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Abstract

Let X be a quasi-Banach RIS (QBRIS) on [0,1]. Then the following inclusions
are valid: L∞⊂X⊂Lp, where p=p(X)>0. In classical Banach case p=1 and
for canonical injection operators I:L∞→X; I:X→L1 it’s known conditions for
such properties as strict singularity (SS), disjoint strict singularity (DSS), (p,q)-
absolutely summing, etc. We prove some similar facts in quasi-Banach case. If
X is a QBRIS on [0,∞], then it is γ-normed for some 0<γ≤1 and L∞∩Lγ⊂X⊂
Lp+L∞, for some p=p(X)>0. On the contrary to the finite measure case, when
I(L∞,X)∈SS for any X �=L∞, there are many examples of spaces on [0,∞) such
that I �∈DSS(L1∩L∞,X). Another deep difference is : on [0,1] : I(X,L1)∈DSS

for any BanachX �=L1; but on [0,∞):I(X,Lp+L∞) �∈DSS forX such thatLr,∞⊂X

for some r>p.

1. Definitions and basic notations

Let us start with some definitions. We shall use the term operator to mean a bounded
linear operator; subspaces are assumed infinite and closed. We shall consider rear-
rangement invariant spaces (RIS) of functions, both Banach and quasi-Banach. A
quasi-Banach RIS is a complete quasinormed vector space (X, ‖ · ‖) of measurable
functions on (0, 1) or (0,∞) such that ‖κA‖ = 1 if measA = 1, and if g is in X, then
f is in X and ‖f‖ ≤ ‖g‖ if f is a measurable function satisfying f∗ ≤ g∗, where h∗

denotes the decreasing rearrangement of the function |h| (cf. [1]). A quasinorm is a
function which satisfies the axioms for a norm except that the triangle inequality is
replaced by

‖x+ y‖ ≤ K
(
‖x‖ + ‖y‖

)
with some K > 1.
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An operator T between two quasi-Banach spaces X and Y is called strictly
singular (S.S.) (or Kato) if it fails to be an isomorphism on any (infinite dimensional)
subspace. This class is a closed operator ideal (cf. [2]).

An operator T between a quasi-Banach lattice X and a quasi-Banach space Y is
called disjointly strictly singular (D.S.S.) if there is no disjoint sequence of non-null
vector (xn) in X such that the restriction of T to the subspace [xn] spanned by the
vectors (xn) is an isomorphism. D.S.S. operators have been introduced in [3].

Clearly, every S.S. operator is D.S.S.. However, the converse is not true in
general (e.g. the inclusion map Lp(0, 1) ↪→ Lq(0, 1), for 0 < q < p < ∞, is D.S.S.
but it is not S.S.). The class of D.S.S. operators is not an operator ideal in general,
it fails to be stable with respect to the composition on the right (cf. [4]).

2. Inclusion map operators between Banach RIS on [0, 1]

If X is a Banach RIS on [0, 1], then L∞ ⊂ X ⊂ L1. The inclusion map from L∞ to
X is S.S. for every Banach RIS different from X (the proof was given in [5]). This
fact is the generalization of the A. Grothendick’s theorem about S.S. of inclusion
L∞ ↪→ Lp 1 ≤ p < ∞ ([6], ch. 5). By the way, this theorem together with the A.
Pietsch’s theorem about factorization of p-absolutely summing operators through
the restriction of inclusion L∞ ↪→ Lp gives an easy way to prove the S.S. of every
p-absolutely summing operator (compare with the proof of Proposition 4.6.14 in [2]).

The inclusion map X ↪→ L1 is not S.S. in general (see examples of tunnel
subspaces below). Nevertheless, it is D.S.S. for every Banach RIS X 	= L1.

Theorem 2.1

Let X be a Banach RIS on [0, 1] different from L1. Then the inclusion map

X ↪→ L1 is D.S.S.

Proof. The fundamental function φX of a Banach RIS X is defined by

φX(t) = ‖κ[0,t]‖X .

Fix ε > 0 and for f ∈ X we define

Mf,ε = {t :| f(t) |≥ ε‖f‖X}

and
MX

ε = {f ∈ X :|Mf,ε |> ε}.
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Such classes appeared first in the classical paper [7] for X = Lp. Suppose that a
subset K ⊂ X is contained in MX

ε for some ε > 0. Then

‖f‖1 =
∫ 1

0

|f(t)|dt ≥
∫

Mf,ε

|f(t)|dt ≥ ε‖f‖X |Mf,ε| ≥ ε2‖f‖X

for every f ∈ K.
Conversely, suppose that the norms of X and L1 are equivalent on K: δ‖f‖X ≤

‖f‖1 for every f ∈ K and for some δ > 0. Suppose that for every ε > 0 there is
a function fε ∈ K with fε 	⊂ MX

