# Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM 

Collect. Math. 48, 4-6 (1997), 619-634
(c) 1997 Universitat de Barcelona

# Onesided approximation and real interpolation ${ }^{1}$ 

N. Krugljak<br>Department of Mathematics, Yaroslavl State University, Yaroslavl, Rusia

E. Matvejev

Department of Physics and Mathematics, Yaroslavl State Pedagogical University, Yaroslavl, Rusia


#### Abstract

It is proved that the reiteration theorem is not valid for the spaces $A_{p}^{\theta, q}$ defined by V. Popov by means of onesided approximation. It is also proved that a class of cones, defined by onesided approximation of piecewise linear functions on the interval $[0,1]$, is stable for the real interpolation method.


## 1. Introduction

The spaces $A_{p}^{\theta, q}, 1 \leq p, q \leq \infty, k>\theta>0$, were introduced by V. Popov in [5]. It is known (see, for example, $[1],[6],[10],[11])$ that they are equivalent to the spaces defined by onesided trigonometrical or spline approximation.

The first interpolation result for $A_{p}^{\theta, q}$ was obtained by V. Popov in [7]; he proved that the average modulus of continuity $\tau_{k}(f, t)_{p}$ is equivalent to the onesided $K$-functional for the Banach couple $\left(L_{p}, W_{p}^{k}\right)$. The interpolation properties of $A$ spaces were also studied in [3]. There the author posed the problem if the $A$-spaces are stable for the real interpolation method.

It is possible to prove, using the technique of [2], that the embedding

$$
\left(A_{p}^{\theta_{0}, q_{0}}, A_{p}^{\theta_{1}, q_{1}}\right)_{\lambda, q} \subset A_{p}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, q}, 1 \leq p, q \leq \infty, 0<\lambda<1
$$

[^0]holds. The inverse embedding is not valid, and we present here a counterexample due to N. Krugljak.

We also prove the reiteration theorem for a family of cones of nonnegative functions defined by onesided approximation. For that we modify the sequence of piecewise-linear functions $f_{n}$ of the best onesided approximation and construct a sequence $\left\{f_{n}^{+}\right\}$such that $f_{1}^{+} \leq f_{2}^{+} \leq \ldots \leq f$. It is essential that the degree of the onesided approximation by the sequences $\left\{f_{n}\right\}$ and $\left\{f_{n}^{+}\right\}$are equal. The problem of constructing such a sequence is due to S . Stechkin ([9]) and has its own interest (cf. [4] or [8]).

## 2. An equivalent norm for the space $A_{1}^{\theta, \infty}$

$A_{p}^{\theta, q}(1 \leq p, q \leq \infty$ and $k>\theta>0)$ is the space of all bounded measurable functions such that

$$
\|f\|_{A_{p}^{\theta, q}}=\left(\int_{0}^{\infty}\left(\frac{\tau_{k}(f, t)_{p}}{t^{\theta}}\right)^{q} \frac{d t}{t}\right)^{1 / q}<\infty
$$

Here $\tau_{k}(f, t)_{p}$ is the average modulus of continuity $\tau_{k}(f, t)_{p}=\left(\int_{0}^{1} \omega_{k}(f, x, t)^{p} d x\right)^{1 / p}$, with

$$
\omega_{k}(f, x, t)=\sup \left\{\left|\Delta_{h}^{k} f(y)\right| ; y, y+k h \in\left[x-\frac{k t}{2}, x+\frac{k t}{2}\right] \cap[0,1]\right\},
$$

and $\Delta_{h}^{k}$ is the k-difference operator with step $h$. The seminorm of $A_{1}^{\theta, \infty}$ is defined by

$$
\|f\|_{A_{1}^{\theta, \infty}}=\sup _{0<t<\infty} \frac{\tau(f, t)_{1}}{t^{\theta}} .
$$

We write $\omega$ and $\tau$ for $\omega_{1}$ and $\tau_{1}$.
For every interval $Q$ ( $Q$ can be closed, open, half-open) we denote $\operatorname{osc} \mathrm{f}(\mathrm{Q})=$ $\sup _{x \in \operatorname{Q} \cap[0,1]} f(x)-\inf _{x \in Q \cap[0,1]} f(x)$ and we need the following simple properties of the oscillation:

1. Let $Q, Q_{1}, Q_{2}$ be intervals such that $Q \subset Q_{1} \cup Q_{2}$. Then, for the continuous function $f$,

$$
\begin{equation*}
\operatorname{osc} f(\mathrm{Q}) \leq \operatorname{osc} f\left(\mathrm{Q}_{1}\right)+\operatorname{osc} f\left(\mathrm{Q}_{2}\right) \tag{1}
\end{equation*}
$$

If $Q_{1} \cap Q_{2} \neq \emptyset$, this inequality is true for any function.
2. If $f, g$ are two functions on $Q$, then

$$
\begin{equation*}
\operatorname{osc}(f+g)(Q) \leq \operatorname{osc} f(Q)+\operatorname{osc} f(Q) \tag{2}
\end{equation*}
$$

The finite family of intervals $Q_{i}=[(i-1) t, i t] \cap[0,1] \neq \emptyset(0<t<1)$ is a partition of $[0,1]$ denoted by $\pi_{t}$. The oscillation of $f$ on $\pi_{t}$ is

$$
\operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f}=\sum_{\mathrm{Q} \in \pi_{\mathrm{t}}} \operatorname{osc} \mathrm{f}(\mathrm{Q})
$$

We denote by $\pi_{2^{n}}$ the partition of $[0,1]$ into $2^{n}$ equal intervals, $Q_{i}=\left[(i-1) / 2^{n}, i / 2^{n}\right]$, and then $\operatorname{osc}_{2^{n}} f=\sum_{i=1}^{2^{n}} \operatorname{osc} f\left(Q_{i}\right)$.

## Proposition 2.1

If $f$ is a measurable function on $[0,1]$, then

$$
c_{1} \sup _{n \geq 0} \frac{\operatorname{osc}_{2^{\mathrm{n}}} \mathrm{f}}{2^{(1-\theta) \mathrm{n}}} \leq\|f\|_{A_{1}^{\theta, \infty}} \leq c_{2} \sup _{n \geq 0} \frac{\operatorname{osc}_{2^{\mathrm{n}}} \mathrm{f}}{2^{(1-\theta) \mathrm{n}}},
$$

where $c_{1}$ and $c_{2}$ are two constants independent on $f$ and $n$.
Proof. Let $Q_{i}=\left[x_{i}, y_{i}\right]$ be any interval from the partition $\pi_{t}$. It follows from (1) that

$$
\omega(f, x, t) \leq \begin{cases}\operatorname{osc} \mathrm{f}\left(\mathrm{Q}_{\mathrm{i}}\right)+\operatorname{osc} \mathrm{f}\left(\mathrm{Q}_{\mathrm{i}+1}\right), & \text { if } \quad\left(x_{i}+y_{i}\right) / 2 \leq x<y_{i} \\ \operatorname{osc} \mathrm{f}\left(\mathrm{Q}_{\mathrm{i}-1}\right)+\operatorname{osc} \mathrm{f}\left(\mathrm{Q}_{\mathrm{i}}\right), & \text { if } \quad x_{i}<x<\left(x_{i}+y_{i}\right) / 2\end{cases}
$$

