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ABSTRACT

We give characterizations of weights for which reverse inequalities of the Holder
type for monotone functions are satisfied. Our inequalities with general weights
and with sharp constants complement the results of [2], [6], [7] and [14], [15]
for the values of parameters 0 < p < g < 0.

1. Introduction

We consider positive monotone functions f on (0,00) is the sense that, for some
real number «, x~%f(z) is either a decreasing or an increasing function. More
precisely, we write f € Q, when x~%f(x) is decreasing and f € Q% when z~ f(z)
is increasing.

The purpose of this paper is to find conditions on weight functions u and v such
that the inequality

(%) </0°O f(x)qu(x)dx> e < C(/OOO f(m)pv(x)dl‘) v

holds, for any positive function f from one of the classes Q<, Q. or Q*° N Q,,. Our
main here is to prove such inequalities with the best constants. Surprisingly enough,
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688 MALIGRANDA

this was possible for all parameters 0 < p < ¢ < co. Some results of this type were
proved earlier by Lorentz-Hunt (cf. [13]), Bergh [1], Bergh-Burenkov-Persson [2],
Stepanov [14], Heinig-Stepanov [7], Pecari¢-Persson [11], Heinig-Maligranda [6] and
recently by Gol’dman-Heinig-Stepanov [5].

All functions considered throughout the paper are assumed measurable and
positive (positive = non-negative and not identically zero) on (0, 00). We shall write
0 < f | to mean that the function f is positive and decreasing (decreasing = non-
increasing); for such f we define f~1(t) = inf{s > 0: f(s) < t}, inf ) = co. Similarly,
0 < f 1 means that f is positive and increasing (increasing = non-decreasing); for
such f we define f~1(¢) = inf{s > 0: f(s) > t}, inf() = oco.

Weight functions are locally integrable positive functions on (0, c0) which we
usually denote by u,v,w. 1g denotes the characteristic function of the set E.

oo 1/p
The L, ,-norm is the functional || f||p.» = (fo f(x)pw(:c)dx>

Inequalities, such as in (x), are interpreted to mean that if the right side is
finite, so is the left, and the inequality holds.

2. The main results

We first prove sharp results for functions from the classes Q),, and Q“°. The results
for the classes Qg and Q° were proved by Sawyer [12], Stepanov [14] and Heinig-
Stepanov [7]. Different proofs were also given by Heinig-Maligranda [6]. In fact, it
is enough to prove such results for classes Qo and Q° and then by change of weights
to get them for classes Q)n, and QQ“°, but we are here giving two new proofs of these
results.

The following lemma will be useful in the proofs (see also [9]).

Lemma 1
Let w be a weight function and 0 <y <1, 0 < r < oo.
If 0 < |, then

(1) (/OOO Sofl(x)l/ww(gg)dx)w < /OOO {/OQD(y) w(m)dwrdy

) [ = [ w6 —ae ).

If 0< T, then

(3) (/OOO (pfl(;p)l/’yw(x)dxyy < /Ooo [/p:) w(x)d:c]wdy.

For v =1 we have equalities in (1) and (3).
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Proof. First we prove that for the decreasing function ¢ we can write formally the
inequality

(s4) ol (x) < / 0 ()dy.

In fact, let = 1(07) = oo and p~!(c0) = 0. If 0 < y < p~!(z), then = < ¢(y) and
we have

e T (x) 0 0o
p i (2) = / dy = / Ljo,p-1(a) (y)dy < / Ljo,e(y)) (z)dy -
0 0 0
In the case when either ¢~ 1(0%) < 0o or p~!(c0) > 0 we can make modifications

of this argument to see that inequality (#x) is true also in these cases. Then by the
Minkowski inequality with the L; ., ,-norm to (*x), we find that

> Y
([ ¢ @ ru@i) =l @
SH/ 1[o,<p(y)1(ar)dyH1 S/ 0,000 (@)l /7,00y
0 /’Yvw 0

_ /OOO [/Om) w(z)dz] dy

and the inequality (1) is proved.
The equality (2) follows from the obvious equality

/0 " = / "o Y ()d(s")

and geometrically clear equality

/ o ()t = o () + / o(y)dy.
0 P~ H(z)

To prove the inequality (3) for increasing ¢ we first observe that

(s %) oM (@) < / Lo ty).00 ().