ε . Since X 	= L1, the associate space X ′ of X is
an RIS on [0, 1] different from L∞, so that lim

t→0
φX′(t) = 0 (cf. [8], lemma 3). Let’s

define ε > 0 such that φX′(ε) + ε ≤ δ/2. Then we have

δ‖fε‖X ≤ ‖fε‖1 =
∫

Mfε,ε

|fε(t)|dt+
∫

[0,1]\Mfε,ε

|fε(t)|dt

≤ ‖fε‖XφX′(ε) + ε|fε‖X ≤ (δ/2)‖f‖X ,

which leads to a contradiction.
So we have proved that the norms of X and L1 are equivalent on a subset K

of X if and only if K is contained in MX
ε for some ε > 0. If we assume that the

inclusion map I : X ↪→ L1 is not D.S.S., then there exists a disjoint sequence of
non-null functions (fn) in X such that the I|[fn] is an isomorfism. So there exists
ε > 0 with [fn] ⊆MX

ε . Hence we get that

1 = |[0, 1]| ≥ | ∪Mfn,ε| = Σ|Mfn,ε| = ∞;

note that the sets Mfn,ε are disjoint. �

Remark. The essential part of this proof was published in [9], but the notion of
D.S.S. operator was not introduced at that time.

Let’s return to an example, connected with the A. Grothendick’s theorem. Are
there the RIS X 	= L∞ such that the inclusion map X ↪→ Lp is S.S. for every p <∞?
The affirmative answer to this question is given by.

Example 2.1: Let X0 be the closure of the space C[0, 1] in the Orlicz space LMq

with M (u)
q ∼ expuq for some q > 2. Then X0 ⊂ ∩p<∞Lp, but X0 	= L∞. We can
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prove that the inclusion map X0 ↪→ Lp is S.S. for every finite p. For this purpose
we define

ηX(K) = lim
τ→0

sup
x∈K,x�=0

‖x∗κ[0,τ ]‖X
‖x‖X

, K ⊂ X, X −RIS.

If ηX(K) < 1, then K ⊂ MX
ε for some ε > 0 ([9]). Suppose that there exists

subspace H ⊂ X0 closed in Lp. Then ηLp
(H) = 0 and it means that H is closed in

L1 (see the proof of the Theorem 2.1). So the inclusion map X0 ↪→ L1 is not S.S.
But this fact contradicts Theorem 2 from [5].

3. Inclusion map operators between quasi-Banach RIS on [0, 1].
Tunnel subspaces

Every quasi-Banach RIS (QBRIS) X can be equivalently re-normed as an γ-Banach
space for some γ ∈ (0, 1), i.e. in addition to axioms we can add inequality

‖f + g‖γ ≤ ‖f‖γ + ‖g‖γ , f, g ∈ X.

It was proved in [10] that for γ-Banach space X the following continuous inclusions
are valid (on [0, 1]):

L∞ ⊂ X ⊂ Lγ,∞ (3.1)

where Lγ,∞ = {f : ‖f‖γ,∞ = supt>0 t
1/γf∗(t) < ∞}. In the same paper it was

shown also that Lγ,∞ is a γ-normed space. The questions about S.S. of two inclusion
map operators: L∞ ↪→ X and X ↪→ Lγ,∞ in general case are opened.

If we assume in addition that a γ-normed space X is γ-convex, i.e. for any
f1, . . . , fn in X ∥∥∥∥∥∥

(
n∑

i=1

|fi|γ
)1/γ

∥∥∥∥∥∥ ≤
(

n∑
i=1

‖fi‖γ
)1/γ

,

the situation becomes similar to Banach case.
In this case inclusions (3.1) transform to

L∞ ⊂ X ⊂ Lγ (cf. [10])

and the following theorem takes place (cf. [11]).

Theorem 3.1

Let X be an arbitrary RI γ-convex function space (0 < γ < 1), X 	= Lγ , then

the inclusion L∞ ↪→ X is S.S. and the inclusion X ↪→ Lγ is D.S.S.
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Proof. We will use a standard construction of γ-convexification of X (cf. [1], [11]).
Let us consider the space X(γ) = {f : |f(t)|1/γ ∈ X} with ‖f‖(γ) = ‖|f |1/γ‖γ . It
is known that Xγ is a Banach RIS and X(γ) ↪→ X. Besides it’s not difficult to
show that the inclusion map X ↪→ Y is D.S.S. if and only if the inclusion map
X(γ) ↪→ Y(γ) is D.S.S. Now the first assertion of the theorem is deduced from the
factorization L∞ ↪→ X(γ) ↪→ X, and the second one is deduced from the D.S.S. of
inclusion X(γ) ↪→ (Lγ)γ = L1. �

Quite a natural way to show that inclusion are not S.S. is to find the so-
called tunnel subspaces. Such name is given to the subspace H such that such
that H ⊂ X1 ⊂ X2 and H is closed in X2. On such a subspace (quasi-) norms of
RIS X1 and X2 are equivalent. The spaces X1 and X2 may be called the tunnel’s
bounds.

The most well-known example of a tunnel subspace is R2 = {f : f L0=
Σckrk,(ck) ∈ l2}, rk - Rademacher functions; L0 is the space of all Lebesgue-
measurable functions with measure convergence. It was shown in [8], that R2 is
a tunnel subspace for Banach RIS X such that G ⊂ X ⊂ L1, where G is the closure
of C[0, 1] in LM2 , M2(u) ∼ expu2. Moreover, we can state that the subspace R2 is
a tunnel subspace for a wider class of RIS X such that G ⊂ X ⊂ L0.

