
Collect. Math. 48, 4-6 (1997), 687–700

c© 1997 Universitat de Barcelona

Weighted inequalities for monotone functions1

L. Maligranda

Department of Mathematics, Luleå University,
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Abstract

We give characterizations of weights for which reverse inequalities of the Hölder
type for monotone functions are satisfied. Our inequalities with general weights
and with sharp constants complement the results of [2], [6], [7] and [14], [15]
for the values of parameters 0 < p ≤ q < ∞.

1. Introduction

We consider positive monotone functions f on (0,∞) is the sense that, for some
real number α, x−αf(x) is either a decreasing or an increasing function. More
precisely, we write f ∈ Qα when x−αf(x) is decreasing and f ∈ Qα when x−αf(x)
is increasing.

The purpose of this paper is to find conditions on weight functions u and v such
that the inequality

(∗)
(∫ ∞

0

f(x)qu(x)dx
)1/q

≤ C
(∫ ∞

0

f(x)pv(x)dx
)1/p

holds, for any positive function f from one of the classes Qα, Qα or Qα0 ∩Qα1 . Our
main here is to prove such inequalities with the best constants. Surprisingly enough,

1 This research was supported in part by the grant 9265 (1996) of the Royal Swedish Academy of
Sciences.
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this was possible for all parameters 0 < p ≤ q < ∞. Some results of this type were
proved earlier by Lorentz-Hunt (cf. [13]), Bergh [1], Bergh-Burenkov-Persson [2],
Stepanov [14], Heinig-Stepanov [7], Pečarić-Persson [11], Heinig-Maligranda [6] and
recently by Gol’dman-Heinig-Stepanov [5].

All functions considered throughout the paper are assumed measurable and
positive (positive ≡ non-negative and not identically zero) on (0,∞). We shall write
0 ≤ f ↓ to mean that the function f is positive and decreasing (decreasing ≡ non-
increasing); for such f we define f−1(t) = inf{s > 0: f(s) < t}, inf ∅ = ∞. Similarly,
0 ≤ f ↑ means that f is positive and increasing (increasing ≡ non-decreasing); for
such f we define f−1(t) = inf{s > 0: f(s) > t}, inf ∅ = ∞.

Weight functions are locally integrable positive functions on (0,∞) which we
usually denote by u, v, w. 1E denotes the characteristic function of the set E.

The Lp,w-norm is the functional ‖f‖p,w =
(∫ ∞

0
f(x)pw(x)dx

)1/p

.
Inequalities, such as in (∗), are interpreted to mean that if the right side is

finite, so is the left, and the inequality holds.

2. The main results

We first prove sharp results for functions from the classes Qα1 and Qα0 . The results
for the classes Q0 and Q0 were proved by Sawyer [12], Stepanov [14] and Heinig-
Stepanov [7]. Different proofs were also given by Heinig-Maligranda [6]. In fact, it
is enough to prove such results for classes Q0 and Q0 and then by change of weights
to get them for classes Qα1 and Qα0 , but we are here giving two new proofs of these
results.

The following lemma will be useful in the proofs (see also [9]).

Lemma 1
Let w be a weight function and 0 < γ ≤ 1, 0 < r < ∞.

If 0 ≤ ϕ ↓, then

(1)
(∫ ∞

0

ϕ−1(x)1/γw(x)dx
)γ

≤
∫ ∞

0

[∫ ϕ(y)

0

w(x)dx
]γ
dy

and

(2)
∫ ∞

ϕ−1(x)

ϕ(y)rdy =
∫ x

0

ϕ−1(s)d(sr) − xrϕ−1(x) .

If 0 ≤ ϕ ↑, then

(3)
(∫ ∞

0

ϕ−1(x)1/γw(x)dx
)γ

≤
∫ ∞

0

[∫ ∞

ϕ(y)

w(x)dx
]γ
dy.

For γ = 1 we have equalities in (1) and (3).
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Proof. First we prove that for the decreasing function ϕ we can write formally the
inequality

(∗∗) ϕ−1(x) ≤
∫ ∞

0

1[0,ϕ(y)](x)dy.