Then

$$
\begin{equation*}
\tau(f, t)_{1}=\int_{0}^{1} \omega(f, x, t) d x \leq 2 t \operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f} \tag{3}
\end{equation*}
$$

On the other hand, if $x \in Q$, where $Q$ is an interval from the partition $\pi_{t / 2}$, then $\omega(f, x, t) \geq \operatorname{osc} f(\mathrm{Q})$ and

$$
\begin{equation*}
\tau(f, t)_{1} \geq \frac{t}{2} \operatorname{osc}_{\pi_{t / 2}} \mathrm{f} \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain $2^{-\theta}(t / 2)^{1-\theta} \operatorname{osc}_{\pi_{t / 2}} \mathrm{f} \leq \tau(\mathrm{f}, \mathrm{t})_{1} / \mathrm{t}^{\theta} \leq 2 \mathrm{t}^{1-\theta} \operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f}$. As $\tau(f, t)_{1}=\tau(f, 2)_{1}$ for $t>2$, then

$$
\begin{equation*}
2^{-\theta} \sup _{0<t<2} t^{1-\theta} \operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f} \leq\|\mathrm{f}\|_{\mathrm{A}_{1}^{\theta, \infty}} \leq 2 \sup _{0<\mathrm{t}<2} \mathrm{t}^{1-\theta} \operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f} \tag{5}
\end{equation*}
$$

If $0<t<1$, there exists $n \geq 0$ such that $1 / 2^{n} \leq t<1 / 2^{n-1}$, it follows from (1) that $2 \operatorname{osc}_{2^{\mathrm{n}}} \mathrm{f} \leq \operatorname{osc}_{\pi_{\mathrm{t}}} \mathrm{f} \leq 3 \operatorname{osc}_{2^{\mathrm{n}-1}} \mathrm{f}$, and (5) and the last inequality finishes the proof.

## 3. The embedding $\left(A_{1}^{\theta_{0}, \infty}, A_{1}^{\theta_{1}, \infty}\right)_{\lambda, q} \subset A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, q}$ is strict

Let $\vec{Y}=\left(Y_{0}, Y_{1}\right)$ be a couple of Banach spaces. The $K$-functional is defined by

$$
K(t, f, \vec{Y})=\inf _{f=f_{0}+f_{1}}\left(\left\|f_{0}\right\|_{Y_{0}}+t\left\|f_{1}\right\|_{Y_{1}}\right) .
$$

The interpolation space $Y_{\lambda, q}(0<\lambda<1,1 \leq q \leq \infty)$ is the space of all the elements $f \in Y_{0}+Y_{1}$ such that $\|f\|_{Y_{\lambda, q}}=\left(\int_{0}^{\infty}\left(t^{-\lambda} K(t, f, \vec{Y})\right)^{\frac{d}{t}} \frac{d t}{t}\right)^{1 / q}<\infty$.

We shall prove that the embedding $\left(A_{1}^{\theta_{0}, \infty}, A_{1}^{\theta_{1}, \infty}\right)_{\lambda, \infty} \supset A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, \infty}$ is not valid.

Let us divide $[0,1]$ into $2^{n}$ equal intervals and the last interval into $2^{m}$ equal intervals, $m, n \in \mathbb{N}$. We define the function $f_{n, m}$ by

$$
f_{n, m}=\left\{\begin{array}{l}
0, \quad \text { if } 0 \leq x \leq 1-\frac{1}{2^{n}} \\
0, \quad \text { if } x=1-\frac{1}{2^{n}}+\frac{2}{2^{n+m}}, 1-\frac{1}{2^{n}}+\frac{4}{2^{n+m}}, \ldots, 1 \\
1, \quad \text { if } x=1-\frac{1}{2^{n}}+\frac{1}{2^{n+m}}, 1-\frac{1}{2^{n}}+\frac{3}{2^{n+m}}, \ldots, 1-\frac{1}{2^{n+m}} \\
\text { linear on every interval }\left[\frac{i}{2^{n+m}}, \frac{i+1}{2^{n+m}}\right], 2^{n+m}-2^{m} \leq i \leq 2^{n+m}-1
\end{array}\right.
$$

It is not difficult to check that

$$
\operatorname{osc}_{2^{k}} \mathrm{f}_{\mathrm{n}, \mathrm{~m}}= \begin{cases}1, & \text { if } 0 \leq k \leq n \\ 2^{m}, & \text { if } k \geq m+n \\ 2^{k-n}, & \text { if } n<k \leq m+n\end{cases}
$$

and it follows from Proposition 2.1 that

$$
\begin{aligned}
\left\|f_{n, m}\right\|_{A_{1}^{\theta, \infty}} & \geq c_{1} \sup _{k \geq 0} \frac{\operatorname{osc}_{2^{\mathrm{k}}} \mathrm{f}_{n, \mathrm{~m}}}{2^{(1-\theta) \mathrm{k}}} \\
& =c_{1} \max \left(\sup _{0 \leq k \leq n} \frac{\operatorname{osc}_{2^{k}} \mathrm{f}_{\mathrm{n}, \mathrm{~m}}}{2^{(1-\theta) \mathrm{k}}}, \sup _{k \geq n} \frac{\operatorname{osc}_{2^{\mathrm{k}}} \mathrm{f}_{n, \mathrm{~m}}}{2^{(1-\theta) \mathrm{k}}}\right)=c_{1} \max \left(1, \frac{2^{m}}{2^{(1-\theta)(n+m)}}\right) .
\end{aligned}
$$

We denote $q_{\theta}=2^{1-\theta}$, hence $\left\|f_{n, m}\right\|_{A_{1}^{\theta, \infty}} \geq c_{1} \max \left(1,2^{m} / q_{\theta}^{n+m}\right)$.
Let us suppose that $\left(A_{1}^{\theta_{0}, \infty}, A_{1}^{\theta_{1}, \infty}\right)_{\lambda, \infty} \supset A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, \infty}$. Then there exists a constant $C>0$ independent on m and n such that

$$
\left\|f_{n, m}\right\|_{A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, \infty}} \geq C \sup _{t \geq 0} \frac{K\left(t, f_{n, m}, \vec{A}\right)}{t^{\lambda}}
$$

where $\vec{A}=\left(A_{1}^{\theta_{0}, \infty}, A_{1}^{\theta_{1}, \infty}\right)$. From now on we shall suppose without any lose of generality that $\theta_{0}>\theta_{\lambda}>\theta_{1}$, with $\theta_{\lambda}=(1-\lambda) \theta_{0}+\lambda \theta_{1}$. In particular, for $t=$ $\left(q_{\theta_{1}} / q_{\theta_{0}}\right)^{n}$ we have

$$
\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n}\left\|f_{n, m}\right\|_{A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, \infty}} \geq C K\left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n}, f_{n, m}, \vec{A}\right)
$$