We will represent below some other examples of tunnel subspaces. The common
feature of these examples is that they are spanned by sequences of independent
identically distributed (i.i.d.) symmetric random variables (r.v.).

A real function (or r.v.) s(r)(ω), 0 ≤ ω ≤ 1, 0 < r ≤ 2 is called r-stable, if∫
R
eits

(r)(ω)dω = e−c|t|r for some c > 0 and ∀t ∈ R. 2-stable r.v. is a gaussian r.v.
Together with r-stable r.v. we will consider the next r.v.

g(r)(ω) = ω−1/r, 0 < r <∞, 0 < ω ≤ 1.

If (s(r)n ), (g(r)n ) are i.i.d. copies of functions s(r)(·), g(r)(·), then we have the following:
for RIS X such that L0 ⊃ X ⊃ Lr,∞,

‖Σans(r)n ‖X ≈ ‖Σang(r)n ‖X ≈ (Σ|an|r)1/r,

for 0 < r < 2.
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It means that there is the tunnel subspace isomorphic lr in the bounds marked
above.

For the case r ≥ 2 the situation radically changes:

spanX
(
s(2)n

)
≈ l2 ⇐⇒ X ⊃ G

spanX
(
g(2)n

)
≈ lM ⇐⇒ X ⊃ L2,∞,

where lM is an Orlicz sequence space, generated by the function M(u) = u2 ln(1 +
1/u), u > 0. The proof of the last fact is rather long and will be published separately.

For r > 2 the r-stable function can’t be defined, but

spanX
(
g(r)n

)
≈ l2 ⇐⇒ X ⊃ Lr,∞,

The tunnels for subspaces spanned by disjoint functions are never long. We
only represent here two propositions: 1) Inclusions Lp,1 ↪→ Lp and Lp ↪→ Lp,∞ are
D.S.S. on [0, 1] for p > 1. 2) For any p > 1 there is an Orlicz function space LM

such that the inclusion map LM ↪→ Lp is not D.S.S. (cf. [3]).

4. Inclusion map operators between RIS on [0,∞)

Many interesting results on this theme were obtained in [11]. Contrary to the [0, 1]-
situation it is possible to construct the subspaces spanned by disjoint functions with
rather long tunnels. It may be noted from the

Theorem 4.1.

Let f(ω) = ω−1/r, 0 < ω < ∞; 0 < r < ∞; {fi} are disjoint copies of this

function. ThenHr := spanLr,∞{f (r)
i } ≈ lr andHr is closed in Lp+L∞ for 0 < p < r.

So there is a tunnel subspace Hr, spanned by disjoint functions, with the bounds:

Lr,∞ ⊂ X ⊂ Lp + L∞.

Proof. The upper estimate for ‖∑
aif

(r)
i ‖X is well-known:

∥∥∥∑
aif

(r)
i

∥∥∥
X

≤ C
∥∥∥∑

aif
(r)
i

∥∥∥
r,∞

≤ C ′
(∑

|ai|r
)1/r

,

since the space Lr,∞ satisfies the upper r-estimate (for disjoint functions).
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In order to obtain the lower estimate we begin with with the writing the (quasi)
norm of Lr + L∞ in the following view

‖f‖pLp+L∞ =

1∫
0

x∗(t)pdt =
(
x∗(1)

)p + p

∞∫
x∗(1)

d(x, s)sp−1ds,

where x∗(·) is a decreasing rearrangement of |x(·)|, d(x; s) = m(t : |x(t)| > s).
After that we receive:

(∑
anf

(r)
n

)∗
(1) =

(∑
|an|r

)1/r

and

p

∞∫
(
∑

|an|r)1/r

d
(∑

anf
(r)
n ; s

)
sp−1ds =

p

r − p
(∑

|an|r
)p/r

.

Hence, ∥∥∥∑
anf

(r)
n

∥∥∥
Lp+L∞

=
( r

r − p
)1/p(∑

|an|r
)1/r

,

and ∥∥∥∑
anf

(r)
n

∥∥∥
X

≥ 1
C

∥∥∥∑
anf

(r)
n

∥∥∥
Lp+L∞

=
1
C

( r

r − p
)1/p

‖(an)‖r . �

Another deep difference between properties of inclusion map operators on [0, 1]
and [0,∞) be seen by considering the extreme inclusions. As was shown above, the
inclusion of Banach RIS X[0, 1] ↪→ L1 is always D.S.S. On the other hand, it’s easy
to see that the inclusion L∞[0,∞) ↪→ L1 + L∞ is not D.S.S. The tunnel subspace
here is spanned by functions {κ[n−1,n](·)}. From this simple fact we deduce that
between L∞ and L1 +L∞ there is not a single reflexive Banach RIS. The reason of
this phenomena is the Dunford-Pettis property of the space L∞. In the [0, 1]-case
for any Banach RIS X 	= L1, L∞ there are reflexive Banach RIS E1 and E2 such
that E1 ⊂ X ⊂ E2 (“reflexive gates”) (cf. [5], proof of th. 1).
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