGnO+1)H’n0><(no+l) .

Similarly to the proof of (19), A,,+1 has 0 as its Chebyshev center in X, 41
[0, L] = span{xg, : 1 < i < mg+ 1}. Since ||z;]le = 1 for all i < ng + 1 and,

7’[140

by (49),

||$Z _ xjH(I’ _ (nO + 1)\Il_ (2u0) < i) U= (QUO) 1+e€

<
no W1 (2etlyg) U~t(ug)  Pu—e

o
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if i # j, one has r(Apg+1, Xng+11[0 io]) =1 and

T

1 ,8\1/ — €
JC (Xno+1 [o, U—OD > (50)
To complete the proof, we must show
1 1
JCO(L®[0,1]) > JC (L‘I’ [0, u—0]> > JC (XnOH [0, U—OD . (51)

Let D,X,41[0, =] and P,y : L®[0,1] — Xn+1[0,u—10] be as in the proof

of Theorem 2.1. If z € L®[0,1] with ||z||le # 0, there exists k > 0 satisfying
|26 = %[1 + po(kz)]. The Jensen integral inequality implies that

1
1Pasizlle < 21+ pa(bPrsr2)]
1 n+1 (nt1) 1
=—q1+ ) pu(G")o —/ kz(t)dt
k JZ:; ( J ) N(G§n+1)) G§n+l)
n+1

ie., [|[Pot1]|| < 1. It is easily seen that ||P,+1| = 1. By Lemma 1.2 we have

JC <L<I’ [o, uioD = swp JC <Xn+1 [0, uioD > JC <Xn0+1 [o, ULOD :

which is the right inequality of (51). The proof of the left inequality of (51) is similar
to that of (32). We have thus proved (44) by (50) and (51) since € is arbitrary. O

Corollary 3.2

Let ® be an N-function and let E®[0,1] be the closed separable subspase of
L®[0,1]. Then
1
< E®[0,1]).
2oy = JC(E®0,1]) (52)

Furthermore, if ® € Ay(00), we also have
By < JC(E®[0,1]). (53)

Proof. The result follows from the proof of Theorem 3.1. O



Jung constants of Orlicz function spaces 761

Corollary 3.3
(i) If ® & Ny(c0) (N V2(o0), then JC(L®[0,1]) = JC(E®[0,1]) =
(i) For every N-function ®, we have always JC(L®[0,1]) = JC(E®|[0,1]) and
1
— < JC(L%0,1]).
75 <IC(L*0.1)

Proof. Similar to that of Corollary 2.3. [

Theorem 3.4

Let ® be an N-function. Then the Jung constant of L0, 00) = (L®[0, 00), ||-|ls)

satisfies 1
< o
e . JC’(L [0 oo)) (54)

Furthermore, if ® € Ay, we have also

By < JO(L2[0,00)). (55)
Proof. We first show (54). For any given € > 0 there exists a vo > 0 such that
U~ (vo)
—= < . 56
\11_1(21]0) <o te ( )

Since lim,, _, 2” [\ (2”0) 00, an integer ng can be found such that

20 gt <2ﬂ> > 43\1'61(200) . (57)

2’00 no Vo

Put e; = [22;;, e ) C [0,00),1 < i < ng and define A = {x; : 1 < i < ng}, where
z;(t) = [209/¥~ (21}0)]X6L(t). Then A C S(L*[0,00)) and d(A) < 2(ay + €) by
(56). If ro = (A, L?[0,00)), similarly to the proof of Theorem 3.1, there exists a
function zy € L*[0,00) in the form 29(t) = >_1°; A\;x;(t) with 0 < \; < 1 such that

r(A, 20) <ro+5. Let A\jy = min{\; : 1 <0 < ng} Then we have from (17) and (57)

that
no
S

i=1

0

6\,
3> [lzo0lle > A > —

9

€
P

i.e., Ay, < §. Therefore, ro + § > (A, z0) > [[(z4, — 20)Xiolle =1 — Ay > 1 — 5 and

) S 1—c¢
d(A) ~ 2(ag +e€)’

JC(L*[0,00)) >

which implies (54) since € is arbitrary.
The proof of (55) is similar to that of (44). O
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Corollary 3.5

Let ® be an N-function and let E®[0,00) be the closed separable subspase of
L®[0,00). Then

% < JO(E®[0, ). (58)

Furthermore, if ® € Ay, we also have
Bu < JC(E®[0,0)). (59)
Proof. 1t follows from the proof of Theorem 3.4. [J

Corollary 3.6

(i) If ® ¢ Ny (2, then JO(L®[0,00)) = JO(E®[0,00)) = 1.
(i) For every N-function ®, we always have JC(L*[0,00)) = JC(E®[0,0)) and

1
— <
V2 o
Lemma 3.7 (Wang and Shi [18])

If L*(Q) is reflexive, then N(L®(2)) < 1, where Q = [0,1] or [0, 00) with the
usual Lebesgue measure.

