Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 4-6 (1997), 587–600 © 1997 Universitat de Barcelona

P-convexity of Musielak-Orlicz sequence spaces of Bochner type

PAWEŁ KOLWICZ

Institute of Mathematics, University of Technology, ul. Piotrowo 3a, 60-965 Poznań, Poland

Ryszard Płuciennik*

Institute of Mathematics, T. Kotarbiński Pedagogical University, Pl. Słowiański 9, 65-069 Zielona Góra, Poland

Abstract

It is proved that the Musielak-Orlicz sequence space $l_{\varphi}(X)$ of Bochner type is P-convex if and only if both spaces $l_{\varphi}(\mathbb{R})$ and X are P-convex. In particular, the Lebesgue-Bochner sequence space $l^p(X)$ is P-convex iff X is P-convex and 1 .

I. Introduction

Relationships between various kinds of convexities of Banach spaces and the reflexivity were developed by many authors. D. Giesy [5] and R.C. James [10] raised the question whether *B*-convex Banach spaces are reflexive. James [11] settled the question negatively, constructing an example of a nonreflexive *B*-convex Banach space. It was natural to ask whether reflexivity is implied by some slightly stronger geometric property. Such a property was introduced by C.A. Kottman [18] and it was called *P*-convexity. Kottman proved that every *P*-convex Banach space is reflexive. D. Amir and C. Franchetti [2] showed that in Banach spaces *P*-convexity follows from uniform convexity as well as from uniform smoothness. It was natural to characterize *P*-convexity in some concrete Banach spaces. Y. Ye, M. He and

^{*} Supported by KBN grant 2 P03A 031 10.

R. Płuciennik [21] proved that every Orlicz space is reflexive iff it is *P*-convex. The same result for Musielak-Orlicz function spaces was obtained by P. Kolwicz and R. Płuciennik [16] and for Musielak-Orlicz sequence spaces by Y. Ye and Y. Huang [22].

In this paper we show that $l_{\varphi}(X)$ is *P*-convex iff both l_{φ} and *X* are *P*-convex. This result implies immediately the main theorem from [22]. The similar characterization of *P*-convexity for Orlicz-Bochner function spaces was done in [17]. It is worth to mention that criteria for *B*-convexity of Orlicz-Bochner spaces were obtained in [4], [7] and [15].

Denote by \mathbb{N} , \mathbb{R} and \mathbb{R}_+ the sets of natural, real and positive real numbers, respectively. Let \mathcal{M} be the set of all real sequences $x = (u_n)_{n=1}^{\infty}$. A function φ is called an *Orlicz function*, if $\varphi \colon \mathbb{R} \longrightarrow \mathbb{R}_+$ is convex, even, $\varphi(u) = 0$ iff u = 0, and $\lim_{u\to 0} u^{-1}\varphi(u) = 0$. A sequence $\varphi = (\varphi_n)$ of Orlicz functions φ_n is called a *Musielak-Orlicz function*. Define on \mathcal{M} a convex modular I_{φ} by

$$I_{\varphi}(x) = \sum_{n=1}^{\infty} \varphi_n(u_n)$$

for every $x \in \mathcal{M}$. By the Musielak-Orlicz space l_{φ} we mean

$$l_{\varphi} = \{ x \in \mathcal{M} : I_{\varphi}(cx) < \infty \text{ for some } c > 0 \}$$

equipped with the Luxemburg norm

$$||x||_{\varphi} = \inf \left\{ \epsilon > 0 : I_{\varphi}\left(\frac{x}{\epsilon}\right) \le 1 \right\}.$$

For every Musielak-Orlicz function φ we will denote by φ^* the sequence (φ_n^*) of functions φ_n^* that are complementary to φ_n in the sense of Young, i.e.

$$\varphi_n^*(v) = \sup_{u \ge 0} \left\{ u \left| v \right| - \varphi_n(u) \right\}$$

for every $v \in \mathbb{R}$ and $n \in \mathbb{N}$.

