Collect. Math. 48, 4-6 (1997), 587-600
(c) 1997 Universitat de Barcelona

P-convexity of Musielak-Orlicz sequence spaces of Bochner type

Pawet Kolwicz
Institute of Mathematics, University of Technology, ul. Piotrowo 3a, 60-965 Poznań, Poland
Ryszard Peuciennik*
Institute of Mathematics, T. Kotarbiński Pedagogical University, Pl. Słowiański 9, 65-069 Zielona Góra, Poland

Abstract

It is proved that the Musielak-Orlicz sequence space $l_{\varphi}(X)$ of Bochner type is P-convex if and only if both spaces $l_{\varphi}(\mathbb{R})$ and X are P-convex. In particular, the Lebesgue-Bochner sequence space $l^{p}(X)$ is P-convex iff X is P-convex and $1<p<\infty$.

I. Introduction

Relationships between various kinds of convexities of Banach spaces and the reflexivity were developed by many authors. D. Giesy [5] and R.C. James [10] raised the question whether B-convex Banach spaces are reflexive. James [11] settled the question negatively, constructing an example of a nonreflexive B-convex Banach space. It was natural to ask whether reflexivity is implied by some slightly stronger geometric property. Such a property was introduced by C.A. Kottman [18] and it was called P-convexity. Kottman proved that every P-convex Banach space is reflexive. D. Amir and C. Franchetti [2] showed that in Banach spaces P-convexity follows from uniform convexity as well as from uniform smoothness. It was natural to characterize P-convexity in some concrete Banach spaces. Y. Ye, M. He and

[^0]R. Płuciennik [21] proved that every Orlicz space is reflexive iff it is P-convex. The same result for Musielak-Orlicz function spaces was obtained by P. Kolwicz and R. Płuciennik [16] and for Musielak-Orlicz sequence spaces by Y. Ye and Y. Huang [22].

In this paper we show that $l_{\varphi}(X)$ is P-convex iff both l_{φ} and X are P-convex. This result implies immediately the main theorem from [22]. The similar characterization of P-convexity for Orlicz-Bochner function spaces was done in [17]. It is worth to mention that criteria for B-convexity of Orlicz-Bochner spaces were obtained in [4], [7] and [15].

Denote by \mathbb{N}, \mathbb{R} and \mathbb{R}_{+}the sets of natural, real and positive real numbers, respectively. Let \mathcal{M} be the set of all real sequences $x=\left(u_{n}\right)_{n=1}^{\infty}$. A function φ is called an Orlicz function, if $\varphi: \mathbb{R} \longrightarrow \mathbb{R}_{+}$is convex, even, $\varphi(u)=0$ iff $u=0$, and $\lim _{u \rightarrow 0} u^{-1} \varphi(u)=0$. A sequence $\varphi=\left(\varphi_{n}\right)$ of Orlicz functions φ_{n} is called a Musielak-Orlicz function. Define on \mathcal{M} a convex modular I_{φ} by

$$
I_{\varphi}(x)=\sum_{n=1}^{\infty} \varphi_{n}\left(u_{n}\right)
$$

for every $x \in \mathcal{M}$. By the Musielak-Orlicz space l_{φ} we mean

$$
l_{\varphi}=\left\{x \in \mathcal{M}: I_{\varphi}(c x)<\infty \text { for some } c>0\right\}
$$

equipped with the Luxemburg norm

$$
\|x\|_{\varphi}=\inf \left\{\epsilon>0: I_{\varphi}\left(\frac{x}{\epsilon}\right) \leq 1\right\}
$$

For every Musielak-Orlicz function φ we will denote by φ^{*} the sequence $\left(\varphi_{n}^{*}\right)$ of functions φ_{n}^{*} that are complementary to φ_{n} in the sense of Young, i.e.

$$
\varphi_{n}^{*}(v)=\sup _{u \geq 0}\left\{u|v|-\varphi_{n}(u)\right\}
$$

for every $v \in \mathbb{R}$ and $n \in \mathbb{N}$.
We say that a Musielak-Orlicz function φ satisfies the δ_{2}-condition if there are constants $k_{0}, a_{0}>0$ and a sequence $\left(c_{n}^{0}\right)$ of positive reals with $\sum_{n=1}^{\infty} c_{n}^{0}<\infty$ such that

$$
\varphi_{n}(2 u) \leq k_{0} \varphi_{n}(u)+c_{n}^{0}
$$

for each $n \in \mathbb{N}$ and every $u \in \mathbb{R}$ satisfying $\varphi_{n}(u) \leq a_{0}$. For more details we refer to [20].

Moreover, we can assume without loss of generality that $\varphi_{n}(1)=1$ and $\varphi_{n}(u)=$ u^{2} for all $n \in \mathbb{N}$ and every $|u|>1$. Otherwise we may define a new Musielak-Orlicz function $\psi=\left(\psi_{n}\right)$ by the following formula
where $\varphi_{n}\left(b_{n}\right)=1$, for every $n \in \mathbb{N}$. The spaces l_{φ} and l_{ψ} are equal isometrically (see [13]). Under this assumption we should remember that every function $\varphi_{n}(n \in$ \mathbb{N}) is non decreasing on \mathbb{R}_{+}and it is convex on the interval $[0,1]$, but not necessarily convex on the whole \mathbb{R}_{+}. It is easy to prove that this modified function φ satisfies the δ_{2}-condition iff for every $\epsilon>0$ there are a constant $k>2$ and a sequence $\left(c_{n}\right)$ of positive real numbers such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}\left(c_{n}\right)<\epsilon \quad \text { and } \quad \varphi_{n}(2 u) \leq k \varphi_{n}(u) \tag{1}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and every $u \in\left[c_{n}, 1\right]$ (see [13] and [3]).
We say that φ satisfies condition $(*)$ if for every $\epsilon \in(0,1)$ there exists $\delta>0$ such that $\varphi_{n}(u)<1-\epsilon$ implies $\varphi_{n}((1+\delta) u) \leq 1$ for all $u \in \mathbb{R}$ and every $n \in \mathbb{N}$.