In fact, let ϕ−1(0+) = ∞ and ϕ−1(∞) = 0. If 0 < y < ϕ−1(x), then x ≤ ϕ(y) and
we have

ϕ−1(x) =
∫ ϕ−1(x)

0

dy =
∫ ∞

0

1[0,ϕ−1(x))(y)dy ≤
∫ ∞

0

1[0,ϕ(y)](x)dy .

In the case when either ϕ−1(0+) < ∞ or ϕ−1(∞) > 0 we can make modifications
of this argument to see that inequality (∗∗) is true also in these cases. Then by the
Minkowski inequality with the L1/γ,w-norm to (∗∗), we find that(∫ ∞

0

ϕ−1(x)1/γw(x)dx
)γ

= ‖ϕ−1(x)‖1/γ,w

≤
∥∥∥∫ ∞

0

1[0,ϕ(y)](x)dy
∥∥∥

1/γ,w
≤

∫ ∞

0

‖1[0,ϕ(y)](x)‖1/γ,wdy

=
∫ ∞

0

[∫ ϕ(y)

0

w(x)dx
]γ
dy

and the inequality (1) is proved.

The equality (2) follows from the obvious equality∫ xr

0

ϕ−1(t1/r)dt =
∫ x

0

ϕ−1(s)d(sr)

and geometrically clear equality∫ xr

0

ϕ−1(t1/r)dt = xrϕ−1(x) +
∫ ∞

ϕ−1(x)

ϕ(y)rdy .

To prove the inequality (3) for increasing ϕ we first observe that

(∗ ∗ ∗) ϕ−1(x) ≤
∫ ∞

0

1[ϕ(y),∞)(x)dy.

In fact, if ϕ−1(0+) = 0, ϕ−1(∞) = ∞ and 0 < y < ϕ−1(x), then ϕ(y) ≤ x and

ϕ−1(x) =
∫ ϕ−1(x)

0

dy =
∫ ∞

0

1[0,ϕ−1(x))(y)dy ≤
∫ ∞

0

1[ϕ(y),∞)(x)dy .
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The cases when either ϕ−1(0+) > 0 or ϕ−1(∞) < ∞ need again minor modifications.
Then, similarly as above, by the Minkowski inequality with the L1/γ,w-norm used
to (∗ ∗ ∗), we find that(∫ ∞

0

ϕ−1(x)1/γw(x)dx
)γ

= ‖ϕ−1(x)‖1/γ,w

≤
∥∥∥∫ ∞

0

1[ϕ(y),∞)(x)dy
∥∥∥

1/γ,w
≤

∫ ∞

0

‖1[ϕ(y),∞)(x)‖1/γ,wdy

=
∫ ∞

0

[∫ ∞

ϕ(y)

w(x)dx
]γ
dy,

and the inequality (3) is proved.
If γ = 1, then the set {(x, y): y = ϕ(x) or x = ϕ−1(y)} as the sum of the graphs

of ϕ(x) and ϕ−1(y) has two-dimensional Lebesgue measure zero (cf. [16]), and by
the Fubini theorem we have equalities. �

Remark 1. If ϕ is an increasing function and ϕ(0+) > 0, then inequality (3) follows
from inequality (1). We should only use inequality (1) to the decreasing function
ψ(x) = 1/ϕ(x) with the weight w1(x) = w(1/x)/x2 and change variable x to 1/x.

Theorem 1
Let 0 < p ≤ q < ∞ and −∞ < α0 < α1 < ∞.

(a) The inequality

(4)
(∫ ∞

0

f(x)qu(x)dx
)1/q

≤ A
(∫ ∞

0

f(x)pv(x)dx
)1/p

holds for all 0 ≤ f ∈ Qα1 if and only if

(5) Aα1 := sup
t>0

(∫ t

0

xqα1u(x)dx
)1/q(∫ t

0

xpα1v(x)dx
)−1/p

< ∞ .

Moreover A = Aα1 is the best constant.