It follows from Proposition 2.1 that

$$
\begin{equation*}
\left\|f_{n, m}\right\|_{A_{1}^{(1-\lambda) \theta_{0}+\lambda \theta_{1}, \infty}} \leq c_{2} \max \left(1, \frac{2^{m}}{q_{\theta_{0}}^{(1-\lambda)(n+m)} q_{\theta_{1}}^{\lambda(n+m)}}\right) \tag{6}
\end{equation*}
$$

Then multiplying both sides of (6) by $\left(q_{\theta_{1}} / q_{\theta_{0}}\right)^{n \lambda}$, we rewrite it as

$$
\max \left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n \lambda}, \frac{2^{m}}{q_{\theta_{0}}^{(1-\lambda)(n+m)} q_{\theta_{1}}^{\lambda(n+m)}}\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n \lambda}\right) \geq C K\left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n}, f_{n, m}, \vec{A}\right)
$$

and, if we denote $c_{n, m}=K\left(\left(q_{\theta_{1}} / q_{\theta_{0}}\right)^{n}, f_{n, m}, \vec{A}\right)$,

$$
\max \left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda}, \frac{2^{m / n}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{m / n}}\right)^{n} \geq C c_{n, m}
$$

Then there exist $f_{n, m}^{0} \in A_{1}^{\theta_{0}, \infty}$ and $f_{n, m}^{1} \in A_{1}^{\theta_{1}, \infty}$ such that $f_{n, m}=f_{n, m}^{0}+f_{n, m}^{1}$ and

$$
\left\|f_{n, m}^{0}\right\|_{A_{1}^{\theta_{0}, \infty}}+\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n}\left\|f_{n, m}^{1}\right\|_{A_{1}^{\theta_{1}, \infty}} \leq 2 c_{n, m}
$$

We consider two cases: (a) $2 c_{n, m}<c_{1} / 4\left(\frac{q_{\theta_{1}}}{q \theta_{0}}\right)^{n}$, and (b) $2 c_{n, m} \geq c_{1} / 4\left(\frac{q \theta_{1}}{q \theta_{0}}\right)^{n}$, where $c_{1}$ is the constant from Proposition 2.1.

If (a) takes place, then $\left\|f_{n, m}^{1}\right\|_{A_{1}^{\theta_{1}, \infty}}<c_{1} / 4$; as $c_{1} \operatorname{osc}_{2^{0}} \mathrm{f}_{\mathrm{n}, \mathrm{m}}^{1}<\mathrm{c}_{1} \sup _{\mathrm{k} \geq 0}$ $\frac{\operatorname{osc}_{2^{\mathrm{k}}} \mathrm{f}_{\mathrm{n}, \mathrm{m}}^{1}}{2^{(1-\theta) \mathrm{k}}} \leq\left\|f_{\mathrm{n}, \mathrm{m}}^{1}\right\|_{\mathrm{A}_{1}^{\theta_{1}, \infty}}$, then $\operatorname{osc}_{2^{\circ} \mathrm{f}_{\mathrm{n}, \mathrm{m}}^{1}}^{1}<1 / 4$. As $f_{n, m}^{0}=f_{n, m}-f_{n, m}^{1}$ and $\operatorname{osc}_{20} f_{n, m}=1$; then it follows from (2) that osc ${ }_{20} f_{n, m}^{0} \geq \operatorname{osc}_{20} f_{n, m}-\operatorname{osc}_{20} f_{n, m}^{1} \geq$ $3 / 4$. Analogously, from the definition of $f_{n, m}$ we obtain that osc $2^{\mathrm{n}+\mathrm{m}} \mathrm{f}_{\mathrm{n}, \mathrm{m}}^{0} \geq(3 / 4) 2^{\mathrm{m}}$.

Again from Proposition 2.1 it follows that

$$
\left\|f_{n, m}^{0}\right\|_{A_{1}^{\theta_{0}, \infty}} \geq c_{1} \frac{\mathrm{osc}_{2^{\mathrm{n}+\mathrm{m}}} \mathrm{f}_{\mathrm{n}, \mathrm{~m}}^{0}}{2^{\left(1-\theta_{0}\right)(\mathrm{n}+\mathrm{m})}} \geq \frac{3}{4} c_{1} \frac{2^{m}}{q_{\theta_{0}}^{n+m}}
$$

Consequently $c_{n, m} \geq 3 / 8 c_{1} \frac{2^{m}}{q_{\theta_{0}}^{n+m}}$; that is why we have the last inequality or (b). Then

$$
K\left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n} f_{n, m}, \vec{A}\right) \geq \frac{1}{8} c_{1} \min \left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{n}, \frac{2^{m}}{q_{\theta_{0}}^{n+m}}\right)
$$

Then for all subsequences such that $n_{s}, m_{s} \rightarrow \infty$ for $s \rightarrow \infty$

$$
\max \left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda}, \frac{2^{m_{s} / n_{s}}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{m_{s} / n_{s}}}\right) \geq\left(\frac{C}{8} c_{1}\right)^{1 / n_{s}} \min \left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}, \frac{2^{m_{s} / n_{s}}}{q_{\theta_{0}} q_{\theta_{0}}^{m_{s} / n_{s}}}\right) .
$$

Let us take $n_{s}, m_{s}$, such that $m_{s} / n_{s}=\gamma$; we shall show that, if $\theta_{0}>\theta_{1}$, there exists $\gamma$ rational such that

$$
\left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{\gamma}}\right) \geq\left(\frac{C}{8}\right)^{1 / n_{s}} \min \left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{0}}^{\gamma}}\right)
$$

doesn't take place. If this is not the case, it follows that for $n_{s}, m_{s} \rightarrow \infty$ we have

$$
\max \left(\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{\gamma}}\right) \geq \min \left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{0}}^{\gamma}}\right) .
$$

We will show that the inequalities

$$
\begin{equation*}
\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda} \geq \frac{q_{\theta_{1}}}{q_{\theta_{0}}}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{\gamma}} \geq \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{0}}^{\gamma}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{q_{\theta_{1}}}{q_{\theta_{0}}}\right)^{\lambda} \geq \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{0}}^{\gamma}}, \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{\gamma}} \geq \frac{q_{\theta_{1}}}{q_{\theta_{0}}} \tag{8}
\end{equation*}
$$

are not valid.
Let us start with (7). From $1-\theta_{0}<1-\theta_{1}$ (we recall that $\theta_{0}>\theta_{1}$ ) we have that $2^{1-\theta_{0}}<2^{1-\theta_{1}}$; hence $q_{\theta_{1}}>q_{\theta_{0}}$ and $q_{\theta_{1}} / q_{\theta_{0}}>1$. Then for $0<\lambda<1$ we have $\left(q_{\theta_{1}} / q_{\theta_{0}}\right)^{\lambda}<q_{\theta_{1}} / q_{\theta_{0}}$.

