Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 4-6 (1997), 673–677 © 1997 Universitat de Barcelona

The completely continuous property in Orlicz spaces

Bor-Luh Lin and Zhongrui Shi*

Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

Abstract

We show that in Orlicz spaces equipped with Luxemburg norm and Orlicz norm, the RNP, CCP, PCP and CPCP are equivalent.

Let X be a Banach space, and let B(X) and S(X) be the unit ball and unit sphere of X respectively. For a set A in X, let $\alpha(A)$ be the Kuratowski index of noncompactness of A, i.e,

 $\alpha(A) = \inf \left\{ \varepsilon > 0 : A \text{ is covered by a finite family of sets of diamete less than } \varepsilon \right\}.$

X is said to possess the complete continuity property (CCP) if every bounded linear operator from $L_1[0, 1]$ into X is completely continuous (i.e., maps weakly convergent sequences to norm convergent sequences). X is said to possess the point of continuity property (PCP) if every non-empty bounded closed set $C \subset B(X)$ has an element $x \in C$ so that the weak and norm topologies (restricted to C) coincide at x. X is said to possess the convex point of continuity property (CPCP) if every non-empty bounded closed convex set $C \subset B(X)$ has an element $x \in C$ so that the weak and norm topologies (restricted to C) coincide at x. X is said to possess the Radon-Nikodym property (RNP) if every non-empty bounded closed convex set has a denting point. It is known [2] that

$$RNP \Rightarrow PCP \Rightarrow CPCP \Rightarrow CCP$$

673

^{*} The work of second author was supported in part by The National Science Foundation of China.

LIN AND SHI

In general, the converse are false. For some recent results on CCP, see [1] and [3]. In this paper we show that in Orlicz spaces $L_{(M)}$ or L_M , RNP, PCP, CPCP and CCP are equivalent and $L_{(M)}$ or L_M to have these properties if and only if M satisfies the Δ_2 -condition.

A function $M : \mathbb{R} \to \mathbb{R}_+$ is called an N-function if M is convex, even, M(0) = 0and $M(\infty) = \infty$. A complemented function N of M in the sense of Young is defined by

$$N(v) = \sup_{u>0} \{uv - M(u)\}.$$

It is known that if M is a N-function, then its complemented function N is also a N-function. M is said to satisfy the \triangle_2 -condition if for some K and $u_0 > 0$, M(2u) < KM(u) for all $|u| \ge u_0$. Let G be a bounded set in \mathbb{R}^n and let (μ, Σ, G) be a finite non-atomic measure space. For a real-valued measurable function x(t) on (μ, Σ, G) , let $\rho_M(x) = \int_G M(x(t)) d\mu$. The Orlicz space $L_{(M)}$ and L_M generated by M is the Banach space

$$\{x(t): \rho_M(\lambda x) < \infty \text{ for some } \lambda\}.$$

equipped with the Luxemburg norm $||x||_{(M)}$ on $L_{(M)}$ and the Orlicz norm $||x||_M$ on L_M , respectively, where

$$||x||_{(M)} = \inf \left\{ \lambda > 0 : \rho_M\left(\frac{x}{\lambda}\right) \le 1 \right\} \,.$$

and

$$\| x \|_{M} = \inf_{k>0} \frac{1}{k} \{ 1 + \rho_{M}(kx) \}.$$

Theorem

An Orlicz function space $L_{(M)}$ possesses the CCP if and only if M satisfies \triangle_2 -condition.

Proof. Suppose that M satisfies \triangle_2 -condition. By [7] it follows that $L_{(M)}$ possesses the RNP. Hence $L_{(M)}$ possesses the CCP.

Suppose that $L_{(M)}$ possesses the *CCP*. If $M \notin \triangle_2$, then there exist $u_n \nearrow \infty$ such that

$$M\left(\left(1+\frac{1}{n}\right)u_n\right) > 2^n M(u_n), \qquad (n=1,2,\ldots)$$

Take disjoint subsets $G_n \subset G$ so that

$$\mu G_n \le \frac{1}{2^n}, \qquad (n = 1, 2, ...).$$

For each n, choose a subsequence $\{u_k^n\}_{k=1}^{\infty}$ of $\{u_n\}_{n=1}^{\infty}$ and disjoint subsets $G_{n,k} \subset G_n$ such that

$$M(u_k^n)\mu G_{n,k} = \frac{1}{2^{n+k}}, \qquad (k = 1, 2, ...).$$

Define

$$x_n(t) = \sum_{k=1}^{\infty} u_k^n \chi_{G_{n,k}}(t) , \qquad (n = 1, 2, ...) .$$

Then

$$\rho_M(x_n) = \sum_{k=1}^{\infty} M(u_k^n) \mu G_{n,k} = \sum_{k=1}^{\infty} \frac{1}{2^{n+k}} = \frac{1}{2^n} < 1.$$

But for any $\lambda > 1$, choose k_0 with $1 + \frac{1}{k_0} \leq \lambda$. Then

$$\rho_M(\lambda x_n) \ge \sum_{k=k_0}^{\infty} M\left(\left(1+\frac{1}{k}\right)u_k^n\right)\mu G_{n,k}$$
$$> \sum_{k=k_0}^{\infty} 2^k M(u_k^n)\frac{1}{2^{n+k}M(u_k^n)} = \infty.$$

Hence $||x_n||_{(M)} = 1, (n = 1, 2, ...)$. Let Let

$$X_0 = \left\{ x_{\xi} : x_{\xi}(t) = \sum_{n=1}^{\infty} \xi_n x_n(t), \ \xi = \{\xi_n\}_{n=1}^{\infty} \in l_{\infty} \right\}.$$

Then for any $x_{\xi} \in X_0$, we have $x_{\xi} \in L_{(M)}$ and $||x_{\xi}||_{(M)} = ||\xi||_{\infty} = \sup |\xi_n|$. Hence $X_0 \subset L_{(M)}$ and X_0 is isometric to l_{∞} [6].

