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Abstract

The Smirnov class N∗(δ) of dyadic martingales is studied. Continuous linear
functionals on this class and its Fréchet envelope are described. It is proved
that, in contrast to the case of Hp-spaces, the space N∗(δ) is not isomorphic
to the Smirnov class of holomorphic functions on the unit disc. Finally, atomic
decompositions of elements ofN∗(δ) are obtained.

0. Introduction

This paper has been motivated by the following result [3]:
For 0 < p <∞, the Hardy spaces Hp(D) on the unit disc D and Hp(T) on the

unit circle T, and the Hardy space Hp(δ) of dyadic martingales on the interval [0, 1),
are all isomorphic.

Since the Haar system is an unconditional basis of Hp(δ), it follows that there
exists an unconditional basis for each of the spaces Hp(D) and Hp(T). Later on
Wojtaszczyk [6] proved that the Franklin system is an unconditional basis of H1(T).
He also constructed, using spline function, unconditional bases of Hp(T) for each
0 < p < 1. However, the problem of existence of an unconditional basis of the
Smirnov class (or the Hardy algebra) N∗(D) of the unit disc seems to be still open.
One could try to solve this problem by studying the martingale Smirnov class N∗(δ)
defined in a similar way as the martingale Hardy spaces.
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In this paper, we first show that the martingale Smirnov classes defined in terms
of square and dyadic maximal functions are isomorphic. From this we deduce that
the Haar system is an unconditional basis in N∗(δ). We also obtain a representation
of continuous linear functionals on N∗(δ), and construct the Fréchet envelope of
N∗(δ). Unfortunately, this envelope is not isomorphic to the Fréchet envelope of the
Smirnov class N∗(D) of analytic functions on the unit disc. Consequently, N∗(δ)
is not isomorphic to N∗(D), and the existence of an unconditional basis for the
latter space remains unresolved. In the last part of the paper, we obtain atomic
decompositions of functions in N∗(δ).

1. Preliminaries

By a dyadic interval in [0, 1) we mean any interval of the form [k/2n, (k + 1)/2n),
where n = 0, 1, 2, . . . and 0 ≤ k < 2n − 1. The length of an interval I is denoted
|I|. We write D for the family of all dyadic intervals, and � for the natural (linear)
order in D. That is, if I, J ∈ D, then J � I iff |I| < |J | or |I| = |J | and J lies to
the left of I.

For I = [k/2n, (k+1)/2n) ∈ D, we denote by I− = [2k/2n+1, (2k+1)/2n+1) and
I+ = [(2k+ 1)/2n+1, (2k+ 2)/2n+1) its left and right half subintervals, respectively.
Using this notation, the Haar orthonormal system {χI : I ∈ D} in L2([0, 1)) is
defined as follows:

χ[0,1) = 1[0,1) and χI = |I|−1/2(1I− − 1I+), for I ∈ D, I �= [0, 1).

We shall denote by H0 the linear space of all (formal) Haar series f =∑
I∈D cIχI . For each such a series f , we define

S(f, t) =
(∑

I

|cIχI(t)|2
)1/2

, t ∈ [0, 1)

the square function of f , and

f∗(t) = sup
{

1
|I|

∣∣∣∣
∫
I

f

∣∣∣∣ : t ∈ I ∈ D
}
, t ∈ [0, 1)

the dyadic maximal function of f , where∫
I

f :=
∑
J∈D

∫
I

cJχJ(t) dt =
∑
J�I

∫
I

cJχJ(t) dt.



The martingale Smirnov class 715

We identify any function f ∈ L1([0, 1)) with its Fourier-Haar series f =∑
I cI(f)χI , where cI(f) =

∫
[0,1)

f(t)χI(t) dt for every I ∈ D.
For each I ∈ D, the equality PIf =

∑
J�I cJχJ defines the natural projection

of H0 onto its subspace spanned by the functions {χJ : J � I}. It is easily seen
that for PIf , as a function on [0, 1), we have

(1.1) PI(f, t) =

{
1

|I−|
∫
I− f if t ∈ I−

1
|I+|

∫
I+ f if t ∈ I+ for I �= [0, 1).