We say that a Musielak-Orlicz function φ satisfies the δ_2 -condition if there are constants $k_0, a_0 > 0$ and a sequence (c_n^0) of positive reals with $\sum_{n=1}^{\infty} c_n^0 < \infty$ such that

$$\varphi_n(2u) \le k_0 \varphi_n(u) + c_n^0$$

for each $n \in \mathbb{N}$ and every $u \in \mathbb{R}$ satisfying $\varphi_n(u) \leq a_0$. For more details we refer to [20].

Moreover, we can assume without loss of generality that $\varphi_n(1) = 1$ and $\varphi_n(u) = u^2$ for all $n \in \mathbb{N}$ and every |u| > 1. Otherwise we may define a new Musielak-Orlicz function $\psi = (\psi_n)$ by the following formula

$$\psi_n(u) = \begin{cases} \varphi_n(b_n u) & \text{for } 0 \le |u| \le 1\\ u^2 & \text{for } |u| > 1, \end{cases}$$

where $\varphi_n(b_n) = 1$, for every $n \in \mathbb{N}$. The spaces l_{φ} and l_{ψ} are equal isometrically (see [13]). Under this assumption we should remember that every function φ_n $(n \in \mathbb{N})$ is non decreasing on \mathbb{R}_+ and it is convex on the interval [0, 1], but not necessarily convex on the whole \mathbb{R}_+ . It is easy to prove that this modified function φ satisfies the δ_2 -condition iff for every $\epsilon > 0$ there are a constant k > 2 and a sequence (c_n) of positive real numbers such that

$$\sum_{n=1}^{\infty} \varphi_n(c_n) < \epsilon \quad \text{and} \quad \varphi_n(2u) \le k\varphi_n(u) \tag{1}$$

for each $n \in \mathbb{N}$ and every $u \in [c_n, 1]$ (see [13] and [3]).

We say that φ satisfies condition (*) if for every $\epsilon \in (0, 1)$ there exists $\delta > 0$ such that $\varphi_n(u) < 1 - \epsilon$ implies $\varphi_n((1 + \delta)u) \le 1$ for all $u \in \mathbb{R}$ and every $n \in \mathbb{N}$.

Now, let us define the type of spaces to be considered in this paper. For a real Banach space $\langle X, \|\cdot\|_X \rangle$, denote by $\mathcal{M}(\mathbb{N}, X)$, or just $\mathcal{M}(X)$, the sequences $x = (x_n)$ such that $x_n \in X$ for all $n \in \mathbb{N}$. Define on $\mathcal{M}(X)$ a modular $\widetilde{I_{\varphi}}(x)$ by the formula

$$\widetilde{I_{\varphi}}(x) = \sum_{n=1}^{\infty} \varphi_n \left(\|x_n\|_X \right).$$

Let

$$l_{\varphi}(X) = \left\{ x \in \mathcal{M}(X) : x_0 = \left(\|x_n\|_X \right)_{n=1}^{\infty} \in l_{\varphi} \right\}.$$

Then $l_{\varphi}(X)$ equipped with the norm $||x|| = ||x_0||_{\varphi}$ becomes a Banach space which is called a Musielak-Orlicz sequence space of Bochner type.

A linear normed space X is called *P*-convex if there exist $\epsilon > 0$ and $n \in \mathbb{N}$ such that for all $x_1, x_2, \dots, x_n \in S(X)$

$$\min_{i \neq j} \left\| x_i - x_j \right\|_X \le 2(1 - \epsilon),$$

where S(X) denotes the unit sphere of X. The notion of P-convexity in Banach spaces can be characterized by the following lemma.

Lemma 1

A Banach space X is P-convex iff there exist $n_0 \in \mathbb{N}$ and $\delta > 0$ such that for any elements $x_1, x_2, ..., x_{n_0} \in X \setminus \{0\}$ integers i_0, j_0 can be found such that

$$\left\|\frac{x_{i_0} - x_{j_0}}{2}\right\|_X \le \frac{\|x_{i_0}\|_X + \|x_{j_0}\|_X}{2} \left(1 - \frac{2\delta \min\left\{\|x_{i_0}\|_X, \|x_{j_0}\|_X\right\}}{\|x_{i_0}\|_X + \|x_{j_0}\|_X}\right).$$