JC(L®[0,0)) .

Theorem 3.8
L®(Q) is reflexive if and only if JC(L®(2) < 1, where Q is as in Lemma 3.7.

Proof. The assertion follows from Corollary 3.2 (i), Corollary 3.6 (i), Lemma 3.7
and (5). O
Now we can sum up the main results on lower bound of the Jung constant of

reflexive Orlicz function space L(®)(Q) together with its dual space in the following.

Theorem 3.9
Let ® and ¥ be a pair of complementary N-functions.
(a) If ® € Ay(00) () V2(o0), then

max (iﬁ@) < min {JC(L®(0,1]), JC(L*[0,1))} . (60)
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(b) Ifd e AQHVQ, then
1 -
max <W,ﬁq>> < min {JC(L®[0,00)), JO(LY[0,00))} . (61)
o

Proof. Note that & € /2(00) <= ¥ € Ay(o0) and ¢ € 772 <= ¥ € A,. Hence,
(a) follows from Theorem 2.1 and Theorem 3.1 while (b) follows from Theorem 2.4
and Theorem 3.4. O

§ 4. Main Theorems

In 1966, Rao [13] obtained Riesz-Thorin interpolation theorem between Orlicz spaces
equipped with Orlicz norm (see also [14, p. 226] ). In 1972, Cleaver [4] generalized
Rao’s interpolation theorem and obtained the L®-inequalities ( see also [5, Theo-
rem 3.2] and [14, p. 240, Corollary 11]). In 1985, the first named author proved that
these results are still valid for L(®) spaces equipped with Luxemburg norm (see [14,
p. 226, p. 256] ). In fact, we have the following.

Lemma 4.1

Let ® be an N-function and = [0,1] or Q = [0,00). Suppose that ®o(u) =
u?,0 < s <1 and ®4(u) is defined to be the inverse of

oM (u) = [0 (w)] ' [@5(w)]" (62)

s

Then, for any collection {y; : 1 < i < N} c E®)(Q) and any {c; > 0}V with
Zﬁvzl ¢; =1, we have

N N N
2/(2—s —s —s 2/(2—s
SN iy —wilFpS " < 26207/ @m0 N gy 12107 (63)
=1

i=1 j=1

where ¢ = max {1—ci :1 < i< N}. Similarly, we have for {yi 1 <i < N} C
E®:(Q)

N N N
2/(2—s —s —s 2/(2—s
SN cicillys — il 7 < 2207 N gy |3/ (64)
=1

i=1 j=1

Lemma 4.2 (Ren [16, Lemma 3.3])

Let ® be an N-function and let ®s(u) be the inverse of (62). If 0 < s < 1, then
(I)S S AQ ﬂ \VOE
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Lemma 4.3 (Ren [16, Theorem 3.4])

Let ® be an N-function and let ®4 be the inverse of (62). If 0 < s < 1 and
Q=1[0,1] or Q = [0,00), then

2°/2 < N(L*)(Q)) (65)

and
2¢/2 < N (L% (Q)). (66)

Only the proof of (65) was given in [16]. By the same way of the proof of (65)
we can verify (66).

Theorem 4.4

Let ® be an N-function and let ®4 be the inverse of (62). Further let ¥} be the
complementary N-function to ®5. If 0 < s < 1 and Q = [0,1] or Q = [0,00), then
we have

max {JC(L®)(Q)), JO(L®=(Q))} < 27°/2 (67)

and
max {JCO(LY! (Q)), JC(LY ()} < 279/2. (68)

Proof. (67) follows directly from (65), (66), (5) and the notation N(X) = 1/N(X).
To prove (68) we first show

JO(LY () < 279/2, (69)

By Lemma 4.2, LY (Q) is reflexive, of course, it is a separable dual space. Let
{z i > 1} be a dense set in LY (Q) and put X,, = span{z; : 1 < i < n}. For
any given bounded closed convex set A C X,, with r(A, X,,) being its Chebyshev
radius and d(A) being its diameter, there always exists some z as its Chebyshev
center. In view of Lemma 1.3, there exist an integer N < n, {z; : i < N} c L%+ (Q),
{yi:i < N} CS((LY (2)*) = S(L®)(Q)) and {¢; > 0:i < N} with 3 ¢; = 1,
which satisfy conditions (a), (b) and (c) in Lemma 1.3. Putting A = 5% in (3), we
have from (63) that