In fact, if p=1(07) =0, p~!(c0) =0 and 0 < y < p~!(z), then p(y) <z and

o 1 (x) 00 00
o (x) :/0 dy:/o 1[0,g01(ac))(y)dy§/0 Lip(y),00) (7)dy -
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The cases when either ¢=*(0") > 0 or ¢ ~!(c0) < 00 need again minor modifications.
Then, similarly as above, by the Minkowski inequality with the L;,, ,,-norm used
to (% *), we find that

&0 v
(f o @ru@iz) = e~ @)l
H/ o (y),00) (% dyHI/ S/o 11 p(),00) (@) 11 /7,000y

:/0 [[P(y) w(z )dﬂ?} dy,

and the inequality (3) is proved.

If v = 1, then the set {(z,y):y = ¢(z) or x = ¢~ !(y)} as the sum of the graphs
of p(x) and p~!(y) has two-dimensional Lebesgue measure zero (cf. [16]), and by
the Fubini theorem we have equalities. [J

Remark 1. If ¢ is an increasing function and ¢(07) > 0, then inequality (3) follows
from inequality (1). We should only use inequality (1) to the decreasing function
P(x) = 1/p(z) with the weight wq(z) = w(1/x)/x? and change variable = to 1/x.

Theorem 1
Let 0 < p<qg< o0 and —o0 < ag < a1 < 00.
(a) The inequality

(4) / f(z)u(z da; 1/q / f(z)Pv(z d:c)l/p

holds for all 0 < f € @), if and only if
t 1/ t -1/
(5) Ay, = sup(/ xqalu(az)da:> q(/ :cpo‘lv(:v)dx) " < 0.
t>0 \Jo 0

Moreover A = A,, is the best constant.
(b) The inequality

(6) / Fla)u(e)r) ' < / Flapo@r)

holds for all 0 < f € Q<° if and only if
> g, [ —1/p
(7) By, = sup (/ mqo‘ou(:n)dx> </ xpo‘ov(ac)dm) < 00.
t>0 \J¢ t

Moreover B = B, is the best constant.
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We give two proofs of the theorem.

Proof 1. (a) (4) = (5). Take f(x) = ' 1jg4(x), t > 0, in (4). This also gives
Ay, <A
(5) = (4). Let A,, < oo, i.e.

(/ amu()ds) ' < A, /

Then, by putting both sides to the power p and t = ¢(y) with decreasing ¢, and
integrating from 0 to oo with respect to y, we obtain

oo ©(y) p/q oo e (y)
/ (/ :qu‘lu(:v)dx> dy < AP, / (/ :L‘po‘lv(x)d:v> dy.
0 0 0 0

Now by using the inequality (1) with v = p/q¢ < 1 and the equality in (1) when
v = 1, we obtain

t 1/p
ﬂ:po‘lv(;z:)dx) vt > 0.

oo / o
(/ cp_l(:z)Q/pxqalu(ﬂs)da:>p ! < AP, / o Nx)aP* v(z)dx .
0

0

Taking ¢ ~1(x) = (272 f(x))P, which is a decreasing function, we have
/ f(z)u(z dac < AP / f(z)Pv(x
and so A < A,,.

(b) The necessity and inequality B,, < B follows at once by taking f(x) =
™o 1[t7oo)(x), t>0,in (6)
(7) = (6). Now, using the assumption

(/too xanU(x)d:r)l/q < Ba, (/too !L‘pa“v(m)dx)l/p >0,

making the substitution ¢ = ¢(y) with increasing ¢, integrating in y from 0 to oo
and applying the inequality (3) from Lemma 1, we get that

(/ 8071(;U)Q/pxq°‘°u(x)da:)p ! < / (/ mqo‘ou(:v)dx)p qdy
0 0 e(y)
< Bgo/ (/ xpo‘ov(:z:)da:)
0 e(v)

:Bgo/ o N x)axP*u(z)dx .
0
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Taking ¢~ (x) = (z7 f(x))P, which is an increasing function, we obtain

/f )u(x dx <Bp/ f(x)Po(x

and so B < B,,.
Proof 2. (5) = (4). Let Ay, < oo and fooo v(x) f(z)Pdr < co. From the assumption

0 < f € Qq, it follows that t =Pt f(t)P < x~P* f(z)P for 0 < z < t. Multiplying
this inequality by xP* v(z) and integrate in x from 0 to ¢ we find that

£Po f(1)P /0 t 2Py (z)dr < /0 t F(2)Po(z)dz .