Now, let us define the type of spaces to be considered in this paper. For a real Banach space $\left\langle X,\|\cdot\|_{X}\right\rangle$, denote by $\mathcal{M}(\mathbb{N}, X)$, or just $\mathcal{M}(X)$, the sequences $x=\left(x_{n}\right)$ such that $x_{n} \in X$ for all $n \in \mathbb{N}$. Define on $\mathcal{M}(X)$ a modular $\widetilde{I_{\varphi}}(x)$ by the formula

$$
\widetilde{I_{\varphi}}(x)=\sum_{n=1}^{\infty} \varphi_{n}\left(\left\|x_{n}\right\|_{X}\right)
$$

Let

$$
l_{\varphi}(X)=\left\{x \in \mathcal{M}(X): x_{0}=\left(\left\|x_{n}\right\|_{X}\right)_{n=1}^{\infty} \in l_{\varphi}\right\}
$$

Then $l_{\varphi}(X)$ equipped with the norm $\|x\|=\left\|x_{0}\right\|_{\varphi}$ becomes a Banach space which is called a Musielak-Orlicz sequence space of Bochner type.

A linear normed space X is called P-convex if there exist $\epsilon>0$ and $n \in \mathbb{N}$ such that for all $x_{1}, x_{2}, \ldots x_{n} \in S(X)$

$$
\min _{i \neq j}\left\|x_{i}-x_{j}\right\|_{X} \leq 2(1-\epsilon)
$$

where $S(X)$ denotes the unit sphere of X. The notion of P-convexity in Banach spaces can be characterized by the following lemma.

Lemma 1

A Banach space X is P-convex iff there exist $n_{0} \in \mathbb{N}$ and $\delta>0$ such that for any elements $x_{1}, x_{2}, \ldots, x_{n_{0}} \in X \backslash\{0\}$ integers i_{0}, j_{0} can be found such that

$$
\left\|\frac{x_{i_{0}}-x_{j_{0}}}{2}\right\|_{X} \leq \frac{\left\|x_{i_{0}}\right\|_{X}+\left\|x_{j_{0}}\right\|_{X}}{2}\left(1-\frac{2 \delta \min \left\{\left\|x_{i_{0}}\right\|_{X},\left\|x_{j_{0}}\right\|_{X}\right\}}{\left\|x_{i_{0}}\right\|_{X}+\left\|x_{j_{0}}\right\|_{X}}\right) .
$$

Proof. Suppose that X is P-convex. Then there exist $\delta>0$ and $n \in \mathbb{N}$ such that for all $x_{1}, x_{2}, \ldots, x_{n_{0}} \in X \backslash\{0\}$ natural numbers i_{0}, j_{0} can be found such that

$$
\frac{1}{2}\left\|\frac{x_{i_{0}}}{\left\|x_{i_{0}}\right\|_{X}}-\frac{x_{j_{0}}}{\left\|x_{j_{0}}\right\|_{X}}\right\|_{X}<1-\delta .
$$

We may assume without loss of generality that $\left\|x_{i_{0}}\right\| \geq\left\|x_{j_{0}}\right\|$. We have

$$
\begin{aligned}
& 1-\delta>\frac{1}{2}\left\|\frac{x_{i_{0}}}{\left\|x_{i_{0}}\right\|_{X}}-\frac{x_{j_{0}}}{\left\|x_{j_{0}}\right\|_{X}}\right\|_{X}=\| \frac{x_{i_{0}}-x_{j_{0}}}{2\left\|x_{j_{0}}\right\|_{X}}+\left(\frac{1}{\left\|x_{i_{0}}\right\|_{X}}-\frac{1}{\left\|x_{j_{0}}\right\|_{X}}\right) \frac{x_{i_{0}} \|_{X}}{2} \\
& \quad \geq \frac{1}{\left\|x_{j_{0}}\right\|_{X}}\left\|\frac{x_{i_{0}}-x_{j_{0}}}{2}\right\|_{X}-\frac{1}{2}\left\|x_{i_{0}}\right\|_{X}\left|\frac{1}{\left\|x_{i_{0}}\right\|_{X}}-\frac{1}{\left\|x_{j_{0}}\right\|_{X}}\right| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{\left\|x_{j_{0}}\right\|_{X}}\left\|\frac{x_{i_{0}}-x_{j_{0}}}{2}\right\|_{X} & \leq 1-\delta+\frac{1}{2}\left\|x_{i_{0}}\right\|_{X}\left|\frac{1}{\left\|x_{i_{0}}\right\|_{X}}-\frac{1}{\left\|x_{j_{0}}\right\|_{X}}\right| \\
& =\frac{1}{2}-\delta+\frac{1}{2} \frac{\left\|x_{i_{0}}\right\|_{X}}{\left\|x_{j_{0}}\right\|_{X}}=-\delta+\frac{1}{2}\left(1+\frac{\left\|x_{i_{0}}\right\|_{X}}{\left\|x_{j_{0}}\right\|_{X}}\right) \\
& =-\delta+\frac{1}{2} \frac{\left\|x_{i_{0}}\right\|_{X}+\left\|x_{j_{0}}\right\|_{X}}{\left\|x_{j_{0}}\right\|_{X}}
\end{aligned}
$$

and finally

$$
\left\|\frac{x_{i_{0}}-x_{j_{0}}}{2}\right\|_{X} \leq \frac{\left\|x_{i_{0}}\right\|_{X}+\left\|x_{j_{0}}\right\|_{X}}{2}\left(1-\frac{2 \delta\left\|x_{j_{0}}\right\|_{X}}{\left\|x_{i_{0}}\right\|_{X}+\left\|x_{j_{0}}\right\|_{X}}\right) .
$$

Since the converse implication follows immediately by the definition of P-convexity, the proof is finished.