This implies

f∗ = sup
I

|PIf |,(1.2)

f∗ = sup
I

(PIf )∗.(1.3)

Moreover, we have

(1.4) S(f) = sup
I
S(PIf)

for each f ∈ H0.

2. The dyadic Smirnov class

The dyadic Smirnov class N∗(δ) is defined to be the space of all f ∈ H0 such that

‖ f ‖∗ =
∫

[0,1)

log(1 + f∗(t)) dt <∞.

It is easily seen that ‖ · ‖∗ is an F-norm so that the metric d∗(f, g) = ‖ f − g ‖∗
defines on N∗(δ) a vector topology. Also, the space (N∗(δ), ‖ · ‖∗) is complete, i.e.
it is an F-space.

Indeed, it is clear that the weak topology σ defined on H0 by the coefficient
functionals f �→ cI(f), I ∈ D, is complete. Using (1.2) we see that

(2.1) |I| log
(
1 + |cI(f)| |I|−1/2

)
≤

∫
[0,1)

log(1 + |PI(f, t)− PI−1(f, t)|) dt ≤ ‖ 2f ‖∗

for each I ∈ D \ {[0, 1)}, where I − 1 is the interval directly proceeding I. It follows
that the topology induced on N∗(δ) by σ is weaker than the F-norm topology defined
by ‖ · ‖∗. Now, applying (1.3) one can verify that the ‖ · ‖∗-closed balls are σ-closed
in H0. In consequence, the F-norm topology of N∗(δ) is complete.

We now show that the class N∗(δ) can also be defined using square functions.
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Theorem 2.1

For every f ∈ H0, f belongs to N∗(δ) if and only if

‖f‖sq =
∫

[0,1)

log(1 + S(f, t)) dt <∞.

Moreover, the F-norm ‖ · ‖sq defines the same vector topology as ‖ · ‖∗.

For the proof we need the following two lemmas.

Lemma 2.2

For each positive measurable function g on a measure space (Ω,Σ, µ),

∫
Ω

log(1 + g) dµ =
∫ ∞

0

λg(t)
dt

1 + t
,

where λg is the distribution function of g,

λg(t) = µ({ω ∈ Ω : g(ω) > t }).

Proof. Indeed, we have

∫
Ω

log(1 + g) dµ =
∫ ∞

0

λlog(1+g)(t) dt =
∫ ∞

0

λg(et − 1) dt =
∫ ∞

0

λg(t)
dt

1 + t
. �

Lemma 2.3 ( [2], p. 98 and p. 100 ).

There is an absolute constant C such that, for every f ∈ L1[0, 1) and t > 0,

MathematicsandComputerScience,

λf∗(t) ≤ CλS(f)(t) + Ct−2

∫
{x :S(f,x)≤t}

S2(f, x) dx

and

(2.3) λS(f)(t)≤Cλf∗(t) + Ct−2

∫
{x : f∗(x)≤t}

(f∗)2(x) dx.

Proof of Theorem 2.1. Let X = { f ∈ H0 : ‖ f ‖sq <∞}. Using the same argument
as in the case ofN∗(δ), one can verify that the F-normed space (X, ‖·‖sq) is complete.
Next, as is well known, the sublinear operators f �→ f∗ and f �→ S(f) are of weak
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type (1,1) ( [2] Append. 2 Theorem 2). Thus, L1 is a subspace of both N∗(δ) and
X. Applying Lemma 2.2 and inequality (2.2), we obtain

‖ f ‖∗ =
∫ ∞

0

λf∗(t)
dt

1 + t

≤ C
∫ ∞

0

λS(f)(t)
dt

1 + t
+ C

∫ ∞

0

1
t2(1 + t)

∫
{S(f,x)≤t}

S2(f, x) dx dt

≤ C
∫ 1

0

log(1 + |S(f, x)|) dx+ C

for every f ∈ L1 and an absolute positive constant C. This, (1.3), (1.4), and the
dominated convergence theorem imply

‖ f ‖∗ ≤ C ‖ f ‖sq + C for every f ∈ H0.