Proof. Suppose that X is P-convex. Then there exist $\delta > 0$ and $n \in \mathbb{N}$ such that for all $x_1, x_2, ..., x_{n_0} \in X \setminus \{0\}$ natural numbers i_0, j_0 can be found such that

$$\frac{1}{2} \left\| \frac{x_{i_0}}{\|x_{i_0}\|_X} - \frac{x_{j_0}}{\|x_{j_0}\|_X} \right\|_X < 1 - \delta.$$

We may assume without loss of generality that $||x_{i_0}|| \ge ||x_{j_0}||$. We have

$$\begin{split} 1 - \delta &> \frac{1}{2} \left\| \frac{x_{i_0}}{\|x_{i_0}\|_X} - \frac{x_{j_0}}{\|x_{j_0}\|_X} \right\|_X = \left\| \frac{x_{i_0} - x_{j_0}}{2 \|x_{j_0}\|_X} + \left(\frac{1}{\|x_{i_0}\|_X} - \frac{1}{\|x_{j_0}\|_X} \right) \frac{x_{i_0}}{2} \right\|_X \\ &\geq \frac{1}{\|x_{j_0}\|_X} \left\| \frac{x_{i_0} - x_{j_0}}{2} \right\|_X - \frac{1}{2} \|x_{i_0}\|_X \left| \frac{1}{\|x_{i_0}\|_X} - \frac{1}{\|x_{j_0}\|_X} \right|. \end{split}$$

Hence

$$\begin{split} \frac{1}{\|x_{j_0}\|_X} \left\| \frac{x_{i_0} - x_{j_0}}{2} \right\|_X &\leq 1 - \delta + \frac{1}{2} \|x_{i_0}\|_X \left| \frac{1}{\|x_{i_0}\|_X} - \frac{1}{\|x_{j_0}\|_X} \right| \\ &= \frac{1}{2} - \delta + \frac{1}{2} \frac{\|x_{i_0}\|_X}{\|x_{j_0}\|_X} = -\delta + \frac{1}{2} \left(1 + \frac{\|x_{i_0}\|_X}{\|x_{j_0}\|_X} \right) \\ &= -\delta + \frac{1}{2} \frac{\|x_{i_0}\|_X + \|x_{j_0}\|_X}{\|x_{j_0}\|_X}, \end{split}$$

and finally

$$\left\|\frac{x_{i_0} - x_{j_0}}{2}\right\|_X \le \frac{\|x_{i_0}\|_X + \|x_{j_0}\|_X}{2} \left(1 - \frac{2\delta \|x_{j_0}\|_X}{\|x_{i_0}\|_X + \|x_{j_0}\|_X}\right).$$

Since the converse implication follows immediately by the definition of P-convexity, the proof is finished. \Box

Although the above lemma was proved in [17], we presented it here for the sake of convenience.

II. Results

Lemma 2

If φ satisfies the δ_2 -condition, then for every $\alpha \in (0,1)$ there exists a nondecreasing sequence (A_m^{α}) of finite subsets of \mathbb{N} such that

$$\bigcup_{m=1}^{\infty} A_m^{\alpha} = \mathbb{N}$$

and for every $m \in \mathbb{N}$ a number $k_m^{\alpha} > 2$ can be found such that

$$\varphi_n(2u) \le k_m^\alpha \varphi_n(u) \tag{2}$$

for each $n \in A_m^{\alpha}$ and every $u \in [\alpha c_n, 1]$, where c_n are from (1).

Proof. Fix $\alpha \in (0,1)$. Denote $B_m = \{0, 1, ..., m\}$ and

$$C_m^{\alpha} = \left\{ n \in \mathbb{N} : \frac{1}{m} \le \alpha c_n \le c_n \right\} \quad (m = 1, 2, \ldots)$$