In the same way from $1-\theta_{0}<1-\theta_{\lambda}<1-\theta_{1}$, where

$$
1-\theta_{\lambda}=(1-\lambda)\left(1-\theta_{0}\right)+\lambda\left(1-\theta_{1}\right)
$$

we have that $2^{1-\theta_{0}}<2^{\theta_{\lambda}}$; hence $q_{\theta_{\lambda}}>q_{\theta_{0}}$ and $\left(q_{\theta_{0}} / q_{\theta_{\lambda}}\right)^{\lambda}<1$. Then

$$
\left(\frac{1}{q_{\theta_{\lambda}}}\right)^{\gamma}<\left(\frac{1}{q_{\theta_{0}}}\right)^{\gamma} \text { and } \frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{\lambda}}^{\gamma}}<\frac{2^{\gamma}}{q_{\theta_{0}} q_{\theta_{0}}^{\gamma}} .
$$

To show that (8) is not valid we will find $\gamma$ rational such that both inequalities are not true. This is equivalent to

$$
\begin{equation*}
q_{\theta_{\lambda}}^{1 / \gamma} q_{\theta_{0}}<2<q_{\theta_{1}}^{1 / \gamma} q_{\theta_{\lambda}} \tag{9}
\end{equation*}
$$

Let us denote $\phi_{1}(\gamma)=q_{\theta_{\lambda}}^{1 / \gamma} q_{\theta_{0}}$ and $\phi_{2}(\gamma)=q_{\theta_{1}}^{1 / \gamma} q_{\theta_{\lambda}}$. It is not difficult to see that both functions $\phi_{1}$ and $\phi_{2}$ are continuous, monotone and such that

$$
\lim _{\gamma \rightarrow 0} \phi_{1}(\gamma)=\lim _{\gamma \rightarrow 0} \phi_{2}(\gamma)=\infty
$$

and

$$
\lim _{\gamma \rightarrow \infty} \phi_{1}(\gamma)=q_{\theta_{0}}<2 \text { and } \lim _{\gamma \rightarrow \infty} \phi_{2}(\gamma)=q_{\theta_{\lambda}}<2
$$

As $q_{\theta_{1}}>q_{\theta_{0}}$ and $q_{\theta_{\lambda}}>q_{\theta_{0}}$, then $\phi_{2}(\gamma)>\phi_{1}(\gamma)$ for all $\gamma$ rational. From this it follows that we can find $\gamma$ such that (9) is valid.

## 4. Real interpolation of cones defined by the piecewise-linear onesided approximation

Let us denote by $S_{2^{n}}$, $n \in \mathbb{N}$, the subspace of $L_{p}(0,1), 1 \leq p \leq \infty$, consisting of all the piecewise-linear functions on the interval $[0,1]$ with the knots in the points $i / 2^{n},\left(0 \leq i \leq 2^{n}\right)$. If $f \in S_{2^{n}}$, then $f$ is linear on every interval $\left[(i-1) / 2^{n}, i / 2^{n}\right]$, $1 \leq i \leq 2^{n}$. An essential fact is that $S_{2^{n}} \subset S_{2^{n+1}}, n \in \mathbb{N}$.

Let us define for every measurable function $f$ on $[0,1]$ the sequence of the best onesided approximation by functions of the family $S_{2^{n}}, n \in \mathbb{N}$, as

$$
e_{2^{n}}^{+}(f)_{p}=\inf _{f_{2^{n}} \in S_{2^{n}}, f \geq f_{2^{n}}}\left(\int_{0}^{1}\left(f(x)-f_{2^{n}}(x)\right)^{p} d x\right)^{1 / p}
$$

Then we define the cone $A_{p}^{+\theta, q}(0<\theta<2,1 \leq p, q \leq \infty)$ as the set of all real measurable functions on $[0,1]$ with finite seminorm

$$
\|f\|_{\theta, q}= \begin{cases}\left(\sum_{n=0}^{\infty}\left(2^{\theta n} e_{2^{n}}^{+}(f)_{p}\right)^{q}\right)^{1 / q}, & \text { if } 1 \leq q<\infty \\ \sup _{n \geq 0} 2^{\theta n} e_{2^{n}}^{+}(f)_{p}, & \text { if } q=\infty\end{cases}
$$

For the couple of the cones $\vec{A}_{+}=\left(A_{p}^{+\theta_{0}, q_{0}}, A_{p}^{+\theta_{1}, q_{1}}\right)$ we define the $K$-functional as

$$
K\left(t, f, \vec{A}_{+}\right)=\inf _{f=f_{0}+f_{1}}\left(\left\|f_{0}\right\|_{\theta_{0}, q_{0}}+t\left\|f_{1}\right\|_{\theta_{1}, q_{1}}\right)
$$

The interpolation cone $\left(A_{p}^{+\theta_{0}, q_{0}}, A_{p}^{+\theta_{1}, q_{1}}\right)_{\lambda, q}(0<\lambda<1$ and $1 \leq q \leq \infty)$ is defined in the usual way.

## Theorem 4.1

$$
\text { If } 0<\theta_{0}, \theta_{1}<1+1 / p \text {, then }
$$

$$
\left(A_{p}^{+\theta_{0}, q_{0}}, A_{p}^{+\theta_{1}, q_{1}}\right)_{\lambda, q}=A_{p}^{+(1-\lambda) \theta_{0}+\lambda \theta_{1}, q}
$$

where $0<\lambda<1$ and $1 \leq p, q \leq \infty$.
The proof of Theorem 4.1 is analogous to the proof of the interpolation theorem in [2]. We only need to show that for every $f \in A_{p}^{+\theta, \infty},(0<\theta<1 / p$ and $1 \leq p \leq \infty)$ there exists a sequence of piecewise-linear functions $f_{2^{n}}^{+} \in S_{2^{n}}, n \in \mathbb{N}$, such that
(a) $f_{2^{0}}^{+} \leq f_{2^{1}}^{+} \leq \ldots f_{2^{n}}^{+} \leq f$, and
(b) if $e_{2^{n}}^{+}(f)_{p}=O\left(2^{-\theta n}\right)$ for some $0<\theta<1 / p$, then $\left\|f-f_{2^{n}}^{+}\right\|_{p}=O\left(2^{-\theta n}\right)$, $n \in \mathbb{N}$.

We shall organize the construction of the required sequence in two steps. In the first one we prove a theorem that plays the main role in our construction. In the second step we construct the algorithm to obtain the sequence of the piecewise-linear functions with properties (a) and (b).

### 4.1 Main construction

Let us suppose that there exists a linear function $f_{2^{\circ}}$ on the interval $Q=(\alpha, \beta)$ satisfying the inequality $f \geq f_{2^{0}}$. We also suppose that there exists a piecewiselinear function $f_{2^{1}}$, linear on each interval $[\alpha,(\alpha+\beta) / 2]$ and $[(\alpha+\beta) / 2, \beta]$, satisfying the inequality $f \geq f_{2^{1}}$.

## Theorem 4.2

For every interval $Q=(\alpha, \beta)$ and every $m \in \mathbb{N}$, there exists a piecewise-linear function $f_{2^{m+1}}$, linear on every interval $\left[\alpha+(i-1)(\beta-\alpha) / 2^{m+1}, \alpha+i(\beta-\alpha) / 2^{m+1}\right]$, $1 \leq i \leq 2^{m+1}$, and satisfying the following two conditions:
(a) $f \geq f_{2^{m+1}} \geq f_{2^{0}}$
(b) $\left\|f-f_{2^{m+1}}\right\|_{L_{p}(Q)}$

$$
\begin{equation*}
\leq c\left(\left\|f-f_{2^{1}}\right\|_{L_{p}(Q)}+\left(\frac{1}{2^{m}}\right)^{1+\frac{1}{p}}\left\|f-f_{2^{0}}\right\|_{L_{p}(Q)}\right) \tag{10}
\end{equation*}
$$

where $c$ is a constant depending only on $p$.