(b) The inequality

(6)
(∫ ∞

0

f(x)qu(x)dx
)1/q

≤ B
(∫ ∞

0

f(x)pv(x)dx
)1/p

holds for all 0 ≤ f ∈ Qα0 if and only if

(7) Bα0 := sup
t>0

(∫ ∞

t

xqα0u(x)dx
)1/q(∫ ∞

t

xpα0v(x)dx
)−1/p

< ∞ .

Moreover B = Bα0 is the best constant.
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We give two proofs of the theorem.

Proof 1. (a) (4) ⇒ (5). Take f(x) = xα11[0,t](x), t > 0, in (4). This also gives
Aα1 ≤ A.

(5) ⇒ (4). Let Aα1 < ∞, i.e.(∫ t

0

xqα1u(x)dx
)1/q

≤ Aα1

(∫ t

0

xpα1v(x)dx
)1/p

∀t > 0 .

Then, by putting both sides to the power p and t = ϕ(y) with decreasing ϕ, and
integrating from 0 to ∞ with respect to y, we obtain∫ ∞

0

(∫ ϕ(y)

0

xqα1u(x)dx
)p/q

dy ≤ Ap
α1

∫ ∞

0

(∫ ϕ(y)

0

xpα1v(x)dx
)
dy.

Now by using the inequality (1) with γ = p/q ≤ 1 and the equality in (1) when
γ = 1, we obtain(∫ ∞

0

ϕ−1(x)q/pxqα1u(x)dx
)p/q

≤ Ap
α1

∫ ∞

0

ϕ−1(x)xpα1v(x)dx .

Taking ϕ−1(x) = (x−α1f(x))p, which is a decreasing function, we have(∫ ∞

0

f(x)qu(x)dx
)p/q

≤ Ap
α1

∫ ∞

0

f(x)pv(x)dx

and so A ≤ Aα1 .

(b) The necessity and inequality Bα0 ≤ B follows at once by taking f(x) =
xα0 1[t,∞)(x), t > 0, in (6).

(7) ⇒ (6). Now, using the assumption(∫ ∞

t

xqα0u(x)dx
)1/q

≤ Bα0

(∫ ∞

t

xpα0v(x)dx
)1/p

∀t > 0 ,

making the substitution t = ϕ(y) with increasing ϕ, integrating in y from 0 to ∞
and applying the inequality (3) from Lemma 1, we get that(∫ ∞

0

ϕ−1(x)q/pxqα0u(x)dx
)p/q

≤
∫ ∞

0

(∫ ∞

ϕ(y)

xqα0u(x)dx
)p/q

dy

≤ Bp
α0

∫ ∞

0

(∫ ∞

ϕ(y)

xpα0v(x)dx
)

= Bp
α0

∫ ∞

0

ϕ−1(x)xpα0v(x)dx .
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Taking ϕ−1(x) = (x−α0f(x))p, which is an increasing function, we obtain(∫ ∞

0

f(x)qu(x)dx
)p/q

≤ Bp
α0

∫ ∞

0

f(x)pv(x)dx

and so B ≤ Bα0 .

Proof 2. (5) ⇒ (4). Let Aα1 < ∞ and
∫ ∞
0

v(x)f(x)pdx < ∞. From the assumption
0 ≤ f ∈ Qα1 it follows that t−pα1f(t)p ≤ x−pα1f(x)p for 0 < x ≤ t. Multiplying
this inequality by xpα1v(x) and integrate in x from 0 to t we find that

t−pα1f(t)p
∫ t

0

xpα1v(x)dx ≤
∫ t

0

f(x)pv(x)dx .

Using this we therefore obtain

d

dt

[( ∫ t

0

f(x)pv(x)dx
)q/p]

−A−1
α1
f(t)qu(t)

=
q

p

(∫ t

0

f(x)pv(x)dx
)q/p−1

f(t)pv(t) −A−q
α1
f(t)qu(t)

≥ q

p

[
t−pα1f(t)p

∫ t

0

xpα1v(x)dx
]q/p−1

f(t)pv(t) −A−q
α1
f(t)qu(t)

= t−qα1f(t)q
d

dt

[(∫ t

0

xpα1v(x)dx
)q/p

−A−q
α1

∫ t

0

xqα1u(x)dx
]

= t−qα1f(t)q
d

dt
k(t) ,

where k(t) =
(∫ t

0
xpα1v(x)dx

)q/p

−A−q
α1

∫ t

0
xqα1u(x)dx.