Obviously, $C_m^{\alpha} \subset C_{m+1}^{\alpha}$ for every $m \in \mathbb{N}$ and $\bigcup_{m=1}^{\infty} C_m^{\alpha} = \mathbb{N}$. Define $A_m^{\alpha} = B_m \cap C_m^{\alpha}$ for every $m \in \mathbb{N}$. Then $A_m^{\alpha} \subset A_{m+1}^{\alpha}$ and $\operatorname{card} A_m^{\alpha} < \infty$ for every $m \in \mathbb{N}$. Moreover $\bigcup_{m=1}^{\infty} A_m^{\alpha} = \mathbb{N}$. Denote

$$k_m^{\alpha} = \frac{k}{\min_{n \in A_m^{\alpha}} \varphi_n(\frac{1}{m})} \qquad (m = 1, 2, \dots) \,,$$

where k is from (1). Since φ_n (n = 1, 2, ...) vanishes only at zero, $k < k_m^{\alpha} < \infty$ for $m \in \mathbb{N}$. Suppose that $n \in A_m^{\alpha}$. Then

$$\varphi_n(2u) \le \varphi_n(2c_n) \le k\varphi_n(c_n) \frac{\varphi_n(\alpha c_n)}{\varphi_n(\alpha c_n)}$$
$$\le k\varphi_n(1) \frac{\varphi_n(u)}{\varphi_n(\frac{1}{m})} \le k_m^{\alpha} \varphi_n(u)$$

for $u \in [\alpha c_n, c_n]$ and

$$\varphi_n(2u) \le k\varphi_n(u) \le k_m^\alpha \varphi_n(u)$$

for $u \in [c_n, 1]$. Hence the proof is finished. \Box

Lemma 3

If φ and φ^* satisfy the δ_2 -condition, then for every $\epsilon \in (0, 1)$ there exist a number $\eta_{\epsilon} > 1$ and a sequence $d = (d_n)$ of positive real numbers with $\sum_{n=1}^{\infty} \varphi_n(d_n) < \epsilon$ such that

$$\varphi_n\left(\frac{\eta_\epsilon}{2}u\right) \le \frac{1}{2\eta_\epsilon}\varphi_n(u)$$

for each $n \in \mathbb{N}$ and every $u \in [d_n, 1]$.

Proof. We will apply the methods from [3] and [9]. Take an arbitrary $\epsilon > 0$. Since $\varphi_n(1) = 1$, $\varphi_n(u) = u^2$ for each $n \in \mathbb{N}$ and all |u| > 1, and φ_n is convex on [-1, 1] for all $n \in \mathbb{N}$, using (17) from [3] and applying Lemma 2 from [3] we can find $b_0 > 1$ such that $\varphi_n^*(b_0 u) \leq 2\varphi_n^*(u)$ for each $n \in \mathbb{N}$ and every $|u| \geq b_n$, where φ_n^* is complementary to φ_n in the sense of Young and b_n is such that $\sum_{n=1}^{\infty} \varphi_n^*(b_n) \leq \epsilon/2$. The existence of such a sequence (b_n) follows by $\varphi^* \in \delta_2$. Furthermore a number $b \in (1, 2)$ can be found small enough to satisfy $\varphi_n^*(b^2 u) \leq 2b\varphi_n^*(u)$ for each $n \in \mathbb{N}$ and every $|u| \geq b_n$. Hence

$$\varphi_n^*(b^2v) \le 2b\varphi_n^*(v) + 2b\varphi_n^*(b_n)$$

for each $n \in \mathbb{N}$ and every $v \in \mathbb{R}$. Then

$$\varphi_n\left(\frac{b}{2}u\right) = \sup_{v \ge 0} \left\{ \frac{b}{2} |u| v - \varphi_n^*(v) \right\}$$

=
$$\sup_{v \ge 0} \left\{ \frac{b}{2} |u| v - \frac{1}{2b} \varphi_n^*(b^2 v) \right\} + \varphi_n^*(b_n)$$

=
$$\sup_{v \ge 0} \left\{ \frac{1}{2b} |u| b^2 v - \frac{1}{2b} \varphi_n^*(b^2 v) \right\} + \varphi_n^*(b_n) = \frac{1}{2b} \varphi_n(u) + \varphi_n^*(b_n)$$

for every $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Now take the sequence (w_n) such that $\varphi_n(w_n) = \varphi_n^*(b_n)$. Define

$$\overline{c}_n = \frac{2b}{\sqrt{b} - 1} w_n$$

for every $n \in \mathbb{N}$. Put $\xi = \sqrt{b}$. Since $\varphi_n(\alpha u) \leq \alpha \varphi_n(u)$ for each $n \in \mathbb{N}$, $u \in \mathbb{R}$ and $\alpha \in [0, 1]$, we get

$$\varphi_n\left(\frac{\xi}{2}u\right) \le \varphi_n\left(\frac{b}{2}u\right) \le \frac{1}{2b}\varphi_n(u) + \varphi_n\left(\frac{\sqrt{b}-1}{2b}u\right) \le \frac{1}{2\xi}\varphi_n(u)$$

for $u \geq \overline{c}_n$ and $n \in \mathbb{N}$.