Consequently, X ⊂ N∗(δ). The same argument as above (with (2.3) instead of (2.2))
shows that N∗(δ) ⊂ X. Thus X and N∗(δ) are equal as vector spaces. Moreover,
their complete metric vector topologies are stronger than the weak topology σ de-
scribed above. Therefore, by the closed graph theorem, the identity operator is a
topological isomorphism between X and N∗(δ). The proof is complete. �

Corollary 2.4

The Haar system is an unconditional Schauder bases in N∗(δ).

Corollary 2.5

Every Haar series f =
∑

I cIχI ∈ N∗(δ) converges almost everywhere.

Proof. Since
∑

I |cI |2|χI(x)|2 = S2(f, x) <∞ for a.a. x ∈ [0, 1), the series
∑

I cIχI
is convergent a.e. (cf. [2], Chap. III, Thm. 13 ). �

It is easily seen that if f =
∑

I cIχI ∈ N∗(δ), then

(HCE) |cI | ≤ exp
(
‖ f ‖sq|I|−1

)
for each I ∈ D.

This leads us to a study of the vector space F∗(δ) consisting of all f =
∑

I cIχI ∈ H0

such that

||| f |||m = sup
I

|cI | exp(−(m|I|)−1) <∞ for each m ∈ N.

As easily seen, the space F∗(δ) equipped with the locally convex topology defined
by the sequence of norms {|||·|||m : m ∈ N} is a Fréchet space.
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Theorem 2.6

(a) N∗(δ) is a dense subspace of F∗(δ), with the inclusion mapping being continuous.

(b) For every family γ = { γI : I ∈ D} of scalars satisfying

(DS) sup
I

|γI | exp(r|I|−1) <∞ for some r > 0,

the formula

(DLF) Tγf =
∑
I

cI(f)γI

defines a continuous linear functional on F∗(δ).
(c) For every continuous linear functional T on N∗(δ) there is a family γ = { γI :
I ∈ D} satisfying (DS) such that T = Tγ .

Proof. (a) This is a simple consequence of (HCE) and the fact that the space of all
finite Haar series is dense in both N∗(δ) and F∗(δ).

(b) Fix a family γ = { γI : I ∈ D} with supI |γI | exp(r|I|−1) = C <∞ for some
r > 0. Choose m ∈ N so that 2 < rm. Then for each f =

∑
I cIχI ∈ F∗(δ) we have

∣∣∣ ∑
I

cIγI

∣∣∣ ≤ C∑
I

||| f |||m exp
(
−r

2
|I|−1

)

≤ C||| f |||m
∞∑

n=0

2n−1∑
k=0

exp(−r2k−1) ≤ C ′ ||| f |||m,

where C ′ > 0 is a constant. Thus the functional Tγ defined by (CLF) is continuous
on F∗(δ).

(c). Let T be a continuous linear functional on N∗(δ). Fix ε > 0 such that

(2.4) |Tf | ≤ 1 for all f ∈ N∗(δ) with ‖ f ‖sq ≤ ε.

Set γI = TχI for I ∈ D, and let γ = {γI}. Since {χI : I ∈ D} is a Schauder bases in
N∗(δ), Tf =

∑
I cI(f)γI = Tγf for every f ∈ N∗(δ). Thus it remains to verify (DS).

Define fr,I = r exp(r|I|−1)χI for each r > 0 and I ∈ D. It is easily seen that
infr supI ‖ fr,I ‖sq = 0. Fix r > 0 such that ‖ fr,I ‖sq < ε for all I. Applying (2.4)
we finally get

sup
I

| γI | exp(r|I|−1) = sup
I

|Tfr,I | ≤ 1. �
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Let us now recall that if X = (X, τ) is an F-space whose topological dual X ′