Integrating from 0 to ∞ we see that(∫ ∞

0

f(x)pv(x)dx
)q/p

−A−q
α1

∫ ∞

0

f(t)qu(t)dt ≥
∫ ∞

0

t−qα1f(t)qk′(t)dt .

Moreover, by integration by parts, the right hand side can be written

=
[
t−qα1f(t)qk(t)|∞0

]
−

∫ ∞

0

k(t)d
[
t−qα1f(t)q

]
≥ 0

since k(t) ≥ 0 for t > 0, f ∈ Qα1 and lim
t→0+

t−qα1f(t)qk(t) ≤ 0. Thus A ≤ Aα1 .

Similarly, we can prove that B ≤ Bα0 , by using almost the same arguments:
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10. 0 ≤ f ∈ Qα0 ⇒ t−pα0f(t)p
∫ ∞
t

xpα0v(x)dx ≤
∫ ∞
t

f(x)pv(x)dx ,

20. d
dt

[
−

(∫ ∞
t

f(x)pv(x)dx
)q/p]

−B−q
α0
f(x)qu(t) ≥ t−qα0f(t)q d

dth(t),

where h(t) = −
(∫ ∞

t
xpα0v(x)dx

)q/p

+B−q
α0

∫ ∞
t

xqα0u(x)dx .

30. Integrate from 0 to ∞ and use the integration by parts to obtain(∫ ∞

0

f(x)pv(x)dx
)q/p

−B−q
α0

∫ ∞

0

f(t)qu(t)dt ≥ 0 . �

Remark 2. Theorem 1 can be also written in the following from: If 0 < p ≤ q < ∞,
then

sup
0≤f∈Qα1

‖f‖q,u
‖f‖p,v

= sup
t>0

(∫ t

0

xqα1u(x)dx
)1/q(∫ t

0

xpα1vdx
)−1/p

and

sup
0≤f∈Qα0

‖f‖q,u
‖f‖p,v

= sup
t>0

(∫ ∞

t

xqα0u(x)dx
)1/q(∫ ∞

t

xpα0v(x)dx
)−1/p

.

Example 1: (Embedding of Lorentz spaces).

Let 0 < p ≤ q < ∞ and u(x) = xαq−1, v(x) = xαp−1 with α > −α1. Then
Aα1 = p1/pq−1/q(α+ α1)1/p−1/q and, by Theorem 1(a), we conclude that(∫ ∞

0

(
xαf(x)

)q dx
x

)1/q

≤ p1/pq−1/q(α+ α1)1/p−1/q
(∫ ∞

0

(
xαf(x)

)p dx
x

)1/p

,

for any 0 ≤ f ∈ Qα1 . This result, for α1 = 0, is known in the theory of Lorentz
spaces (cf. [13, Theorem 3.11]) as the embedding L(1/α, p) ⊂ L(1/α, q) of Lorentz
spaces with the norm equal to 1, where the Lorentz space L(1/α, p) is the space

generated by the functional ‖f‖L(1/α,p) =
[
pα

∫ ∞
0

(xαf∗(x))pdx
]1/p

and f∗ denotes
the rearrangement of f . The usual proofs here are using simple functions and the
Fatou lemma.

We now prove the result where both of the monotonicity conditions Qα1 and
Qα0 on a function are assumed. Such class of functions was early studied, e.g. by
Chen [4].

Theorem 2
Let 0 < p ≤ q < ∞. Assume that 0 ≤ f ∈ Qα0 ∩Qα1 with −∞ < α0 < α1 < ∞

and weights u, v satisfying the conditions (5) and (7). Then

(8)
(∫ ∞

0

f(x)qu(x)dx
)1/q

≤ Cp,q

(∫ ∞

0

f(x)pv(x)dx
)1/p

,

where Cp,q = (A1/(1/q−1/p) +B1/(1/q−1/p))1/q−1/p for p �= q and Cp,q = max(A,B).
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Proof. For any M > 0 we choose ξ ∈ (0,∞) such that∫ ∞

ξ

f(x)qu(x)dx = M

∫ ξ

0

f(x)qu(x)dx .