22/(2_5)[?”(A,Xn)]2/(2_8) 2/(2—s) NN 2/(2—s
2/(2—s)-1 < [d(A)} chicjllyi —yjH(é(S) :
(71)

i=1 j=1

N
2/(2-s) —s
< [d(A)] 2> cillyill 5%
=1

— 2[a(4)]
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or

T(A)Xn) < 2—5/2 n o/
d(A)  — n+1 ’

Since A is arbitrary, we obtain

s/2
x,) <2522 .
TOXn) < (n+1>

Hence, (69) follows from (4). Similarly, by using (64) and (4) we can prove
JO (L (Q)) <2792, (70)
Finally, (68) follows from (69) and (70). O

Corollary 4.5 (Pichugov [12])
If1 <p< o0, %—i—%zl and Q = [0,1] or = [0,00), then

JC(LP(Q)) = JC(L(Q)) = max (2'/P71, 271/7). (71)

Proof. We first show

max (21771, 271/P) < min {JO(LP(Q)), JO(LY(Q))} . (72)
In fact, putting M (u) = [u[?, we have LM (Q) = LP(Q), || - [ary = || - [lp, LV(Q) =
L) and || - v = [| - ll¢, where
. (q B l)q_l q
N(v) = q—qlv\

is the complementary N-function to M (u). Since ay = By = ay = far = 277,
we obtain (72) from (60) and (61).
Next we prove

max {JC(LP(Q)), JC(L(Q))} < max (2/P71, 271/P) . (73)

If 1 < p <2 wechoose 1 < a <p <2 Putting ®(u) = |u|*, ®o(u) = u? and

s = f)g:g% in Theorem 4.4, we have 0 < s < 1 and for u > 0

(D;I(u) — ulfs/aJrs/Q — ul/p’
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ie., ®y(u) = [ulP. Since L(®)(Q) = LP(Q), LY (Q) = LU(Q) and lim, 1 (~5) =
% — 1, we have from (67) and (68) that

max { JO(LP(Q)), JC(L4(Q))} < 2V/P~L. (74)
If 2 < p < oo, we choose 2 < p < b < co. Letting ®(u) = |ul® and s = §EZ:IQ)§>
again we have 0 < s <1 and ®,(u) = |u|P. Note that limy o0 (—5) = —% . By (67)
and (68) we get

max { JC(LP(Q)), JC(LI(Q))} < 27V/P. (75)
Thus, (73) follows from (74) and (75). Finally, (71) follows from (72) and (73). O

EXAMPLE 4.6: If 1 < p < oo and ®(u) = |u|??+2Ju[P, then &~ (u) = (Vu + 1—1)/?
foru>0andfor0<s<1

O (u) = (Vu+1—1)15/Pys/2,

It is easily seen that

ap, = ﬁ@s = lim s

(I)S_l(u) - <1> 178/2104’3/2

u—oco O3t (2u) S \2
B@S = ﬁ@s and
Q_l(u) <1>1S/P+8/2
_ 0 . s
ap. =g = lim ———— = = .
T TS e (2n) - \2

Therefore, by Lemma, 4.2, Theorem 3.9 and Theorem 4.4 we have
2722 > {JC(LP)(0,1]), JO(LY [0,1])} > 27 (1 =e/2)=s/2

and

21—s/p+5/2—1’ ifl<p< %

—s s +
272 > {JO(LI")[0,00)), JO(L¥* [0,00)) } > {2—(1—s/2p)—8/2 i3 < p< oo
) 5 = .

In this paper we denote a < b <d and a < c¢ <d by a < {¢,b} <d for simplicity.
Now we can find the exact values of Jung constants of a class of reflexive Orlicz

function spaces equipped with Luxemburg norm and their dual spaces. The first
main theorem of this paper is as follows.
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Theorem 4.7
Let ® be an N-function and let ®s be the inverse of (62) with 0 < s < 1.
(i) If ® & Aa(00) [V V2(00), then

JC(L®)[0,1]) = JC(LY [0,1]) = 27/2. (76)
(11) If o ¢ AQ HVQ, then
JCO(L®)[0,00)) = JC (LY [0,00)) = 27%/2. (77)

Proof. (i) In virtue of (60), (67) and (68), one has

max<% ,/3@)s{qu:(‘bs)[&1J>,J0<LW?[0,1]>}s2‘5/2' (78)
ayp

s

Note that (62) implies that for v > 0

ool o
d;12u)  [271(2w) V2u]
If @ ¢ Ay(c0), then § < ag < B =1 by Theorem 1.5 (i). Therefore, by (79) we
have
1 s/2 1 —s5/2
20{@3 = 2(06@)178 (§> > <§> R
1 s/2
o = (0) (5) =2
and so,
1
max (@,B¢S> =927%/2, (80)
If ® & v75(00), then £ = ag < Bp < 1 by Theorem 1.5 (i). Because
L gy
20, s

again (80) holds. Finally, (76) follows from (78) and (80).
(ii) The proof is similar to that of (i). O