Proof. Without any lose of generality we prove the theorem for the interval $Q=$ $[0,1]$. Then the function $f_{2^{0}}$ is linear on the interval $[0,1]$ and $f_{2^{1}}$ is linear on each of the intervals $[0,1 / 2]$ and $[1 / 2,1]$.

For the natural number $m$ we divide every interval $[0,1 / 2]$ and $[1 / 2,1]$ into $2^{m}$ equal intervals. To construct the function $f_{2^{m+1}}$ we define

$$
\begin{equation*}
f_{2^{m+1}}(x)=\max \left(f_{2^{0}}(x), f_{2^{1}}(x)\right) \tag{11}
\end{equation*}
$$

on every interval of the partition, $\left[(i-1) / 2^{m+1}, i / 2^{m+1}\right], 1 \leq i \leq 2^{m+1}$, where the equation $f_{2^{0}}(x)=f_{2^{1}}(x)$ has no solution. This means that the graphics of the functions don't cross on such intervals and we have

$$
f_{2^{0}}(x)<f_{2^{1}}(x) \text { or } f_{2^{0}}(x)>f_{2^{1}}(x)
$$

for all $x$ from the interval. For the other intervals we put $f_{2^{m+1}}(x)=f_{2^{0}}(x)$. We have obtained a piecewise-linear function, linear on every interval of the partition, $\left[(i-1) / 2^{m+1}, i / 2^{m+1}\right], 1 \leq i \leq 2^{m+1}$, which satisfy the inequalities $f \geq f_{2^{m+1}} \geq f_{2^{0}}$.

Let us prove the estimate (10). It is enough to prove it for the interval [ $0,1 / 2$ ], the proof for $[1 / 2,1]$ being the same.

There are three possible cases for the functions $f_{2^{0}}$ and $f_{2^{1}}$ on $[0,1 / 2]$.
(a) $f_{2^{0}}(x)<f_{2^{1}}(x)$ if $x \in[0,1 / 2]$,
(b) $f_{2^{0}}(x)>f_{2^{1}}(x)$ if $x \in[0,1 / 2]$, and
(c) there exists $a \in[0,1 / 2]$ such that $f_{2^{0}}(a)=f_{2^{1}}(a)$.

In case (a), it follows from (11) that $f_{2^{m+1}}(x)=f_{2^{1}}(x)$ if $x \in[0,1 / 2]$, and

$$
\begin{equation*}
\left\|f-f_{2^{m+1}}\right\|_{L_{p}(0,1 / 2)}^{p}=\left\|f-f_{2^{1}}\right\|_{L_{p}(0,1 / 2)}^{p} \tag{12}
\end{equation*}
$$

In the case (b) it follows from (11) that $f_{2^{m+1}}(x)=f_{2^{0}}(x)$ if $x \in[0,1 / 2]$ and

$$
\begin{equation*}
\left\|f-f_{2^{m+1}}\right\|_{L_{p}(0,1 / 2)}^{p}=\left\|f-f_{2^{0}}\right\|_{L_{p}(0,1 / 2)}^{p} \leq\left\|f-f_{2^{1}}\right\|_{L_{p}(0,1 / 2)}^{p} \tag{13}
\end{equation*}
$$

In case $(c)$ there are two possible situations:
$\left(c_{1}\right) f_{2^{0}}(x)<f_{2^{1}}(x)$ if $0<x<a$ and $f_{2^{0}}(x)>f_{2^{1}}(x)$ if $a<x<1 / 2$, and
$\left(c_{2}\right) f_{2^{0}}(x)>f_{2^{1}}(x)$ if $0<x<a$ and $f_{2^{0}}(x)<f_{2^{1}}(x)$ if $a<x<1 / 2$.
We consider only the case $\left(c_{1}\right)$ - the case $\left(c_{2}\right)$ is similar.
Again we have two possible situations in this case $\left(c_{1}\right)$ :
$\left(c_{11}\right)$ The point $a \in[0,1 / 2]$ satisfies the inequality $0<a \leq 1 / 2-1 / 2^{m+2}$.
$\left(c_{12}\right)$ the point $a$ and satisfies the inequality $1 / 2-1 / 2^{m+2}<a \leq 1 / 2$.

We start with $\left(c_{11}\right)$. Let $a \in\left[(k-1) / 2^{m+1}, k / 2^{m+1}\right]$ for some $k \in \mathbb{N}, 1 \leq k \leq$ $2^{m}$. We shall estimate $f-f_{2^{m+1}}$ on every interval $\left[0,(k-1) / 2^{m+1}\right],\left[(k-1) / 2^{m+1}, a\right]$ and $[a, 1 / 2]$.

If $0 \leq x \leq(k-1) / 2^{m+1}$ then

$$
\begin{equation*}
\left(f-f_{2^{m+1}}\right)(x)=\left(f-f_{2^{1}}\right)(x) . \tag{14}
\end{equation*}
$$

If $a \leq x \leq 1 / 2$ then

$$
\begin{equation*}
\left(f-f_{2^{m+1}}\right)(x)<\left(f-f_{2^{1}}\right)(x) . \tag{15}
\end{equation*}
$$

If $(k-1) / 2^{m+1}<x<a$ then

$$
\begin{equation*}
\left(f-f_{2^{m+1}}\right)(x)<\left(f-f_{2^{1}}\right)(x)+\left(f_{2^{1}}-f_{2^{0}}\right)(x) . \tag{16}
\end{equation*}
$$

Let us estimate the second member in (16). For every $(k-1) / 2^{m+1}<x<a$ there exists $x^{\prime}=2 a-x, a<x^{\prime}<a+\left(a-(k-1) / 2^{m+1}\right)$ (the points $x$ and $x^{\prime}$ are symmetrical with respect to $a$ ) such that $\left(f_{2^{1}}-f_{2^{0}}\right)(x)=\left(f_{2^{0}}-f_{2^{1}}\right)\left(x^{\prime}\right)$.

For $a<x^{\prime}<a+\left(a-(k-1) / 2^{m+1}\right),\left(f_{2^{0}}-f_{2^{1}}\right)\left(x^{\prime}\right)<\left(f-f_{2^{1}}\right)\left(x^{\prime}\right)$, hence, for $(k-1) / 2^{m+1}<x<a,\left(f_{2^{1}}-f_{2^{0}}\right)(x)<\left(f-f_{2^{1}}\right)\left(x^{\prime}\right)$.