Although the above lemma was proved in [17], we presented it here for the sake of convenience.

II. Results

Lemma 2

If φ satisfies the δ_{2}-condition, then for every $\alpha \in(0,1)$ there exists a nondecreasing sequence $\left(A_{m}^{\alpha}\right)$ of finite subsets of \mathbb{N} such that

$$
\bigcup_{m=1}^{\infty} A_{m}^{\alpha}=\mathbb{N}
$$

and for every $m \in \mathbb{N}$ a number $k_{m}^{\alpha}>2$ can be found such that

$$
\begin{equation*}
\varphi_{n}(2 u) \leq k_{m}^{\alpha} \varphi_{n}(u) \tag{2}
\end{equation*}
$$

for each $n \in A_{m}^{\alpha}$ and every $u \in\left[\alpha c_{n}, 1\right]$, where c_{n} are from (1).
Proof. Fix $\alpha \in(0,1)$. Denote $B_{m}=\{0,1, \ldots, m\}$ and

$$
C_{m}^{\alpha}=\left\{n \in \mathbb{N}: \frac{1}{m} \leq \alpha c_{n} \leq c_{n}\right\} \quad(m=1,2, \ldots)
$$

Obviously, $C_{m}^{\alpha} \subset C_{m+1}^{\alpha}$ for every $m \in \mathbb{N}$ and $\bigcup_{m=1}^{\infty} C_{m}^{\alpha}=\mathbb{N}$. Define $A_{m}^{\alpha}=B_{m} \cap C_{m}^{\alpha}$ for every $m \in \mathbb{N}$. Then $A_{m}^{\alpha} \subset A_{m+1}^{\alpha}$ and $\operatorname{card} A_{m}^{\alpha}<\infty$ for every $m \in \mathbb{N}$. Moreover $\bigcup_{m=1}^{\infty} A_{m}^{\alpha}=\mathbb{N}$. Denote

$$
k_{m}^{\alpha}=\frac{k}{\min _{n \in A_{m}^{\alpha}} \varphi_{n}\left(\frac{1}{m}\right)} \quad(m=1,2, \ldots),
$$

where k is from (1). Since $\varphi_{n}(n=1,2, \ldots)$ vanishes only at zero, $k<k_{m}^{\alpha}<\infty$ for $m \in \mathbb{N}$. Suppose that $n \in A_{m}^{\alpha}$. Then

$$
\begin{aligned}
\varphi_{n}(2 u) & \leq \varphi_{n}\left(2 c_{n}\right) \leq k \varphi_{n}\left(c_{n}\right) \frac{\varphi_{n}\left(\alpha c_{n}\right)}{\varphi_{n}\left(\alpha c_{n}\right)} \\
& \leq k \varphi_{n}(1) \frac{\varphi_{n}(u)}{\varphi_{n}\left(\frac{1}{m}\right)} \leq k_{m}^{\alpha} \varphi_{n}(u)
\end{aligned}
$$

for $u \in\left[\alpha c_{n}, c_{n}\right]$ and

$$
\varphi_{n}(2 u) \leq k \varphi_{n}(u) \leq k_{m}^{\alpha} \varphi_{n}(u)
$$

for $u \in\left[c_{n}, 1\right]$. Hence the proof is finished.

Lemma 3

If φ and φ^{*} satisfy the δ_{2}-condition, then for every $\epsilon \in(0,1)$ there exist a number $\eta_{\epsilon}>1$ and a sequence $d=\left(d_{n}\right)$ of positive real numbers with $\sum_{n=1}^{\infty} \varphi_{n}\left(d_{n}\right)<\epsilon$ such that

$$
\varphi_{n}\left(\frac{\eta_{\epsilon}}{2} u\right) \leq \frac{1}{2 \eta_{\epsilon}} \varphi_{n}(u)
$$

for each $n \in \mathbb{N}$ and every $u \in\left[d_{n}, 1\right]$.

Proof. We will apply the methods from [3] and [9]. Take an arbitrary $\epsilon>0$. Since $\varphi_{n}(1)=1, \varphi_{n}(u)=u^{2}$ for each $n \in \mathbb{N}$ and all $|u|>1$, and φ_{n} is convex on $[-1,1]$ for all $n \in \mathbb{N}$, using (17) from [3] and applying Lemma 2 from [3] we can find $b_{0}>1$ such that $\varphi_{n}^{*}\left(b_{0} u\right) \leq 2 \varphi_{n}^{*}(u)$ for each $n \in \mathbb{N}$ and every $|u| \geq b_{n}$, where φ_{n}^{*} is complementary to φ_{n} in the sense of Young and b_{n} is such that $\sum_{n=1}^{\infty} \varphi_{n}^{*}\left(b_{n}\right) \leq \epsilon / 2$. The existence of such a sequence $\left(b_{n}\right)$ follows by $\varphi^{*} \in \delta_{2}$. Furthermore a number $b \in(1,2)$ can be found small enough to satisfy $\varphi_{n}^{*}\left(b^{2} u\right) \leq 2 b \varphi_{n}^{*}(u)$ for each $n \in \mathbb{N}$ and every $|u| \geq b_{n}$. Hence

$$
\varphi_{n}^{*}\left(b^{2} v\right) \leq 2 b \varphi_{n}^{*}(v)+2 b \varphi_{n}^{*}\left(b_{n}\right)
$$