To find the exact values of Jung constants of a class of reflexive Orlicz function
spaces equipped with Orlicz norm and their dual spaces, we need the following two
lemmas.
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Lemma 4.8 (Ren [17, Lemma 4.5])
Let ® be an N-function and let ®5 be the inverse of (62). Then

1 1—s s 1 1—s s

Ao, As 2 Bs, Bs 2’

I 1-s s I 1-s s

A T ay T2 By T By T3
and

I 1-s s I 1-s s

To. Ay 2 Ba. Be 2

Lemma 4.9

Let ®, V¥ be a pair of complementary N-functions. Suppose that

to(t)

Cop = li
= D)

exists. Then

(i) Yo = limy o0 f_%(g;)) exists and yp = 2~ 1/Ce ;
-1
?1))(;1, = limt;m % exists and g = lim,_, o ff((;v)) =2 1/Cv .,
iii) 2veyw = 1.
to(t) 2! (u)

Similarly, if Cg, = lim;_g £ 16)

CY = lim, o ) exists, 4§ = 27/ and 29§7§ = 1.

exists, then 73 = lim,_g

Proof. The assertions follow from Propositions 1.6 and 1.7. [

The second main theorem of this paper is as follows.

Theorem 4.10
Let ®, &, and s be as in Theorem 4.7.
(i) If & € Na(00) () V2(o0) and Cy defined by (84) exists, then

JC(L*[0,1]) = JC(LY[0,1]) = 27/2.

(ii)) If @ ¢ Ao\ V2 and Cg exists in the case that ® ¢ Ag(c0) () Va(o0

exists in the case that ® ¢ Ay(0) () /2(0), then

J(L*4[0,00)) = JC(LY[0,00)) = 27%/2.

(84)

— 9—-1/Cqg
sz = 27/,

(85)

) or C3

(86)
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Proof. (i) By Lemma 4.2, (60), (67) and (68), we have

1
max (T,Bw> < {JC(L*[0,1)), JC(LY[0,1])} < 27%/2. (87)
ot °
The conditions given in (i) imply that Ce = oo or Cg = 1.

In the case that Cy = 0o, we have C}p :10—;5+§=%by(81) 1+ =1—=

— 5 by (12) and so, in view of Lemma 4.9,

—1/Cyt s/2—1
a@j:ﬁ@j:7@j22 v =2% .

Therefore,
1
In the case that C's = 1, one has Cis =1-3, é =5 and ag+ = Bg+ =

Vgt = 275/2 Again (88) holds. Thus, (85) follows from (87) and (88).
(ii) By Lemma 4.2, (61), (67) and (68), we have

max( ! ,ﬁw+>;g{J(xL¢ﬂo¢m»,JcmL@¢>m¢m»}fgz—ﬂ2. (89)
Oéq,j— s

Note that ® & Aq (2 if and only if ® & Ay(c0)[)Va(oo) or & & As(0) () v2(0).
In the case that C3 = oo or C9 = 1, one has

1 0
max | ——, 0 —275/2, (90)
<2“3¢ @:)

Since max (ﬁ@j,ﬁgj) < B\P: and ag+ < min (O‘\Pj’a?yj) always hold, we have

1 1 0 1 -
max (@ ) @aﬂ@jaﬁ\pj> < max (myﬁq;j> : (91)

s vy

The conditions given in (ii) imply that (88) holds or (90) holds. Finally, (86)
follows from (89), (91) and (88) or (90). O

EXAMPLE 4.11: Let 1 < p < 0o and let M (u) be the inverse of

M~Y(u) = In(1+w)]Y* ', uw>0.
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Further, let N(v) be the complementary N-function to M (u). Then

JC(LM0,1]) = JC(LN[0,1]) = 27 /4,
JC(LM0,00)) = JO(LN[0,00)) = 271/4
JC(LM[0,1)) = JC(L™M][0,1]) = 2~ /4

and

J(LM[0,00)) = J (L]0, 00)) = 2714,

In fact, putting ®(u) = el*l” — 1, we have ®~1(u) = [In(1 +u)]'/? for v > 0 and

;7 (u) = [In(1 + w)] /P w2,

S

Therefore, M(u) = ®4(u)|s=1/2 and N(v) = ¥f(v)[s=1/2. Since Cp = oo, the
conclusion follows from Theorem 4.7 and Theorem 4.10.
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