Finally, for $(k-1) / 2^{m+1}<x<a$ and $x^{\prime}=2 a-x, a<x^{\prime}<a+\left(a-(k-1) / 2^{m+1}\right)$,

$$
\begin{equation*}
\left(f-f_{2^{m+1}}\right)(x)<\left(f-f_{2^{1}}\right)(x)+\left(f-f_{2^{1}}\right)\left(x^{\prime}\right) . \tag{17}
\end{equation*}
$$

Then, from (14), (15) and (17), we obtain for $1 \leq p<\infty$

$$
\begin{align*}
\int_{0}^{1 / 2}\left(f-f_{2^{m+1}}\right)^{p}(x) d x= & \left(\int_{0}^{(k-1) / 2^{m+1}}+\int_{(k-1) / 2^{m+1}}^{a}+\int_{a}^{1 / 2}\right)\left(f-f_{2^{m+1}}\right)^{p}(x) d x \\
\leq & \left(\int_{0}^{(k-1) / 2^{m+1}}+\int_{a}^{1 / 2}\right)\left(f-f_{2^{m+1}}\right)^{p}(x) d x \\
& +\int_{(k-1) / 2^{m+1}}^{a}\left(f-f_{2^{1}}\right)^{p}(x) d x+\int_{a}^{1 / 2}\left(f-f_{2^{1}}\right)^{p}\left(x^{\prime}\right) d x^{\prime} \\
\leq & 2 \int_{0}^{a}\left(f-f_{2^{1}}\right)^{p}(x) d x \tag{18}
\end{align*}
$$

If $p=\infty$ then

$$
\begin{equation*}
\sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{m+1}}\right)(x)<2 \sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{1}}\right)(x) . \tag{19}
\end{equation*}
$$

The estimate (10) follows from (18) and (19).

In the case $\left(c_{12}\right)$ we first prove (10) for $p<\infty$. Let $d=a-\left(1 / 2-1 / 2^{m+1}\right)$. Then

$$
\begin{align*}
& \int_{0}^{1 / 2}\left(f-f_{2^{m+1}}\right)^{p}(x) d x \\
& \quad=\left(\int_{0}^{1 / 2-1 / 2^{m+1}}+\int_{1 / 2-1 / 2^{m+1}}^{a}+\int_{a}^{1 / 2}\right)\left(f-f_{2^{m+1}}\right)^{p}(x) d x \tag{20}
\end{align*}
$$

Since $f_{2^{m+1}}(x)=f_{2^{1}}(x)$ for $0 \leq x \leq 1 / 2-1 / 2^{m+1}$ and $\left(f-f_{2^{m+1}}\right)(x)=$ $\left(f-f_{2^{0}}\right)(x)<\left(f-f_{2^{1}}\right)(x)$ for $a \leq x \leq 1 / 2$, then (20) is not more than

$$
\begin{align*}
\left(\int_{0}^{1 / 2-1 / 2^{m+1}}+\right. & \left.\int_{a}^{1 / 2}\right)\left(f-f_{2^{1}}\right)^{p}(x) d x \\
& +\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{0}}\right)^{p}(x) d x \\
\leq & \int_{0}^{1 / 2}\left(f-f_{2^{1}}\right)^{p}(x) d x+\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{0}}\right)^{p}(x) d x . \tag{21}
\end{align*}
$$

To estimate the last member in (21) we use the inequality $(\alpha+\beta)^{p} \leq 2^{p-1}\left(\alpha^{p}+\beta^{p}\right)$ and (16). Then

$$
\begin{align*}
& \int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{0}}\right)^{p}(x) d x \\
& \leq 2^{p-1}\left(\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{1}}\right)^{p}(x) d x+\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x\right) . \tag{22}
\end{align*}
$$

Here

$$
\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{1}}\right)^{p}(x) d x \leq \int_{0}^{1 / 2}\left(f-f_{2^{1}}\right)^{p}(x) d x .
$$

To estimate the last term of (22) we use the following property of monomials

$$
\frac{\int_{0}^{\alpha} x^{p} d x}{\int_{0}^{\beta} x^{p} d x}=\frac{\alpha^{p+1}}{\beta^{p+1}}
$$

and we obtain

$$
\begin{aligned}
\frac{\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x}{\int_{0}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x} & =\left(\frac{d}{\frac{1}{2}-\frac{1}{2^{m+1}}+d}\right)^{p+1} \\
& =\left(\frac{1}{\frac{1}{2 d}-\frac{1}{2^{m+1} d}+1}\right)^{p+1} .
\end{aligned}
$$

Since $0<d<1 / 2^{m+1}$,

$$
\left(\frac{1}{\frac{1}{2 d}-\frac{1}{2^{m+1} d}+1}\right)^{p+1}<\left(\frac{1}{2^{m}}\right)^{p+1}
$$

and it follows that

$$
\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x<\left(\frac{1}{2^{m}}\right)^{p+1} \int_{0}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x .
$$

Also $\left(f_{2^{1}}-f_{2^{0}}\right)(x)<\left(f-f_{2^{0}}\right)(x)$ for $0 \leq x \leq a$, hence

$$
\int_{1 / 2-1 / 2^{m+1}}^{a}\left(f_{2^{1}}-f_{2^{0}}\right)^{p}(x) d x<\left(\frac{1}{2^{m}}\right)^{p+1} \int_{0}^{1 / 2}\left(f-f_{2^{0}}\right)^{p}(x) d x
$$

Summing all the estimates we obtain

$$
\begin{aligned}
& \int_{1 / 2-1 / 2^{m+1}}^{a}\left(f-f_{2^{0}}\right)^{p}(x) d x \\
& <2^{p-1}\left(\int_{0}^{1 / 2}\left(f-f_{2^{1}}\right)^{p}(x) d x+\left(\frac{1}{2^{m}}\right)^{p+1} \int_{0}^{1 / 2}\left(f-f_{2^{0}}\right)^{p}(x) d x\right)
\end{aligned}
$$

and

$$
\begin{align*}
& \int_{0}^{1 / 2}\left(f-f_{2^{m+1}}\right)^{p}(x) d x \leq\left(1+2^{p-1}\right) \\
& \quad \times\left(\int_{0}^{1 / 2}\left(f-f_{2^{1}}\right)^{p}(x) d x+\left(\frac{1}{2^{m}}\right)^{p+1} \int_{0}^{1 / 2}\left(f-f_{2^{0}}\right)^{p}(x) d x\right) \tag{23}
\end{align*}
$$

The corresponding inequality for the interval $[1 / 2,1]$ is

$$
\begin{aligned}
& \int_{1 / 2}^{1}\left(f-f_{2^{m+1}}\right)^{p}(x) d x \leq\left(1+2^{p-1}\right) \\
& \quad \times\left(\int_{1 / 2}^{1}\left(f-f_{2^{1}}\right)^{p}(x) d x+\left(\frac{1}{2^{m}}\right)^{p+1} \int_{1 / 2}^{1}\left(f-f_{2^{0}}\right)^{p}(x) d x\right)
\end{aligned}
$$

which can be summed with (23) to prove the case $1 \leq p<\infty$.
In the case $p=\infty$ we estimate $f-f_{2^{m+1}}$ on $\left[0,(k-1) / 2^{m+1}\right],\left[(k-1) / 2^{m+1}, a\right]$ and $[a, 1 / 2]$. The estimate on the intervals $\left[0,(k-1) / 2^{m+1}\right]$ and $\left[(k-1) / 2^{m+1}, a\right]$
follows from (14) and (15) for $k=2^{m}$, and on the interval $[a, 1 / 2]$ from (16) for $k=2^{m}$.