for each $n \in \mathbb{N}$ and every $v \in \mathbb{R}$. Then

$$
\begin{aligned}
\varphi_{n}\left(\frac{b}{2} u\right) & =\sup _{v \geq 0}\left\{\frac{b}{2}|u| v-\varphi_{n}^{*}(v)\right\} \\
& =\sup _{v \geq 0}\left\{\frac{b}{2}|u| v-\frac{1}{2 b} \varphi_{n}^{*}\left(b^{2} v\right)\right\}+\varphi_{n}^{*}\left(b_{n}\right) \\
& =\sup _{v \geq 0}\left\{\frac{1}{2 b}|u| b^{2} v-\frac{1}{2 b} \varphi_{n}^{*}\left(b^{2} v\right)\right\}+\varphi_{n}^{*}\left(b_{n}\right)=\frac{1}{2 b} \varphi_{n}(u)+\varphi_{n}^{*}\left(b_{n}\right)
\end{aligned}
$$

for every $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Now take the sequence $\left(w_{n}\right)$ such that $\varphi_{n}\left(w_{n}\right)=\varphi_{n}^{*}\left(b_{n}\right)$. Define

$$
\bar{c}_{n}=\frac{2 b}{\sqrt{b}-1} w_{n}
$$

for every $n \in \mathbb{N}$. Put $\xi=\sqrt{b}$. Since $\varphi_{n}(\alpha u) \leq \alpha \varphi_{n}(u)$ for each $n \in \mathbb{N}, u \in \mathbb{R}$ and $\alpha \in[0,1]$, we get

$$
\varphi_{n}\left(\frac{\xi}{2} u\right) \leq \varphi_{n}\left(\frac{b}{2} u\right) \leq \frac{1}{2 b} \varphi_{n}(u)+\varphi_{n}\left(\frac{\sqrt{b}-1}{2 b} u\right) \leq \frac{1}{2 \xi} \varphi_{n}(u)
$$

for $u \geq \bar{c}_{n}$ and $n \in \mathbb{N}$.
By $\varphi \in \delta_{2}$, we have $I_{\varphi}(\bar{c})<\infty$. Hence we can find a number $\lambda>0$ such that $I_{\varphi}(\lambda \bar{c})<\epsilon / 2$. Denote

$$
A_{k}=\left\{n \in \mathbb{N}: \sup _{\lambda d_{n} \leq u \leq d_{n}} \frac{2\left(1+\frac{1}{k}\right) \varphi_{n}\left(\frac{1}{2}\left(1+\frac{1}{k}\right) u\right)}{\varphi_{n}(u)} \leq 1\right\}
$$

Since $\lim _{u \rightarrow 0} u^{-1} \varphi_{n}(u)=0$ for every $n \in \mathbb{N}, \varphi_{n}(n \in \mathbb{N})$ is linear in no neighborhood of 0 , and consequently $\bigcup_{i=1}^{\infty} A_{i}=\mathbb{N}$. Then there exists a number $l \in \mathbb{N}$ such that

$$
\sum_{n \in \mathbb{N} \backslash A_{l}} \varphi_{n}\left(\bar{c}_{n}\right)<\frac{\epsilon}{2}
$$

Define

$$
d_{n}= \begin{cases}\lambda \bar{c}_{n} & \text { for } n \in A_{l} \\ \bar{c}_{n} & \text { for } n \in \mathbb{N} \backslash A_{l} .\end{cases}
$$

We get $I_{\varphi}(d)<\epsilon$. Taking $\eta_{\epsilon}=\min \{\xi, 1+1 / l\}$, we obtain

$$
\varphi_{n}\left(\frac{\eta_{\epsilon}}{2} u\right) \leq \frac{1}{2 \eta_{\epsilon}} \varphi_{n}(u)
$$

for each $n \in \mathbb{N}$ and $u \geq d_{n}$ which finishes the proof.

Lemma 4

If φ and φ^{*} satisfy the δ_{2}-condition, then for every $\epsilon \in(0,1)$ there are numbers $a=a(\epsilon) \in(0,1)$ and $\gamma=\gamma(a(\epsilon)) \in(0,1)$ such that

$$
\begin{equation*}
\varphi_{n}\left(\frac{u+v}{2}\right) \leq \frac{1-\gamma}{2}\left(\varphi_{n}(u)+\varphi_{n}(v)\right) \tag{3}
\end{equation*}
$$

for each $n \in \mathbb{N}$, every $u \in\left[d_{n}, 1\right]$ and $\left|\frac{v}{u}\right|<a$, where $d=\left(d_{n}\right)$ is from Lemma 3 .
Proof. In the case of the Δ_{2}-condition for all $u \in \mathbb{R}$ the thesis of the lemma was proved for all $u, v \in \mathbb{R}$ with $\left|\frac{v}{u}\right|<a$ in Example 1.7 from [4]. The same method is applicable in our situation. Fix $\epsilon \in(0,1)$. Let $d=\left(d_{n}\right)$ and η_{ϵ} be as in Lemma 3. Then there exists a number $a \in(0,1)$ such that $1+a \leq \eta_{\epsilon}$. Taking $\gamma=a / a+1$, we get $\gamma \in(0,1)$ and

$$
\begin{aligned}
\varphi_{n}\left(\frac{1+a}{2} u\right) & \leq \frac{1}{2(1+a)} \varphi_{n}(u) \leq \frac{1}{2(1+a)}\left(\varphi_{n}(u)+\varphi_{n}(a u)\right) \\
& =\frac{1}{2}(1-\gamma)\left(\varphi_{n}(u)+\varphi_{n}(a u)\right)
\end{aligned}
$$

for each $n \in \mathbb{N}$ and every $u \in\left[d_{n}, 1\right]$. Since for every $u>0$ the function

$$
f(a)=2 \Phi\left(\frac{u+a u}{2}\right) /(\Phi(u)+\Phi(a u))
$$

is nonincreasing, the above inequality holds true for every $a_{0}<a$ with the same γ. Hence we obtain the thesis.