Using this we therefore obtain
d t a/p B
Gl s@re@ar) "] - azt
0

_ %(/0 f(x)pv(x)dx) " pro) — Az ()

q/p—1

> Uiy [ aratwi]" s0rte) - Az som
= 71 f(¢)1 c;it [(/t xpo‘lv(x)dx)q/p — Al /Ot 29y (x)dx

T,

— ()1

/
where k(t) = (fg xpalv(:c)dx)q " Aze fé 291 y(z)da.

Integrating from 0 to co we see that

q/p
/ f(z)Po(x da? — A q/ F) tu(t dt>/ t79 f (1)K (t)dt .
Moreover, by integration by parts, the right hand side can be written
= [ s@woR] - [ kbl @] 2 o
0

since k(t) > 0 for t > 0, f € Q,, and lirél+ 79 f(t)9k(t) < 0. Thus A < A,,.
t—

Similarly, we can prove that B < B,,, by using almost the same arguments:
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100 < f e = t7Pof(t)? [ aPou(z)de < [ f(z)Pv(z)dz,
a/p
20 &= (J7° o) "] = Bag f)tut) > 100 (1) Lh(e),
where h(t) = — (ftoo xpaov(:n)dx> e + B2 [ wivou(x)dx .

30, Integrate from 0 to oo and use the integration by parts to obtain

> q/p 4 00 .
(/O f(z) v(x)dx) — B! /0 F(6)Tu(t)dt > 0. O

Remark 2. Theorem 1 can be also written in the following from: If 0 < p < ¢ < o0,

then . .
1/q —1/p
sup I fllg.0 = sup(/ :L‘qo‘lu(x)dx) (/ xpo“vd:v>
0<f€Qay Iflpw  #>0\Jo 0

I fllgu > 1/q, [ ~1/p
sup o= =sup (/ :L’qaou(x)da:> (/ a:paov(x)da:) )
o<feqeo [Ifllpo >0 \/s \

ExaMPLE 1: (Embedding of Lorentz spaces).

and

Let 0 < p < ¢ < oo and u(z) = 297! v(z) = 2°P~1 with @ > —a;y. Then
Ay, = pYPq V(o + a1)Y/P~1/4 and, by Theorem 1(a), we conclude that

o gdx /q ppg1/a \p—1/q o pdz\1/P
([ ™)™ < pirgiaga s aprioin( [ e ) 2) .

for any 0 < f € Q,,. This result, for a; = 0, is known in the theory of Lorentz
spaces (cf. [13, Theorem 3.11]) as the embedding L(1/«a,p) C L(1/a,q) of Lorentz
spaces with the norm equal to 1, where the Lorentz space L(1/a,p) is the space

o0 1
generated by the functional || f|z(1/a.p) = [pa Jo (xo‘f*(as))pdx} " and f* denotes

the rearrangement of f. The usual proofs here are using simple functions and the
Fatou lemma.
We now prove the result where both of the monotonicity conditions ), and

Q“° on a function are assumed. Such class of functions was early studied, e.g. by
Chen [4].

Theorem 2

Let 0 < p < ¢ < . Assume1;hat0<]"GQO‘OF}QO[1 with —00 < g < a1 < 00
and weights u,v satisfying the conditions ( . Then

) and (
®) /f Yau(a dm <Cpq/ flo )1/,,’

where C, , = (AY/(1/a=1/p) y p1/(/a=1/p)\1/a=1/P for p £ q and C, , = max(A, B).
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Proof. For any M > 0 we choose £ € (0,00) such that

/:o f(z)lu(z)dx = M/OE Fl@)tu(z)de
(/OOO f(x)qu(x)dx>p/q _ (/05 F(2)%u(z)dz + /:o f(w)qu(x)d;c)p/q

= (14 M)/ /6 f(x)qu(:c)dx>p/q

(1 Mp/q p/a
N J1r+>\ /f Ju(@ dx

+ W /‘5 f(x)qu(x)da;> p/q} .

Therefore, by using Theorem 1(a) and (b) and choosing A such that AP = M;} —BP,
we find that

/ (@) u(x d$>p/q

Then

Mp/q

< —;+)\ /f VPo(x dac—i——Bp/ f(@)Pou(x dw}
+Mp/q )P (1+M)¥/ AP BP )P
T1+a /f v Bp+ApMp/q B/ f@)olz

The infimum over M > 0 is attained at M = My = (A/B)P4/(4=P) and it is equal to
[AB(APa/(a=p) 4 Apa/(a=p))l/a=1/p]p — CP , for p # q. In the case when p = ¢ the

infimum is equal to max(AP, BP). [
ExAMPLE 2: (Embedding of interpolation spaces).