Let us estimate the second member in (16). Since $f_{2^{0}}(a)=f_{2^{1}}(a)$ and $f_{2^{0}}(x)<$ $f_{2^{1}}(x)$ for $1 / 2-1 / 2^{m+1}<x<a$, the difference $f_{2^{1}}-f_{2^{0}}$ is a monotone decreasing function on $\left[1 / 2-1 / 2^{m+1}, a\right]$. Thus, for $1 / 2-1 / 2^{m+1}<x<a$,

$$
\left(f_{2^{1}}-f_{2^{0}}\right)(x)<\left(f_{2^{1}}-f_{2^{0}}\right)\left(\frac{1}{2}-\frac{1}{2^{m+1}}\right) .
$$

From the homotety between the triangles with the vertices in the points

$$
\left(a, f_{2^{1}}(a)\right),\left(\frac{1}{2}-\frac{1}{2^{m+1}}, f_{2^{1}}\left(\frac{1}{2}-\frac{1}{2^{m+1}}\right)\right),\left(\frac{1}{2}-\frac{1}{2^{m+1}}, f_{2^{0}}\left(\frac{1}{2}-\frac{1}{2^{m+1}}\right)\right)
$$

and

$$
\left(a, f_{2^{1}}(a)\right),\left(0, f_{2^{1}}(0)\right),\left(0, f_{2^{0}}(0)\right)
$$

we obtain

$$
\left.\begin{array}{rl}
\left(f_{2^{1}}-f_{2^{0}}\right)\left(\frac{1}{2}-\frac{1}{2^{m+1}}\right) & =\frac{d}{\frac{1}{2}-\frac{1}{2^{m+1}}+d}\left(f_{2^{1}}-f_{2^{0}}\right)(0) \\
& =\left(\frac{1}{\frac{1}{2 d}-\frac{1}{2^{m+1} d}}+1\right.
\end{array}\right)\left(f_{2^{1}}-f_{2^{0}}\right)(0) .
$$

Let $d=a-\left(1 / 2-1 / 2^{m+1}\right)$. Then $0<d<1 / 2^{m+1}, 1 / 2^{m+1} d>1$ and $\frac{1}{\frac{1}{2 d}-\frac{1}{2^{m+1} d}+1}<1 / 2^{m}$. Hence, for $1 / 2-1 / 2^{m+1}<x<a$, we have $\left(f_{2^{1}}-f_{2^{0}}\right)(x)<$ $\left(1 / 2^{m}\right)\left(f_{2^{1}}-f_{2^{0}}\right)(0)$ and, since $\left(f_{2^{1}}-f_{2^{0}}\right)(0)<\left(f-f_{2^{0}}\right)(0)$, for $1 / 2-1 / 2^{m+1}<x<a$,

$$
\begin{equation*}
\left(f_{2^{1}}-f_{2^{0}}\right)(x)<\frac{1}{2^{m}}\left(f-f_{2^{0}}\right)(0)<\frac{1}{2^{m}} \sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{0}}\right)(x) . \tag{24}
\end{equation*}
$$

Taking together the inequalities (14)-(16) and (24) we obtain

$$
\begin{equation*}
\sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{m+1}}\right)(x)<\sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{1}}\right)(x)+\frac{1}{2^{m}} \sup _{0 \leq x \leq 1 / 2}\left(f-f_{2^{0}}\right)(x) \tag{25}
\end{equation*}
$$

The corresponding inequality for the interval $[1 / 2,1]$ is

$$
\begin{equation*}
\sup _{1 / 2 \leq x \leq 1}\left(f-f_{2^{m+1}}\right)(x)<\sup _{1 / 2 \leq x \leq 1}\left(f-f_{2^{1}}\right)(x)+\frac{1}{2^{m}} \sup _{1 / 2 \leq x \leq 1}\left(f-f_{2^{0}}\right)(x) \tag{26}
\end{equation*}
$$

Since $\sup _{0 \leq x \leq 1} f(x)=\max \left(\sup _{0 \leq x \leq 1 / 2} f(x), \sup _{1 / 2 \leq x \leq 1} f(x)\right)$, from (25) and (26) we obtain (10).

### 4.2 The algorithm and the estimation

For a measurable function $f$ on $[0,1]$, we take a linear function $f_{2^{0}}^{+}$satisfying $f(x) \geq f_{2^{0}}^{+}(x)$ if $x \in[0,1]$ and such that $\left\|f-f_{2^{0}}^{+}\right\|_{p} \leq 2 e_{2^{0}}^{+}(f)_{p}$.

Then we define the piecewise-linear function $f_{2^{1}}^{+}$, linear on $[0,1 / 2]$ and on $[1 / 2,1]$, satisfying $f(x) \geq f_{2^{1}}^{+}(x)$ if $x \in[0,1]$, and such that $\left\|f-f_{2^{1}}^{+}\right\|_{p} \leq 2 e_{2}^{+}(f)_{p}$.

Let us divide $[0,1 / 2]$ and $[1 / 2,1]$ in $2^{m}$ equal intervals. Using the method of the Theorem 4.2, with $Q=[0,1]$ and $f_{2^{0}}=f_{2^{0}}^{+}, f_{2^{1}}=f_{2^{1}}^{+}$on $[0,1]$, we construct the piecewise-linear function $f_{2^{m+1}}^{+}$, linear on $\left[(i-1) / 2^{m+1}, i / 2^{m+1}\right]\left(1 \leq i \leq 2^{m+1}\right)$ such that $f_{2^{m+1}}^{+}(x) \geq f_{2^{0}}^{+}(x)$ if $x \in[0,1]$, and

$$
\left\|f-f_{2^{m+1}}^{+}\right\|_{p} \leq c\left(\left\|f-f_{2^{1}}^{+}\right\|_{p}+\left(\frac{1}{2^{m}}\right)^{1+1 / p}\left\|f-f_{2^{0}}^{+}\right\|_{p}\right)
$$

Let us further divide every interval of length $1 / 2^{m+1}$ into two equal intervals and take a piecewise-linear function $f_{2^{2(m+1)-m}}^{+}$satisfying

$$
\left\|f-f_{2^{2(m+1)-m}}^{+}\right\|_{p} \leq 2 e_{2^{2(m+1)-m}}^{+}(f)_{p}
$$