Then (∫ ∞

0

f(x)qu(x)dx
)p/q

=
(∫ ξ

0

f(x)qu(x)dx+
∫ ∞

ξ

f(x)qu(x)dx
)p/q

= (1 +M)p/q
(∫ ξ

0

f(x)qu(x)dx
)p/q

=
(1 +M)p/q

1 + λ

[(∫ ξ

0

f(x)qu(x)dx
)p/q

+
λ

Mp/q

(∫ ∞

ξ

f(x)qu(x)dx
)p/q]

.

Therefore, by using Theorem 1(a) and (b) and choosing λ such that Ap = λ
Mp/qB

p,
we find that( ∫ ∞

0

f(x)qu(x)dx
)p/q

≤ (1 +M)p/q

1 + λ

[
Ap

∫ ξ

0

f(x)pv(x)dx+
λ

Mp/q
Bp

∫ ∞

ξ

f(x)pv(x)dx
]

=
(1 +M)p/q

1 + λ
Ap

∫ ∞

0

f(x)pv(x)dx =
(1 +M)p/q

Bp +ApMp/q
ApBp

∫ ∞

0

f(x)pv(x)dx .

The infimum over M > 0 is attained at M = M0 = (A/B)pq/(q−p) and it is equal to
[AB(Apq/(q−p) + Apq/(q−p))1/q−1/p]p = Cp

p,q for p �= q. In the case when p = q the
infimum is equal to max(Ap, Bp). �

Example 2: (Embedding of interpolation spaces).

Let 0 < p ≤ q < ∞ and u(x) = x−αq−1, v(x) = x−αp−1 with α0 < α < α1.
Then conditions (5) and (7) holds, respectively with A = p1/pq−1/q(α1 − α)1/p−1/q

and B = p1/pq−1/q(α− α0)1/p−1/q. By Theorem 2 we obtain that inequality(∫ ∞

0

(
x−αf(x)

)q dx
x

)1/q

≤ p1/pq−1/q
( (α− α0)(α1 − α)

α1 − α0

)1/p−1/q(∫ ∞

0

(
x−αf(x)

)p dx
x

)1/p

,
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holds for any 0 ≤ f ∈ Qα0 ∩Qα1 , i.e., for any f satisfying

0 ≤ f(x) ≤ max
(
(s/t)α0 , (s/t)α1

)
f(t) ∀s, t > 0 .

This result in the case when α0 = 0 and α1 = 1 was stated in [3], as the exact
constant for the embedding of real interpolation spaces (A0, A1)α,p ⊂ (A0, A1)α,q,
and was proved by Bergh [1] who used a symmetrization argument. Another proof
of this result was given by Bergh-Burenkov-Persson [2]. Our idea of the proof is in
fact taken from this paper. Recently, with the same technique, Pečarić-Persson [11]
proved the result for functions satisfying 0 ≤ f(s) ≤ C max ((s/t)α0 , (s/t)α1)f(t) for
all s, t > 0, where C ≥ 1.

Theorem 2 motivate us to give necessary and sufficient conditions on the weights
u and v that inequality (∗) holds for functions f from the classes Qα0 ∩Qα1 . We will
prove this but also with a good control of the constants (see also [9], Theorem 1).

Theorem 3

Let 0 < p ≤ q < ∞ and −∞ < α0 < α1 < ∞. The inequality

(9)
(∫ ∞

0

f(x)qu(x)dx
)1/q

≤ C
(∫ ∞

0

f(x)pv(x)dx
)1/p

holds for all 0 ≤ f ∈ Qα0 ∩ Qα1 if and only if (9) is true for the functions ft(x) =
min (xα1 , tα1−α0xα0) with arbitrary t > 0, i.e.,

D = sup
t>0

{(∫ ∞

0

[
min(xα1 , tα1−α0xα0)

]q
u(x)dx

)1/q

×
(∫ ∞

0

[
min(xα1 , tα1−α0xα0)

]p
v(x)dx

)−1/p
}
< ∞ .(10)

Moreover D ≤ C ≤ 2D.