Theorem 1

Let φ be the Musielak-Orlicz function satisfying condition (*) and ($X,\|\cdot\|_{X}$) be the Banach space. Then the following statements are equivalent:
(a) The Musielak-Orlicz sequence space $l_{\varphi}(X)$ of Bochner type is P-convex.
(b) Both l_{φ} and $\left(X,\|\cdot\|_{X}\right)$ are P-convex.
(c) l_{φ} is reflexive and $\left(X,\|\cdot\|_{X}\right)$ is P-convex.
(d) $\left(X,\|\cdot\|_{X}\right)$ is P-convex, $\varphi \in \delta_{2}$ and $\varphi^{*} \in \delta_{2}$.

Proof. (a) \Rightarrow (b). Since the spaces l_{φ} and X are embedded isometrically into $l_{\varphi}(X)$ and P-convexity is inherited by subspaces, $L_{\Phi}(\mu)$ and X are P-convex.
(b) \Rightarrow (c). Every P-convex Banach space is reflexive (see Theorem 3.2 in [18]). Hence l_{φ} is reflexive.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$. The reflexivity of Musielak-Orlicz sequence space l_{φ} is equivalent to the fact that $\varphi \in \delta_{2}$ and $\varphi^{*} \in \delta_{2}$ (see [8] and [12]).
(d) $\Rightarrow(\mathrm{a})$. Suppose that $\varphi \in \delta_{2}, \varphi^{*} \in \delta_{2}$ and $\left(X,\|\cdot\|_{X}\right)$ is P-convex. Let n_{0} be a natural number from Lemma 1. Define

$$
z_{n}=\max \left\{c_{n}, d_{n}\right\}
$$

for every $n \in \mathbb{N}$, where c_{n}, d_{n} are from (1) and Lemma 3, respectively, and they correspond to $\epsilon=\frac{1}{4 n_{0}}$. Hence

$$
\sum_{n=1}^{\infty} \varphi\left(z_{n}\right) \leq \sum_{n=1}^{\infty} \varphi\left(c_{n}\right)+\sum_{n=1}^{\infty} \varphi\left(d_{n}\right)<\frac{1}{2 n_{0}}
$$

Let a be the number from Lemma 4 with z_{n} in place of d_{n} and let $\left(A_{m}^{a}\right)$ be the ascending sequence of finite sets from Lemma 2 corresponding to $\alpha=a$ and z_{n} in place of c_{n}. Since $\varphi \in \delta_{2}, I_{\varphi}\left(\frac{1}{a} z\right)<\infty$. Then there exists a natural number m_{0} such that

$$
\begin{equation*}
\sum_{n \in \mathbb{N} \backslash A_{m_{0}}^{a}} \varphi_{n}\left(\frac{1}{a} z_{n}\right)<\frac{1}{2 n_{0}} . \tag{4}
\end{equation*}
$$

We have

$$
\varphi_{n}(2 u) \leq k_{m_{0}}^{a} \varphi_{n}(u)
$$

for every $n \in A_{m_{0}}^{a}$ and $u \in\left[a z_{n}, 1\right]$. Moreover, taking $p \in \mathbb{N}$ such that $1 / a \leq 2^{p}$ and applying p times inequality (2), we obtain

$$
\varphi_{n}\left(\frac{1}{a} u\right) \leq\left(k_{m_{0}}^{a}\right)^{p} \varphi_{n}(u)
$$

for every $n \in A_{m_{0}}^{a}$ and $u \in\left[a z_{n}, 1\right]$. Setting now $\frac{1}{a} u=v$ and $\frac{1}{\left(k_{m_{0}}^{a}\right)^{p}}=\beta_{m_{0}}$, we get

$$
\begin{equation*}
\varphi_{n}(a v) \geq \beta_{m_{0}} \varphi_{n}(v) \tag{5}
\end{equation*}
$$

for every $n \in A_{m_{0}}^{a}$ and $v \in\left[z_{n}, 1\right]$. Furthermore, if $z_{n} / a<1$ for some $n \in \mathbb{N}$, repeating a similar argumentation, we obtain

$$
\varphi_{n}(2 u) \leq k \varphi_{n}(u)
$$

and

$$
\varphi_{n}\left(\frac{1}{a} u\right) \leq k^{p} \varphi_{n}(u)
$$

for every $u \in\left[z_{n}, 1\right]$. Consequently

$$
\begin{equation*}
\varphi_{n}(a v) \geq \beta \varphi_{n}(v) \tag{6}
\end{equation*}
$$

for every $v \in\left[\frac{z_{n}}{a}, 1\right]$, where $1 / k^{p}=\beta$.
Now, we will show that there exists a number $r_{1} \in(0,1)$ such that for every $x^{1}, x^{2}, \ldots, x^{n_{0}}$ from the unit ball $B(X)$, we have

$$
\begin{equation*}
\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n}\left(\left\|\frac{x^{i}-x^{j}}{2}\right\|_{X}\right) \leq \frac{n_{0}-1}{2} r_{1} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \tag{7}
\end{equation*}
$$

for every $n \in \mathbb{N}$ such that $\max _{1 \leq i \leq n_{0}}\left\{\left\|x^{i}\right\|_{X}\right\} \geq z_{n} / a$.
Take $x^{1}, x^{2}, \ldots, x^{n_{0}} \in B(X)$. Let k be an index such that

$$
\left\|x^{k}\right\|_{X}=\max _{1 \leq i \leq n_{0}}\left\{\left\|x^{i}\right\|_{X}\right\}
$$