Let 0 < p < q < oo and u(z) = 2721 v(x) = 272?71 with ap < a < a;.
Then conditions (5) and (7) holds, respectively with A = p'/Pq=1/4(a; — a)'/P~1/4
and B = p'/Pq=1/9(a — o) '/P~1/4. By Theorem 2 we obtain that inequality

(Amcpafunﬂg)wq

1p —1/q( (@ —a0)(ar —a)\Vp=t/a o [ pdx\1/pP
< pifrgt/a (12 ) (/O (zf@)" )

a1 — O xT
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holds for any 0 < f € Q* N Q,,, i.e., for any f satisfying
0. < fla) < max ((s/8), (s/1)) f(t)  Vs,t>0.

This result in the case when oy = 0 and o; = 1 was stated in [3], as the exact
constant for the embedding of real interpolation spaces (Ao, A1)a,p C (Ao, A1)a.q
and was proved by Bergh [1] who used a symmetrization argument. Another proof
of this result was given by Bergh-Burenkov-Persson [2]. Our idea of the proof is in
fact taken from this paper. Recently, with the same technique, Pecari¢-Persson [11]
proved the result for functions satisfying 0 < f(s) < C'max ((s/t)*°, (s/t)**)f(t) for
all s,t > 0, where C' > 1.

Theorem 2 motivate us to give necessary and sufficient conditions on the weights
w and v that inequality (*) holds for functions f from the classes Q*° NQ,,. We will
prove this but also with a good control of the constants (see also [9], Theorem 1).

Theorem 3

Let 0 < p < g < oo and —oo0 < ap < a1 < 00. The inequality

9) (/OOO f(a:)qu(x)dx)l/q < C(/OOO f(gc)Pv(:c)d:r)l/p

holds for all 0 < f € Q“° N Q, if and only if (9) is true for the functions fi(x) =
min (z®,t*~*0x*) with arbitrary t > 0, i.e.,

D = sup { (/000 [min(xf"l’taroaoxao)]qu(x)dx)l/q

>0
(10) X (/000 [min(:co‘l,tal_aoxo‘o)]pv(x)dx>1/p} < 00.

Moreover D < C' < 2D.

Proof. (We repeat here the proof from [9] for the convenience of the reader).

(9) = (10). This implication is obvious with D < C. Moreover, if D < oo and
JyS aPru(x)dr < oo, then

o0 o0
rlen=ao) / 2P0y (z)dx < / 2 o(z)dr — 0 as t— o0
t t
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and thus, according to (10), [~ 29 u(z)dz < co. This gives that again

o oo
taler—ao) / r?u(x)dr < / 1 (z)der — 0 as t— oo.
t t

(/000 xqo‘lu(x)da:) e (/0

(10) = (9). If 0 < f € Q* N Qq,, then the function h defined by
h(IL‘) — w_ao/(o‘l_ao)f(l»l/(al—ao))

Therefore

oo

—-1/p
xpo‘lv(:n)dx) <D.

belongs to Q° N @ and its smallest concave majorant ﬁ, defined by

h(z) = inf(l + %)h(t), x>0,

t>0

satisfy the inequalities h(z) < h(z) < 2h(z) for all z > 0 (cf., e.g. [3, Lemma 5.4.3]
or [8, Lemma 14.1]), and h as a concave function has the representation

/Ii(x):a—i—/xm(s)ds, 0<m|,
0

where o = lim+ k(x) and m(s) = ﬁ’(s), with h/(s) being the right-derivative which
z—0

is positive right-continuous decreasing function.
The function g(x) = x*°h(z* ~*°) belongs to Q*°N(Q),, and has representation

&1~ a0

(11) g(x) = cox™ + 2° / m(s)de, 0<m],
0

with ¢o = lim,_ g+ - %g(z). Since h < h < 2h it follows that f < g < 2f and it
is enough to prove our result for the function g with the representation (11). Thus,
let [ g(z)Pv(x)dz < 0o and D < oo, i.e., for every t >0

{/000 [min(l‘al,to‘l_aomao)]qu(m)dx}

Putting ¢ = ¢(y), where ¢ is a positive decreasing which will be chosen later on,
and integrate from 0 to oo with respect to y to obtain