Then we divide the intervals of length $1 / 2^{2(m+1)-m}$ in $2^{m}$ equal intervals. We consider Theorem 4.2 with $f_{2^{0}}=f_{2^{m+1}}^{+}, f_{2^{1}}=f_{2^{2(m+1)-m}}^{+}$; then for every interval

$$
Q_{i}=\left[\frac{i-1}{2^{2(m+1)-m}}, \frac{i}{2^{2(m+1)-m}}\right], 1 \leq i \leq 2^{2(m+1)-m}
$$

we construct a piecewise-linear function $f_{2^{2(m+1)}}^{+}$, linear on $\left[(i-1) / 2^{2(m+1)}\right.$, $\left.1 / 2^{2(m+1)}\right]\left(1 \leq i \leq 2^{2(m+1)}\right)$ such that $f \geq f_{2^{2(m+1)}}^{+} \geq f_{2^{m+1}}^{+} \geq f_{2^{0}}^{+}$on $[0,1]$ and

$$
\left\|f-f_{2^{2(m+1)}}^{+}\right\|_{p} \leq c\left(\left\|f-f_{2^{2(m+1)-m}}^{+}\right\|_{p}+\left(\frac{1}{2^{m}}\right)^{1+1 / p}\left\|f-f_{2^{m+1}}^{+}\right\|_{p}\right)
$$

By the same method we obtain a sequence of piecewise-linear functions $f_{2^{n(m+1)}}^{+} \in$ $S_{2^{n(m+1)}}, n \in \mathbb{N}$, satisfying $f \geq f_{2^{n(m+1)}}^{+} \geq f_{2^{(n-1)(m+1)}}^{+}$and

$$
\left\|f-f_{2^{n(m+1)}}^{+}\right\|_{p} \leq c\left(\left\|f-f_{2^{n(m+1)-m}}^{+}\right\|_{p}+\left(\frac{1}{2^{m}}\right)^{1+1 / p}\left\|f-f_{2^{(n-1)(m+1)}}^{+}\right\|_{p}\right)
$$

Let us estimate $\left\|f-f_{2^{n(m+1)}}^{+}\right\|_{L_{p}(0,1)}$ by $\left\|f-f_{2^{0}}^{+}\right\|_{L_{p}(0,1)}$ and $\left\|f-f_{2^{i(m+1)-m}}^{+}\right\|_{L_{p}((0,1)}$ ( $0 \leq i \leq n$ ) using recurrently the last inequality:

$$
\left.\begin{array}{rl}
\left\|f-f_{2^{n(m+1)}}^{+}\right\|_{p} \leq & c \|
\end{array}\right]-f_{2^{n(m+1)-m}}^{+} \|_{p} .
$$

From the choice of $f_{2^{(n-i)(m+1)}}^{+}$, such that $\left\|f-f_{2^{(n-i)(m+1)}}^{+}\right\|_{L_{p}(0,1)} \leq 2 e_{2^{(n-i)(m+1)}}^{+}(f)_{p}$, we have

$$
\begin{align*}
& \left\|f-f_{2^{n(m+1)}}^{+}\right\|_{p} \leq c^{n}\left(\frac{1}{2^{m}}\right)^{(1+1 / p) n}\left\|f-f_{2^{0}}^{+}\right\|_{p} \\
&  \tag{27}\\
& \quad+c \sum_{i=0}^{n-1}\left(c\left(\frac{1}{2^{m}}\right)^{1+1 / p}\right)^{i}\left\|f-f_{2^{(n-i)(m+1)-m}}^{+}\right\|_{p}
\end{align*}
$$

where $c$ is a constant depending only on $p$.
Now we prove that, if $e_{2^{n}}^{+}(f)_{p}=O\left(2^{-\theta n}\right)(0<\theta<1+1 / p)$, there exists $m \in \mathbb{N}$ such that $\left\|f-f_{2^{n(m+1)}}^{+}\right\|_{p}=O\left(2^{-\theta n(m+1)}\right)$. It follows from (27) that

$$
\begin{aligned}
\left\|f-f_{2^{n(m+1)}}^{+}\right\|_{p} \leq & c^{n}\left(\frac{1}{2^{m}}\right)^{(1+1 / p) n} \\
& +c \sum_{i=0}^{n-1}\left(c\left(\frac{1}{2^{m}}\right)^{1+1 / p}\right)^{i}\left(\frac{1}{2}\right)^{\theta[(n-i)(m+1)-m]} \\
= & c\left(\frac{1}{2}\right)^{\theta n(m+1)}\left[c^{n-1} 2^{\theta n}\left(\frac{1}{2}\right)^{(1+1 / p-\theta) n m}\right. \\
& \left.+2^{\theta m} \sum_{i=0}^{n-1} c^{i} 2^{\theta i}\left(\frac{1}{2}\right)^{i m(1+1 / p-\theta)}\right]
\end{aligned}
$$

If $c 2^{\theta} / 2^{(1+1 / p-\theta) m}<1$ the sum of the series is finite.

Remark 4.1. If $p=\infty$ our algorithm keeps the degree of approximation only for $0<\theta<1$, but in this case we can obtain another algorithm saving the degree of approximation for $0<\theta<2$. Let $f_{2^{n}} \in S_{2^{n}}(0,1)$ be the sequence of the piecewiselinear functions of the best uniform approximation, $\left\|f-f_{2^{n}}\right\|_{L_{\infty}(0,1)}=e_{2^{n}}(f)_{\infty}$.

Then the sequence $f_{2^{n}}^{+}=f_{2^{n}}-2 \sum_{k>n} e_{2^{n}}(f)_{\infty}$ satisfies $f_{2^{0}}^{+} \leq f_{2^{1}}^{+} \leq \cdots \leq$ $f_{2^{n}}^{+} \leq f$ and the degree of approximation is saved for $0<\theta<2$.

Acknowledgment. The authors are very thankful to Yu. A. Brudnyi, without his results and discussions this work would have never appear.

## References

1. A. Andreev, V. Popov and Bl. Sendov, Jackson's type theorems for onesided polynomial and spline approximation, C. R. Acad. Bulg. Sci. 30 (1977), 1533-1536.
2. Yu.A. Brudnyi and N. Krugljak, About a family of approximation spaces, Issled. Teor. Func. Mnog. Vech. Per. - Yaroslavl (1978), 15-41.
3. L. Dechevski, $\tau$-moduli and interpolation, Lect. Notes in Math. 1302 (1988), 177-190.
4. E. Matvejev, About superonesided spline-approximation of functions of several variables, $I z v$. Vuzov. Matematica 6 (1988), 49-54.
5. V. Popov, Function spaces, generated by the average modulus of smoothness, Pliska Stud. Math. Bulg. 5 (1983), 132-143.
6. V. Popov and A. Andreev, Stechkin-type theorems for onesided trigonometrical and spline approximation, C. R. Acad. Bulg. Sci. 31 (1978), 151-154.
7. V. Popov, Onesided $K$-functional and its interpolation spaces, Tr. MIAN USSR 163 (1984), 196-199.
8. A. Shadrin, About monotone approximation of functions by trigonometrical polynomials, Mat. Zametki 34:3 (1983), 375-386.
9. S. Stechkin, Constructive theory of functions, Sofia (1983), 595-598.
10. G. Totkov, Direct and converse theorems for best onesided approximation in spaces $L_{p}(0,1)$, $1 \leq p \leq \infty$, Nauchn. Tr. Inst. Xranit. i Bkus. Prom. 28:1 (1981), 183-191.
11. G. Totkov, Converse theorems for the onesided spline approximation, C. R. Acad. Bulg. Sci. 32:7 (1979), 875-878.

[^0]:    1 This research has been partially supported by Grant N. J91100 of the International Science Foundation of the Russian Government.