For the clarity of the proof, we will divide it into two parts.
I. Suppose that there exists $i_{1} \in\left\{1,2, \ldots, n_{0}\right\}$ such that $\left\|x^{i_{1}}\right\|_{X} /\left\|x^{k}\right\|_{X}<a$. Since $\left\|x^{k}\right\| \geq z_{n} / a \geq z_{n}$, by inequality (3), we have

$$
\begin{aligned}
\varphi_{n}\left(\left\|\frac{x^{i_{1}}-x^{k}}{2}\right\|_{X}\right) & \leq \varphi_{n}\left(\frac{\left\|x^{i_{1}}\right\|_{X}+\left\|x^{k}\right\|_{X}}{2}\right) \\
& \leq \frac{1}{2}(1-\gamma)\left(\varphi_{n}\left(\left\|x^{i_{1}}\right\|_{X}\right)+\varphi_{n}\left(\left\|x^{k}\right\|_{X}\right)\right)
\end{aligned}
$$

Hence, by the convexity of $\varphi_{n}(n \in \mathbb{N})$ on the interval $[0,1]$, we get

$$
\begin{align*}
& \sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n}\left(\left\|\frac{x^{i}-x^{j}}{2}\right\|_{X}\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\gamma}{2}\left(\varphi_{n}\left(\left\|x^{i_{1}}\right\|_{X}\right)+\varphi_{n}\left(\left\|x^{k}\right\|_{X}\right)\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\gamma}{2 n_{0}}\left(n_{0} \varphi_{n}\left(\left\|x^{k}\right\|_{X}\right)\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\gamma}{2 n_{0}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \\
& =\frac{n_{0}-1}{2}\left(1-\frac{\gamma}{n_{0}\left(n_{0}-1\right)}\right) \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \tag{8}
\end{align*}
$$

for every $n \in \mathbb{N}$ such that the inequality $\max _{1 \leq i \leq n_{0}}\left\{\left\|x^{i}\right\|_{X}\right\} \geq z_{n} / a$ holds true.
II. Assume that for all $i \neq k$ we have

$$
\begin{equation*}
\frac{\left\|x^{i}\right\|_{X}}{\left\|x^{k}\right\|_{X}} \geq a \tag{9}
\end{equation*}
$$

Then $\left\|x^{i}\right\|>0$ for every $i \neq k$. Let i_{0}, j_{0} be from Lemma 1 . We may assume that

$$
\begin{equation*}
a \leq \frac{\left\|x^{i_{0}}\right\|_{X}}{\left\|x^{j_{0}}\right\|_{X}} \leq \frac{1}{a} \tag{10}
\end{equation*}
$$

Really, otherwise we have

$$
a>\frac{\left\|x^{i_{0}}\right\|_{X}}{\left\|x^{j_{0}}\right\|_{X}} \geq \frac{\min \left\{\left\|x^{i_{0}}\right\|_{X},\left\|x^{j_{0}}\right\|_{X}\right\}}{\max \left\{\left\|x^{i_{0}}\right\|_{X},\left\|x^{j_{0}}\right\|_{X}\right\}} \geq \frac{\min \left\{\left\|x^{i_{0}}\right\|_{X},\left\|x^{j_{0}}\right\|_{X}\right\}}{\left\|x^{k}\right\|_{X}},
$$

which contradicts inequality (9). Hence applying Lemma 1 and inequality (10), we get

$$
\begin{aligned}
\left\|\frac{x^{i_{0}}-x^{j_{0}}}{2}\right\|_{X} & \leq \frac{\left\|x^{i_{0}}\right\|_{X}+\left\|x^{j_{0}}\right\|_{X}}{2}\left(1-\frac{2 \delta \min \left\{\left\|x^{i_{0}}\right\|_{X},\left\|x^{j_{0}}\right\|_{X}\right\}}{\left\|x^{i_{0}}\right\|_{X}+\left\|x^{j_{0}}\right\|_{X}}\right) \\
& \leq\left(1-\frac{2 \delta a}{1+a}\right) \frac{\left\|x^{i_{0}}\right\|_{X}+\left\|x^{j_{0}}\right\|_{X}}{2} .
\end{aligned}
$$

Therefore, by the convexity of each φ_{n} on $[0,1]$, we obtain

$$
\begin{equation*}
\varphi_{n}\left(\left\|\frac{x^{i_{0}}-x^{j_{0}}}{2}\right\|_{X}\right) \leq \frac{1}{2}(1-\alpha)\left(\varphi_{n}\left(\left\|x^{i_{0}}\right\|_{X}\right)+\varphi_{n}\left(\left\|x^{j_{0}}\right\|_{X}\right)\right), \tag{11}
\end{equation*}
$$

where $\alpha=\frac{2 \delta a}{1+a} \in(0,1)$. Consequently, by inequalities (11) and (6), we have

$$
\begin{align*}
& \sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n}\left(\left\|\frac{x^{i}-x^{j}}{2}\right\|_{X}\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\alpha}{2}\left(\varphi_{n}\left(\left\|x^{i_{0}}\right\|_{X}\right)+\varphi_{n}\left(\left\|x^{j_{0}}\right\|_{X}\right)\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\alpha \varphi_{n}\left(a\left\|x^{k}\right\|_{X}\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\alpha \beta}{n_{0}}\left(n_{0} \varphi_{n}\left(\left\|x^{k}\right\|_{X}\right)\right) \\
& \leq \frac{n_{0}-1}{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right)-\frac{\alpha \beta}{n_{0}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \\
& =\frac{n_{0}-1}{2}\left(1-\frac{2 \alpha \beta}{n_{0}\left(n_{0}-1\right)}\right) \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \tag{12}
\end{align*}
$$

for every $n \in \mathbb{N}$ satisfying $\max _{1 \leq i \leq n_{0}}\left\{\left\|x^{i}\right\|_{X}\right\} \geq z_{n} / a$. Define

$$
r_{1}=\max \left\{1-\frac{\gamma}{n_{0}\left(n_{0}-1\right)}, 1-\frac{2 \alpha \beta}{n_{0}\left(n_{0}-1\right)}\right\}
$$