Proof. (We repeat here the proof from [9] for the convenience of the reader).

(9) ⇒ (10). This implication is obvious with D ≤ C. Moreover, if D < ∞ and∫ ∞
0

xpα1v(x)dx < ∞, then

tp(α1−α0)

∫ ∞

t

xpα0v(x)dx ≤
∫ ∞

t

xpα1v(x)dx → 0 as t → ∞
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and thus, according to (10),
∫ ∞
0

xqα1u(x)dx < ∞. This gives that again

tq(α1−α0)

∫ ∞

t

xqα0u(x)dx ≤
∫ ∞

t

xqα1v(x)dx → 0 as t → ∞ .

Therefore (∫ ∞

0

xqα1u(x)dx
)1/q(∫ ∞

0

xpα1v(x)dx
)−1/p

≤ D .

(10) ⇒ (9). If 0 ≤ f ∈ Qα0 ∩Qα1 , then the function h defined by

h(x) = x−α0/(α1−α0)f
(
x1/(α1−α0)

)
belongs to Q0 ∩Q1 and its smallest concave majorant ĥ, defined by

ĥ(x) = inf
t>0

(
1 +

x

t

)
h(t), x > 0 ,

satisfy the inequalities h(x) ≤ ĥ(x) ≤ 2h(x) for all x > 0 (cf., e.g. [3, Lemma 5.4.3]
or [8, Lemma 14.1]), and ĥ as a concave function has the representation

ĥ(x) = α+
∫ x

0

m(s)ds, 0 ≤ m ↓ ,

where α = lim
x→0+

k(x) and m(s) = ĥ′(s), with ĥ′(s) being the right-derivative which

is positive right-continuous decreasing function.
The function g(x) = xα0 ĥ(xα1−α0) belongs to Qα0 ∩Qα1 and has representation

(11) g(x) = c0x
α0 + xα0

∫ xα1−α0

0

m(s)dx, 0 ≤ m ↓ ,

with c0 = limx→0+ x−α0g(x). Since h ≤ ĥ ≤ 2h it follows that f ≤ g ≤ 2f and it
is enough to prove our result for the function g with the representation (11). Thus,
let

∫ ∞
0

g(x)pv(x)dx < ∞ and D < ∞, i.e., for every t > 0{∫ ∞

0

[
min(xα1 , tα1−α0xα0)

]q
u(x)dx

}p/q

≤ Dp

∫ ∞

0

[
min(xα1 , tα1−α0xα0)

]p
v(x)dx .

Putting t = ϕ(y), where ϕ is a positive decreasing which will be chosen later on,
and integrate from 0 to ∞ with respect to y to obtain∫ ∞

0

{∫ ∞

0

[
min(xα1 , ϕ(y)α1−α0xα0)

]q
u(x)dx

}p/q

dy

≤ Dp

∫ ∞

0

{∫ ∞

0

[
min(xα1 , ϕ(y)α1−α0xα0)

]p
v(x)dx

}
dy .
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By using the Minkowski inequality and the equality (2) in Lemma 1 we find∫ ∞

0

[∫ ∞

0

(
min(xα1 , ϕ(y)α1−α0xα0)

)q
u(x)dx

]p/q
dy

≥
{∫ ∞

0

[∫ ∞

0

(
min(xα1 , ϕ(y)α1−α0xα0)

)p
dy

]q/p
u(x)dx

}p/q

=
{∫ ∞

0

[∫ ϕ−1(x)

0

xpα1dy +
∫ ∞

ϕ−1(x)

ϕ(y)p(α1−α0)xpα0dy
]q/p

u(x)dx
}p/q

=
{∫ ∞

0

[
ϕ−1(x)xpα1 + xpα0

∫ ∞

ϕ−1(x)

ϕ(y)p(α1−α0)dy
]q/p

u(x)dx
}p/q

=
{∫ ∞

0

[
xpα0

∫ x

0

ϕ−1(s)d
(
sp(α1−α0)

)]q/p
u(x)dx

}p/q

.