/OOO{/OOO [min(xal’90(3/)&1_%1‘0‘0)]qu(z)dx}p/qdy
< DP /OOO{/OOO [min(:no‘l,@(y)ﬂl—aoxao)]pv(m)dx}dy.

p/q

< Dp/ [min(xo‘l,tal_aoxao)]pv(aj)dx.
0
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By using the Minkowski inequality and the equality (2) in Lemma 1 we find

r/q

/ooo [/ooo (min(z?, o(y) =0 a") 'u(w)de]| " dy
/OO '/00 (min(a:“l,so(y)o“‘%x%))pdy} "/Pu(x)dx}p/q
o -Jo

0o . o (=) oo / /
/ xpaldy_,_/ (p(y)p(al—ao)xpaodyr pu(x)cm}p I
/0 e~ (x)

o0

) oy povo (a1 —a0) q/p p/q
o (T)zP + 2 ( )sO(y) dy| u(z)dr
L S071 x

I I Y
—~ —

8

I
—

.xpao/ 80—1(8)d(8p(a1_a0))}q/pu(m)dx}P/q‘
- 0

y the Fubini theorem and the equality (2) in Lemma 1
/ {/ [min(zal,cp(y)al_o‘oxao)]pv(:c)dx}dy
0 0
= / / (min(m‘“,go(y)o“_“oxao))pdy}v(m)daz
o Lo

:/ _gp_l(a:)xpal —|—xpa0/ go(y)p(al_ao)dy}v(x)dm
o - o1 (x)

_ /0 h :xmo /O ' gfl(s)d(smal*ao))} (@) dz |

From the above inequalities and equalities we obtain the crucial inequality

{/000 [ajpao /03” 90_1(x)d(8p(a1_a0)):|q/pu(l‘)dl’}p/q

(12) < DP /000 {a:pao /0:r go_l(s)d(sp(al_ao))}v(a:)dx.

Now, if g has the representation (11), then by taking as a decreasing function

on

Similarly,

1 glmplai—ao) g

) =m(z ) [z g(2)]T = T — [27PYg(2)P],
‘2 ( ) ( )[ g( )] P(Oll_ao) dx[ g( )]
we obtain
/ w—l(s)d(sp(al—ao)) — x_paog(x)p _ lir(r)1+ 8—paog(8)p — x—pozog(x)p7
0 s—

which we can put to (12) and get

o r/4q o
(/ g(x)%(:n)dx) < Dp/ g(x)Pv(z)dr .
0 0
Since f < g < 2f it follows that (9) holds and C' < 2D. O
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Remark 3. The above proof shows that the inequality (9) holds for every f having
the representation (12) if and only if (10) holds and in this case C = D.

Remark 4. If we take u and v as in Example 2, then

— _ 1/ _1/
D :pl/pq_l/iI<(a ap) (o a)> p-i/a
a1 — Qg

Special choices of ag,a; and m can give some known results for decreasing
functions, which were proved before but not always with the best constant and not
in the full range 0 < p < g < oo of parameters p and gq.

Corollary 1
If 0 <p<gq< oo, then

T
i 1] o min(@, )]lgu

sup = § )
0<71 Hf(ff”pv >0 [[min(z, )|,

Take, in the above proof, ag = 0, oy = 1 and m = f with f being positive
decreasing function. This result with the best constant but with some additional
restrictions on p and ¢ was proved in [6, Theorem 3.7]. Similarly, we can get the
result from [6, Theorem 4.3 (a)].

Corollary 2
If 0 <p<gq< oo, then

fllg _  min(e, £)lg.

sup - .
p,v t>0 || min(x, t)”pm

0< fconcave H f

Corollary 3
If 0 <p<qg< oo, then

sdo I

o<t [ 5 s

v min(L,t/2)]l
>0 || min(lat/w)llp,v

p7/U

Take, in the proof of Theorem 3, ag = —1, a3 = 0 and m = f with f being
positive decreasing function. This result with the restriction ¢ > 1 and not with
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the best constant (only equivalence of the above expressions) was quite differently
proved by Stepanov [15, Theorem 3.3].

Remark 5.  Gol’dmann-Heinig-Stepanov [5] established, using the discretization
method, the equivalence of inequality (9) for f € Q° N @Q; with inequality (10) in
the case 0 < p < ¢ < oo, but also the equivalence in the case 0 < g < p < oo with
some complicated corresponding expression to (10). Our proof here (only the case
0 < p < g < ) is different and with a good control of the constants.
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