Combining inequalities (8) and (12), we get inequality (7). Repeating the same argumentation as in the proof of inequality (7), a number $r_{2} \in(0,1)$ can be found such that

$$
\begin{equation*}
\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n}\left(\left\|\frac{x^{i}-x^{j}}{2}\right\|_{X}\right) \leq \frac{n_{0}-1}{2} r_{2} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x^{i}\right\|_{X}\right) \tag{13}
\end{equation*}
$$

for every $n \in A_{m_{0}}^{\alpha}$ satisfying $\max _{1 \leq i \leq n_{0}}\left\{\left\|x^{i}\right\|_{X}\right\} \geq z_{n}$.
Let $\widetilde{x}^{1}, \widetilde{x}^{2}, \ldots, \widetilde{x}^{n_{0}} \in S\left(l_{\varphi}(X)\right)$. Taking $\widetilde{x}^{i}=\left(x_{n}^{i}\right)$ for $i=1,2, \ldots n_{0}$, define

$$
\mathcal{I}=\left\{n \in \mathbb{N}: \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \geq n_{0} \varphi_{n}\left(z_{n}\right)\right\}
$$

Obviously

$$
\max _{1 \leq i \leq n_{0}}\left\{\left\|x_{n}^{i}\right\|_{X}\right\} \geq z_{n}
$$

for every $n \in \mathcal{I}$. Decompose the set \mathcal{I} into the following sets

$$
\begin{aligned}
& \mathcal{I}_{1}=\left\{n \in \mathcal{I}: \max _{1 \leq i \leq n_{0}}\left\{\left\|x_{n}^{i}\right\|_{X}\right\} \geq \frac{z_{n}}{a}\right\} \\
& \mathcal{I}_{2}=\left\{n \in \mathcal{I}: z_{n} \leq \max _{1 \leq i \leq n_{0}}\left\{\left\|x_{n}^{k}\right\|_{X}\right\}<\frac{z_{n}}{a}\right\}
\end{aligned}
$$

Next divide the set \mathcal{I}_{2} into two subsets \mathcal{I}_{21} and \mathcal{I}_{22} defined by

$$
\mathcal{I}_{21}=\mathcal{I}_{2} \cap A_{m_{0}}^{a} \text { and } \mathcal{I}_{22}=\mathcal{I}_{2} \backslash A_{m_{0}}^{a}
$$

By inequalities (7) and (13), we have

$$
\begin{equation*}
\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n}\left(\left\|\frac{x_{n}^{i}-x_{n}^{j}}{2}\right\|_{X}\right) \leq \frac{1}{n_{0}}\binom{n_{0}}{2} r \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \tag{14}
\end{equation*}
$$

for every $n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}$, where $r=\left\{r_{1}, r_{2}\right\}$. Moreover, by the definitions of the set \mathcal{I} and the sequence $\left(z_{n}\right)$, we have

$$
\begin{equation*}
\sum_{n \in \mathbb{N} \backslash \mathcal{I}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)<\frac{1}{2} \tag{15}
\end{equation*}
$$

Now, let $n \in \mathcal{I}_{22}$. It follows, by inequality (4) that

$$
\begin{align*}
\sum_{n \in \mathcal{I}_{22}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) & =\sum_{n \in \mathcal{I}_{2} \backslash A_{m_{0}}^{a}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \\
& \leq \sum_{n \in \mathcal{I}_{2} \backslash A_{m_{0}}^{a}} n_{0} \varphi_{n}\left(\left\|x_{n}^{k}\right\|_{X}\right)<\sum_{n \in \mathcal{I}_{2} \backslash A_{m_{0}}^{a}} n_{0} \varphi_{n}\left(\frac{z_{n}}{a}\right) \\
& \leq \sum_{n \in \mathbb{N} \backslash A_{m_{0}}^{a}} n_{0} \varphi_{n}\left(\frac{z_{n}}{a}\right)<\frac{1}{2} . \tag{16}
\end{align*}
$$

Hence, by inequalities (15) and (16) we get

$$
\begin{aligned}
& \sum_{n \in \mathbb{N} \backslash\left(\mathcal{I}_{1 \cup} \cup \mathcal{I}_{21}\right)} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \\
= & \sum_{n \in \mathbb{N} \backslash \mathcal{I}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)+\sum_{n \in \mathcal{I}_{22}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)<1 .
\end{aligned}
$$

Since $\left\|\widetilde{x}^{i}\right\|=1$ for $i=1,2, \ldots n_{0}$ and $\varphi \in \delta_{2}, \widetilde{I_{\varphi}}\left(\widetilde{x}^{i}\right)=1$, for $i=1,2, \ldots, n_{0}$. Consequently

$$
\begin{equation*}
\sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \sum_{i=1}^{n_{0}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \geq n_{0}-1 \tag{17}
\end{equation*}
$$