Similarly, by the Fubini theorem and the equality (2) in Lemma 1∫ ∞

0

{∫ ∞

0

[
min(xα1 , ϕ(y)α1−α0xα0)

]p
v(x)dx

}
dy

=
∫ ∞

0

[∫ ∞

0

(
min(xα1 , ϕ(y)α1−α0xα0)

)p
dy

]
v(x)dx

=
∫ ∞

0

[
ϕ−1(x)xpα1 + xpα0

∫ ∞

ϕ−1(x)

ϕ(y)p(α1−α0)dy
]
v(x)dx

=
∫ ∞

0

[
xpα0

∫ x

0

ϕ−1(s)d
(
sp(α1−α0)

)]
v(x)dx .

From the above inequalities and equalities we obtain the crucial inequality{∫ ∞

0

[
xpα0

∫ x

0

ϕ−1(x)d
(
sp(α1−α0)

)]q/p
u(x)dx

}p/q

≤ Dp

∫ ∞

0

[
xpα0

∫ x

0

ϕ−1(s)d
(
sp(α1−α0)

)]
v(x)dx .(12)

Now, if g has the representation (11), then by taking as a decreasing function

ϕ−1(x) = m
(
xα1−α0

)[
x−α1g(x)

]p−1 =
x1−p(α1−α0)

p(α1 − α0)
d

dx

[
x−pα0g(x)p

]
,

we obtain∫ x

0

ϕ−1(s)d
(
sp(α1−α0)

)
= x−pα0g(x)p − lim

s→0+
s−pα0g(s)p = x−pα0g(x)p,

which we can put to (12) and get(∫ ∞

0

g(x)qu(x)dx
)p/q

≤ Dp

∫ ∞

0

g(x)pv(x)dx .

Since f ≤ g ≤ 2f it follows that (9) holds and C ≤ 2D. �
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Remark 3. The above proof shows that the inequality (9) holds for every f having
the representation (12) if and only if (10) holds and in this case C = D.

Remark 4. If we take u and v as in Example 2, then

D = p1/pq−1/q
( (α− α0)(α1 − α)

α1 − α0

)1/p−1/q

.

Special choices of α0, α1 and m can give some known results for decreasing
functions, which were proved before but not always with the best constant and not
in the full range 0 < p ≤ q < ∞ of parameters p and q.

Corollary 1

If 0 < p ≤ q < ∞, then

sup
0≤f↓

∥∥∥∫ x

0
f
∥∥∥
q,u∥∥∥∫ x

0
f
∥∥∥
p,v

= sup
t>0

‖min(x, t)‖q,u
‖min(x, t)‖p,v

.

Take, in the above proof, α0 = 0, α1 = 1 and m = f with f being positive
decreasing function. This result with the best constant but with some additional
restrictions on p and q was proved in [6, Theorem 3.7]. Similarly, we can get the
result from [6, Theorem 4.3 (a)].

Corollary 2

If 0 < p ≤ q < ∞, then

sup
0≤fconcave

‖f‖q,u
‖f‖p,v

= sup
t>0

‖min(x, t)‖q,u
‖min(x, t)‖p,v

.

Corollary 3

If 0 < p ≤ q < ∞, then

sup
0≤f↓

∥∥∥ 1
x

∫ x

0
f
∥∥∥
q,u∥∥∥ 1

x

∫ x

0
f
∥∥∥
p,v

= sup
t>0

‖min(1, t/x)‖q,u
‖min(1, t/x)‖p,v

.

Take, in the proof of Theorem 3, α0 = −1, α1 = 0 and m = f with f being
positive decreasing function. This result with the restriction q ≥ 1 and not with
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the best constant (only equivalence of the above expressions) was quite differently
proved by Stepanov [15, Theorem 3.3].

Remark 5. Gol’dmann-Heinig-Stepanov [5] established, using the discretization
method, the equivalence of inequality (9) for f ∈ Q0 ∩ Q1 with inequality (10) in
the case 0 < p ≤ q < ∞, but also the equivalence in the case 0 < q < p < ∞ with
some complicated corresponding expression to (10). Our proof here (only the case
0 < p ≤ q < ∞) is different and with a good control of the constants.
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