separates the points of X, then the Fréchet envelope X̂ of X is defined to be the
completion of the space (X, τ c), where τ c is the strongest locally convex topology
on X that is weaker than τ . It is known (see e.g. [5]) that τ c is equal to the Mackey
topology of the dual pair (X,X ′). Moreover, every metrizable locally convex space
E is a Mackey space, i.e. its topology coincides with the Mackey topology of the
dual pair (E,E′). In consequence, the Fréchet envelope X̂ of X is defined uniquely
up to isomorphism by the conditions: (a) X̂ is a Fréchet space, (b) there exists
a continuous embedding j of X onto a dense subspace of X̂ such that the map
(X̂)′ � T �→ T ◦ j ∈ X ′ is a linear isomorphism of (X̂)′ onto X ′. Thus, as a simple
consequence of Theorem 2.6 we get the following.

Corollary 2.7

F∗(δ) is the Fréchet envelope of N∗(δ).

The reader is referred to [1] for information on power series spaces.

Corollary 2.8

F∗(δ) is isomorphic to the nuclear power series space Λ1(m).

Proof. Define a map ψ : Z+ → D by

ψ(m) = [k/2n, (k + 1)/2n) if m = 2n + k, n = 1, 2, . . ., 0 ≤ k < 2n − 1.

Then 1 ≤ m|ψ(m)|≤2 for every m ∈ Z+. Thus, by Theorem 2.6 and ( [4], Prop. 3.4),
F∗(δ) is isomorphic to Λ1(m). �

It is well known and easily seen that Fréchet envelopes of isomorphic F-spaces
are isomorphic. It was proved by Yanagihara [8] that the Fréchet envelope (or the
containing Fréchet space) of the Smirnov class N∗(D) of holomorphic functions on
the unit disc D is isomorphic to the nuclear power series space Λ1(

√
m). Thus,

in contrast to the case of dyadic and holomorphic Hardy spaces Hp, 0 < p < ∞
(see [7]), we have

Corollary 2.9

The spaces N∗(δ) and N∗(D) are not isomorphic.
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3. Atomic decompositions

N∗(δ) can be treated both as a space of measurable functions (by Corollary 2.5) and
as a sequence space, if we identify each f in N∗(δ) with the family {cI(f) : I ∈ D}.
However, there is no natural way of expressing the F-norms ‖ f ‖∗ or ‖ f ‖sq in terms
of the Haar coefficients of f . Nonetheless, in this section we show that N∗(δ) has a
nice “atomic definition”.

An atom is either the function 1[0,1) or any measurable function a such that
|a(t)| ≤ 1 for all t ∈ [0, 1) and

∫
[0,1)

a(t) dt = 0. We denote by A the family of all
atoms. For each a ∈ A we define

w(a) = inf{ |I| : I ∈ D, supp a ⊂ I }.

By an atomic decomposition of a measurable function f on [0, 1) we mean a
pair (α, a), where α = (αn) is a sequence of scalars and a = (an) is a sequence of
atoms such that

f =
∞∑

n=1

αnan a.e. on [0, 1),

and we let A(f) stand for the family of all atomic decompositions of f .

Proposition 3.1

If (ai) ⊂ A and a sequence of scalars (αi) satisfy

(3.1)
∞∑
i=1

log(1 + |αi|)w(ai) <∞,

then the series
∑∞

i=1 αiai converges both in N∗(δ) and a.e. to a function f such that

(3.2) ‖ f ‖∗ ≤
∞∑
i=1

log(1 + |αi|)w(ai).

Proof. Clearly, A ⊂ N∗(δ), and ‖αiai ‖∗ ≤ log(1 + |αi|)w(ai). Hence the series∑
i αiai is absolutely convergent in the F-space space N∗(δ), and obviously (3.2)

holds. Moreover, the sequence of functions gn =
∑n

i=1 |αiai| is increasing, and∫
[0,1)

log(1 + gn(t))dt ≤ ∑∞
i=1 ‖αiai‖∗ <∞. Hence, by Fatou’s lemma,

∫
[0,1

log(1 +
supn gn(t))dt <∞, and it follows that

∑∞
i=1 |αiai(t)| <∞ for a.a. t ∈ [0, 1). �
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Theorem 3.2

There is a positive constant C such that each f ∈ N∗(δ) has an atomic decom-

position ((αi), (ai)) with

(3.4)
∞∑
i=1

log(1 + |αi|)w(ai) ≤ C‖Cf ‖∗.

