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The completely continuous property in Orlicz spaces
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Abstract

We show that in Orlicz spaces equipped with Luxemburg norm and Orlicz norm,
the RNP, CCP, PCP and CPCP are equivalent.

Let X be a Banach space, and let B(X) and S(X) be the unit ball and unit sphere
of X respectively. For a set A in X, let α(A) be the Kuratowski index of non-
compactness of A, i.e,

α(A) = inf
{
ε > 0 : A is covered by a finite family of sets of diamete less than ε

}
.

X is said to possess the complete continuity property (CCP) if every bounded linear
operator from L1[0, 1] into X is completely continuous (i.e., maps weakly convergent
sequences to norm convergent sequences). X is said to possess the point of continuity
property (PCP) if every non-empty bounded closed set C ⊂ B(X) has an element
x ∈ C so that the weak and norm topologies (restricted to C) coincide at x. X is
said to possess the convex point of continuity property (CPCP) if every non-empty
bounded closed convex set C ⊂ B(X) has an element x ∈ C so that the weak and
norm topologies (restricted to C) coincide at x. X is said to possess the Radon-
Nikodym property (RNP ) if every non-empty bounded closed convex set has a
denting point. It is known [2] that

RNP ⇒ PCP ⇒ CPCP ⇒ CCP
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In general, the converse are false. For some recent results on CCP , see [1] and [3].
In this paper we show that in Orlicz spaces L(M) or LM , RNP, PCP, CPCP and
CCP are equivalent and L(M) or LM to have these properties if and only if M

satisfies the �2-condition.
A function M : R → R+ is called an N -function if M is convex, even, M(0) = 0

and M(∞) = ∞. A complemented function N of M in the sense of Young is defined
by

N(v) = sup
u>0

{uv − M(u)} .

It is known that if M is a N -function, then its complemented function N is also
a N -function. M is said to satisfy the �2-condition if for some K and u0 > 0 ,

M(2u) < KM(u) for all |u| ≥ u0. Let G be a bounded set in Rn and let (µ, Σ, G)
be a finite non-atomic measure space. For a real-valued measurable function x(t) on
(µ, Σ, G), let ρM (x) =

∫
G

M
(

x(t)
)

dµ. The Orlicz space L(M) and LM generated by
M is the Banach space

{x(t) : ρM (λx) < ∞ for some λ} .

equipped with the Luxemburg norm ‖x‖(M) on L(M) and the Orlicz norm ‖x‖M on
LM , respectively, where

‖ x ‖(M)= inf
{

λ > 0 : ρM

(x

λ

)
≤ 1

}
.

and
‖ x ‖M= inf

k>0

1
k

{
1 + ρM (kx)

}
.

Theorem

An Orlicz function space L(M) possesses the CCP if and only if M satisfies

�2-condition.

Proof. Suppose that M satisfies �2-condition. By [7] it follows that L(M) possesses
the RNP . Hence L(M) possesses the CCP .

Suppose that L(M) possesses the CCP . If M /∈ �2, then there exist un ↗ ∞
such that

M

((
1 +

1
n

)
un

)
> 2nM(un) , (n = 1, 2, ...) .

Take disjoint subsets Gn ⊂ G so that

µGn ≤ 1
2n

, (n = 1, 2, ...) .
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For each n, choose a subsequence {un
k}∞k=1 of {un}∞n=1 and disjoint subsets Gn,k ⊂

Gn such that

M(un
k )µGn,k =

1
2n+k

, (k = 1, 2, ...) .

Define

xn(t) =
∞∑
k=1

un
kχGn,k

(t) , (n = 1, 2, ...) .

Then

ρM (xn) =
∞∑
k=1

M(un
k )µGn,k =

∞∑
k=1

1
2n+k

=
1
2n

< 1 .

But for any λ > 1, choose k0 with 1 + 1
k0

≤ λ. Then

ρM (λxn) ≥
∞∑

k=k0

M

((
1 +

1
k

)
un
k

)
µGn,k

>

∞∑
k=k0

2kM(un
k )

1
2n+kM(un

k )
= ∞ .

Hence ‖xn‖(M) = 1, (n = 1, 2, ...). Let Let

X0 =

{
xξ : xξ(t) =

∞∑
n=1

ξnxn(t), ξ = {ξn}∞n=1 ∈ l∞

}
.

Then for any xξ ∈ X0, we have xξ ∈ L(M) and ‖xξ‖(M) = ‖ξ‖∞ = sup |ξn|. Hence
X0 ⊂ L(M) and X0 is isometric to l∞ [6].

We now show that there exist T ∈ B
(

L1[0, 1], L(M)

)
and a weakly convergent

sequence {rn}∞n=1 ⊂ L1[0, 1], with sep{Trn} = inf{‖Trn − Trm‖ : n �= m} = 1.
Hence L(M) fails to possesse the CCP .

Let rn be the Rademacher functions, i.e,

rn(t) = 2n




1 if t ∈
(

1
2n , 3

2n+1

]
−1 if t ∈

(
3

2n+1 , 1
2n−1

]
0 otherwise .

Then {rn}∞n=1 is a weakly convergent sequence in L1[0, 1]. For each f ∈ L∞[0, 1] =
L∗

1[0, 1] and an arbitrary ε > 0, by Lusin Theorem, there is g ∈ C[0, 1] such that∫ 1

0

|f − g|dµ < ε .
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Then for n sufficiently large,∣∣∣∣
∫ 1

0

rnfdµ

∣∣∣∣ ≤
∣∣∣∣
∫ 1

0

rn(f − g)dµ

∣∣∣∣ +
∣∣∣∣
∫ 1

0

rngdµ

∣∣∣∣
≤ ε + 2n

∣∣∣∣∣
∫ 3

2n+1

1
2n

g(t)dµ −
∫ 1

2n−1

3
2n+1

g(t)dµ

∣∣∣∣∣
≤ ε + ε2n

1
2n

= 2ε .

Hence rn
w−→ 0. Define T from L1[0, 1] into X0 by

T (rn) = xn, n = 1, 2, ...

and

T

(
n∑

i=1

λiri

)
=

n∑
i=1

λixi

for λi ∈ R, i = 1, ..., n, n ∈ N. Then∥∥∥∥∥T
( n∑

i=1

λiri

)∥∥∥∥∥
(M)

=

∥∥∥∥∥
n∑

i=1

λixi

∥∥∥∥∥
(M)

= max
1≤i≤n

|λi| .

Since {rn} have disjoint supports,∥∥∥∥∥
n∑

i=1

λiri

∥∥∥∥∥
1

=
n∑

i=1

|λi| ≥ max
1≤i≤n

|λi| =

∥∥∥∥∥T
( n∑

i=1

λiri

)∥∥∥∥∥
(M)

.

Hence T is a linear bounded operator from span {rn} into X0. By the Proposi-
tion 2.f.2 of [5], there exists an extension T̄ of T with T̄ ∈ B

(
L1[0, 1], L(M)

)
. But

for any n �= m ∥∥Trn − Trm
∥∥

(M)
=

∥∥xn − xm

∥∥
(M)

= 1 .

Hence sep {Trn} = 1, which shows that L(M) fails to havge the CCP . �
Remark. Sincce the CCP is an isomorphic invariant, it follows that for an Orlicz
function space LM possesses the CCP if and only if M ∈ �2. It is known [7] that if
M ∈ �2 then L(M) has the RNP . We conclude that in Orlicz function spaces L(M)

or LM , the RNP, PCP, CPCP and CCP are equivalent and L(M) or LM has these
properties if and only if M satisfies the �2-condition.
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