We now show that there exist $T \in B(L_1[0,1], L_{(M)})$ and a weakly convergent sequence $\{r_n\}_{n=1}^{\infty} \subset L_1[0,1]$, with $\sup\{Tr_n\} = \inf\{\|Tr_n - Tr_m\| : n \neq m\} = 1$. Hence $L_{(M)}$ fails to possesse the *CCP*.

Let r_n be the Rademacher functions, i.e,

$$r_n(t) = 2^n \begin{cases} 1 & \text{if } t \in \left(\frac{1}{2^n}, \frac{3}{2^{n+1}}\right] \\ -1 & \text{if } t \in \left(\frac{3}{2^{n+1}}, \frac{1}{2^{n-1}}\right] \\ 0 & \text{otherwise} \,. \end{cases}$$

Then $\{r_n\}_{n=1}^{\infty}$ is a weakly convergent sequence in $L_1[0,1]$. For each $f \in L_{\infty}[0,1] = L_1^*[0,1]$ and an arbitrary $\varepsilon > 0$, by Lusin Theorem, there is $g \in C[0,1]$ such that

$$\int_0^1 |f-g| d\mu < \varepsilon \,.$$

Then for n sufficiently large,

$$\begin{split} \left| \int_0^1 r_n f d\mu \right| &\leq \left| \int_0^1 r_n (f-g) d\mu \right| + \left| \int_0^1 r_n g d\mu \right| \\ &\leq \varepsilon + 2^n \left| \int_{\frac{1}{2^n}}^{\frac{3}{2^{n+1}}} g(t) d\mu - \int_{\frac{3}{2^{n+1}}}^{\frac{1}{2^{n-1}}} g(t) d\mu \right| \\ &\leq \varepsilon + \varepsilon 2^n \frac{1}{2^n} = 2\varepsilon \,. \end{split}$$

Hence $r_n \xrightarrow{w} 0$. Define T from $L_1[0,1]$ into X_0 by

$$T(r_n) = x_n, \ n = 1, 2, \dots$$

and

$$T\left(\sum_{i=1}^{n}\lambda_{i}r_{i}\right) = \sum_{i=1}^{n}\lambda_{i}x_{i}$$

for $\lambda_i \in \mathbb{R}, i = 1, ..., n, n \in \mathbb{N}$. Then

$$\left\| T\left(\sum_{i=1}^{n} \lambda_{i} r_{i}\right) \right\|_{(M)} = \left\| \sum_{i=1}^{n} \lambda_{i} x_{i} \right\|_{(M)} = \max_{1 \le i \le n} |\lambda_{i}|.$$

Since $\{r_n\}$ have disjoint supports,

$$\left\|\sum_{i=1}^{n} \lambda_{i} r_{i}\right\|_{1} = \sum_{i=1}^{n} |\lambda_{i}| \ge \max_{1 \le i \le n} |\lambda_{i}| = \left\|T\left(\sum_{i=1}^{n} \lambda_{i} r_{i}\right)\right\|_{(M)}$$

Hence T is a linear bounded operator from span $\{r_n\}$ into X_0 . By the Proposition 2.f.2 of [5], there exists an extension \overline{T} of T with $\overline{T} \in B(L_1[0,1], L_{(M)})$. But for any $n \neq m$

$$||Tr_n - Tr_m||_{(M)} = ||x_n - x_m||_{(M)} = 1.$$

Hence sep $\{Tr_n\} = 1$, which shows that $L_{(M)}$ fails to have the *CCP*. \Box

Remark. Since the CCP is an isomorphic invariant, it follows that for an Orlicz function space L_M possesses the CCP if and only if $M \in \Delta_2$. It is known [7] that if $M \in \Delta_2$ then $L_{(M)}$ has the RNP. We conclude that in Orlicz function spaces $L_{(M)}$ or L_M , the RNP, PCP, CPCP and CCP are equivalent and $L_{(M)}$ or L_M has these properties if and only if M satisfies the Δ_2 -condition.

676

References

- 1. S.J. Dilworth, Maria Girardi and Denka Kutzarova, Banach spaces which admit a norm with the uniform Kadec-Klee property, *Studia Math.* **112** (3) (1995), 267–277.
- 2. N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, *Some topological and geometrical structures in Banach spaces*, Mem. Amer. Math. Soc. **70** Num. 378, 1987.
- 3. M. Girardi and W.B. Johnson, The complete continuous property and finite dimensional decompositions, *Canad. Math. Bull.* **38** (1995), 207–214.
- 4. R.C. James, KMP, RNP and PCP for Banach spaces, Contemp. Math. 85 (1989), 281-317.
- 5. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I, Sequence spaces*, Springer-Verlag, Berlin, New-York, 1977.
- 6. B. Turett, Rotundity of Orlicz splaces, Indag. Math. 38 (1976), 462-469.
- 7. C. Wu, T. Wang, S. Chen and Y. Wang, *Geometric theory of Orlicz spaces*, H.I.T. Print House, Harbin, 1986.