Proof. Fix f ∈ L1 and first assume
∫
[0,1)

f = 0. Define U ′
k = {x ∈ [0, 1) : f∗(x) >

βk }, where βk = 1
2 (exp 2k − 1) and k ∈ Z. Each U ′

k can be represented as the union⋃
i I

i
k, where each Iik is a maximal dyadic interval contained in U ′

k. Thus, for every
k, the intervals I1k , I

2
k , . . . are pairwise disjoint. Now let J ik be the dyadic interval

containing Iik and twice as long as Iik. Since J ik �⊂ U ′
k, the absolute value of

mJi
k
(f) =

1
|J ik|

∫
Ji
k

f

is not greater than βk.
Let Uk =

⋃
i J

i
k. By passing to a subsequence, we can assume that the dyadic

intervals J1
k , J

2
k , . . . are pairwise disjoint. Consider a Calderon-Zygmund decompo-

sition of f :

f = gk + bk, where gk = (1 − 1Uk
)f +

∑
i

mJi
k
(f)1Ji

k
.

We have |gk| ≤ βk+1, supp bk ⊂ Uk and
∫
Ji
k
bk = 0. Moreover, gk → f a.e. as

k → ∞, and gk → 0 a.e. as k → −∞. In consequence,

f =
∞∑
−∞

(gk+1 − gk) =
∞∑
−∞

(bk − bk+1),

where the series are convergent a.e. Next, |bk − bk+1| = |gk+1 − gk| ≤ 2βk+1.
Moreover, since each interval J ik+1 is contained in some interval Jjk and

∫
f = 0, it

follows that
∫

(bk − bk+1)1Ji
k

= 0. Thus,

aik =
2
βk+1

(bk − bk+1)1Ji
k

is an atom and
f =

∑
k

∑
i

2βk+1a
i
k a.e.
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Finally, we have

∑
k

∑
i

log(1 + |2βk+1|)w(aik) ≤
∑
k

∑
i

2k+1|J ik|

≤ 4
∑
k

∑
i

2k|Iik| = 4
∑
k

2km(U ′
k)

≤ 8
∑
k

2k
[
m(U ′

k) −m(U ′
k+1)

]
≤ 8

∑
k

2km
(
{x : βk ≤ f∗ < βk+1 }

)
≤ 8

∑
k

2km
(
{x : 2k ≤ log(1 + 2f∗) < 2k+1 }

)

≤ 8
∫

log(1 + 2f∗)dt.

This proves the result when
∫
f = 0. In order to extend this to an arbitrary

f ∈ L1, it is enough to note that f = (f − α1[0,1)) + α1[0,1), where α =
∫
[0,1)

f and
|α| ≤ f∗.

Let now f ∈ N∗(δ). Recall that, for every g ∈ N∗(δ), we have PIg → g in N∗(δ)
and a.e., and ‖PIg ‖∗ ≤ ‖ g ‖∗ (see Corollaries 2.4 and 2.5, and (1.1) ). Therefore,
we can find by induction a sequence (fk) in L1 such that f0 = 0 and

‖ fk+1 ‖∗ ≤ ‖ f − (f0 + . . .+ fk) ‖∗ ≤ 2−k‖ f ‖∗, k = 0, 1, . . .

Thus, the series
∑∞

k=1 fk converges to f in N∗(δ) and in measure. Now, for ev-
ery k, we can find an atomic decomposition fk =

∑
j αjkajk with

∑
j log(1 +

|αjk|)w(ajk) ≤ ‖ fk ‖∗. Then f =
∑

k

∑
j αjkajk in measure and (3.4) holds. Finally,

by Proposition 3.1, f =
∑

k

∑
j αjkajk a.e. �
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8. N. Yanagihara, The containing Fréchet space for the classN+, Duke Math. J. 40 (1973), 93–103.