Therefore, by inequalities (14) and (17), we have

$$
\begin{aligned}
& \sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \widetilde{I_{\varphi}}\left(\frac{1}{2}\left(x^{i}-x^{j}\right)\right) \\
& =\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \varphi_{n}\left(\left\|\frac{x_{n}^{i}-x_{n}^{j}}{2}\right\|_{X}\right)+\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \sum_{n \in \mathbb{N} \backslash\left(\mathcal{I}_{1} \cup \mathcal{I}_{21}\right)} \varphi_{n}\left(\left\|\frac{x_{n}^{i}-x_{n}^{j}}{2}\right\|_{X}\right) \\
& \leq \frac{1}{n_{0}}\binom{n_{0}}{2} r \sum_{i=1}^{n_{0}} \sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)+\frac{1}{n_{0}}\binom{n_{0}}{2} \sum_{i=1}^{n_{0}} \sum_{n \in \mathbb{N} \backslash\left(\mathcal{I}_{1} \cup \mathcal{I}_{21}\right)} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \\
& =\frac{1}{n_{0}}\binom{n_{0}}{2} r \sum_{i=1}^{n_{0}} \sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right) \\
& \quad+\frac{1}{n_{0}}\binom{n_{0}}{2}\left(\sum_{i=1}^{n_{0}} \widetilde{I_{\varphi}}\left(x^{i}\right)-\sum_{i=1}^{n_{0}} \sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{n_{0}}{2}\left(1-\frac{1-r}{n_{0}} \sum_{i=1}^{n_{0}} \sum_{n \in \mathcal{I}_{1} \cup \mathcal{I}_{21}} \varphi_{n}\left(\left\|x_{n}^{i}\right\|_{X}\right)\right) \\
& \leq\binom{ n_{0}}{2}\left(1-\frac{(1-r)\left(n_{0}-1\right)}{n_{0}}\right) .
\end{aligned}
$$

Finally,

$$
\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \widetilde{I_{\varphi}}\left(\frac{1}{2}\left(x^{i}-x^{j}\right)\right) \leq\binom{ n_{0}}{2}(1-p),
$$

where $p=\frac{(1-r)}{2}$. So there exist i_{1}, j_{1} such that

$$
\widetilde{I_{\varphi}}\left(\frac{1}{2}\left(x^{i_{1}}-x^{j_{1}}\right)\right) \leq 1-p .
$$

Hence, by δ_{2}-condition and (*) (see [13], Lemma 9), we get

$$
\left\|\frac{1}{2}\left(x^{i_{1}}-x^{j_{1}}\right)\right\| \leq 1-q(p), \quad 0<q(p)<1,
$$

i.e. $l_{\varphi}(X)$ is P-convex.

Corollary 1

The Lebesgue-Bochner sequence space $l^{p}(1<p<\infty)$ is P-convex iff X is P-convex.

Proof. The Lebesgue space l^{p} is a Musielak-Orlicz space generated by the Orlicz function $\varphi_{n}(u)=|u|^{p}$ for every $n \in \mathbb{N}$ satisfying all the assumptions of Theorem 1.

The following characterization of P-convexity, proved directly in [22] in a long way, is an immediate consequence of Theorem 1.

Corollary 2

The following statements are equivalent:
(a) l_{φ} is P-convex.
(b) l_{φ} is reflexive.
(c) $\varphi \in \delta_{2}$ and $\varphi^{*} \in \delta_{2}$.

Proof. It is enough to apply Theorem 1 with $X=\mathbb{R}$.
The authors wish the thank Professor H. Hudzik for helpful comments.

References

1. G. Alherk and H. Hudzik, Uniformly non- l_{n}^{1} Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403-410.
2. D. Amir and C. Franchetti, The radius ratio and convexity properties in normed linear spaces, Trans. Amer. Math. Soc. 282 (1984), 275-291.
3. M. Denker and H. Hudzik, Uniformly non- l_{n}^{1} Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. (Math. Sci.) 101 (1991), 71-86.
4. S. Chen and H. Hudzik, On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolin. 29.1 (1988).
5. D.P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146.
6. H. Hudzik, Uniformly non $-l_{n}^{(1)}$ Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271-283.
7. H. Hudzik, Some classes of uniformly non-square Orlicz-Bochner spaces, Comment. Math. Univ. Carolin. 26 (1985), 269-274.
8. H. Hudzik and A. Kamińska, On uniformly convexifiable and B-convex Musielak-Orlicz spaces, Comment. Math. 25 (1985), 59-75.
9. H. Hudzik, A. Kamińska and W. Kurc, Uniformly non- $l_{n}^{(1)}$ Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 35 7-8 (1987), 441-448.
10. R.C. James, Uniformly non-square Banach spaces, Ann. of Math. 2 (1964), 542-550.
11. R.C. James, A nonreflexive Banach space that is uniformly nonoctathedral, Israel J. Math. 18 (1974), 145-155.
12. A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 30 7-8 (1982), 347-352.
13. A. Kamińska, Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302-322.
14. A. Kamińska, Rotundity of Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 29 3-4 (1981), 137-144.
15. A. Kamińska and B. Turett, Uniformly non $-l_{n}^{(1)}$ Orlicz-Bochner spaces, Bull. Polish Acad. Sci. Math. 35 3-4 (1987), 211-218.
16. P. Kolwicz and R. Pł uciennik, On P-convex Musielak-Orlicz spaces, Comment. Math. Univ. Carolin. 364 (1995), 655-672.
17. P. Kolwicz and R. Pluciennik, P-convexity of Orlicz-Bochner spaces, to appear.
18. C.A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576.
19. I.E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265.
20. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (1983), 1-222.
21. Ye Yining, He Miaohong and R. Pł uciennik, P-convexity and reflexivity of Orlicz spaces, Comment. Math. 31 (1991), 203-216.
22. Ye Yining and Huang Yafeng, P-convexity property in Musielak-Orlicz sequence spaces, Collect. Math. 44 (1993), 307-325.

[^0]: * Supported by KBN grant 2 P03A 03110.