By $\varphi \in \delta_2$, we have $I_{\varphi}(\overline{c}) < \infty$. Hence we can find a number $\lambda > 0$ such that $I_{\varphi}(\lambda \overline{c}) < \epsilon/2$. Denote

$$A_k = \left\{ n \in \mathbb{N} : \sup_{\lambda d_n \le u \le d_n} \frac{2(1 + \frac{1}{k})\varphi_n\left(\frac{1}{2}(1 + \frac{1}{k})u\right)}{\varphi_n(u)} \le 1 \right\}.$$

Since $\lim_{u\to 0} u^{-1}\varphi_n(u) = 0$ for every $n \in \mathbb{N}$, φ_n $(n \in \mathbb{N})$ is linear in no neighborhood of 0, and consequently $\bigcup_{i=1}^{\infty} A_i = \mathbb{N}$. Then there exists a number $l \in \mathbb{N}$ such that

$$\sum_{n\in\mathbb{N}\setminus A_l}\varphi_n(\overline{c}_n)<\frac{\epsilon}{2}$$

Define

$$d_n = \begin{cases} \lambda \overline{c}_n & \text{ for } n \in A_l \\ \overline{c}_n & \text{ for } n \in \mathbb{N} \setminus A_l. \end{cases}$$

We get $I_{\varphi}(d) < \epsilon$. Taking $\eta_{\epsilon} = \min\{\xi, 1 + 1/l\}$, we obtain

$$\varphi_n\left(\frac{\eta_\epsilon}{2}u\right) \le \frac{1}{2\eta_\epsilon}\varphi_n(u)$$

for each $n \in \mathbb{N}$ and $u \ge d_n$ which finishes the proof. \Box

Lemma 4

If φ and φ^* satisfy the δ_2 -condition, then for every $\epsilon \in (0, 1)$ there are numbers $a = a(\epsilon) \in (0, 1)$ and $\gamma = \gamma(a(\epsilon)) \in (0, 1)$ such that

$$\varphi_n\left(\frac{u+v}{2}\right) \le \frac{1-\gamma}{2}\left(\varphi_n\left(u\right) + \varphi_n\left(v\right)\right) \tag{3}$$

for each $n \in \mathbb{N}$, every $u \in [d_n, 1]$ and $\left|\frac{v}{u}\right| < a$, where $d = (d_n)$ is from Lemma 3.

Proof. In the case of the Δ_2 -condition for all $u \in \mathbb{R}$ the thesis of the lemma was proved for all $u, v \in \mathbb{R}$ with $\left|\frac{v}{u}\right| < a$ in Example 1.7 from [4]. The same method is applicable in our situation. Fix $\epsilon \in (0, 1)$. Let $d = (d_n)$ and η_{ϵ} be as in Lemma 3. Then there exists a number $a \in (0, 1)$ such that $1 + a \leq \eta_{\epsilon}$. Taking $\gamma = a/a + 1$, we get $\gamma \in (0, 1)$ and

$$\varphi_n\left(\frac{1+a}{2}u\right) \le \frac{1}{2(1+a)}\varphi_n(u) \le \frac{1}{2(1+a)}\left(\varphi_n(u) + \varphi_n(au)\right)$$
$$= \frac{1}{2}(1-\gamma)\left(\varphi_n(u) + \varphi_n(au)\right)$$

for each $n \in \mathbb{N}$ and every $u \in [d_n, 1]$. Since for every u > 0 the function

$$f(a) = 2\Phi\left(\frac{u+au}{2}\right) / (\Phi(u) + \Phi(au))$$

is nonincreasing, the above inequality holds true for every $a_0 < a$ with the same γ . Hence we obtain the thesis. \Box

Theorem 1

Let φ be the Musielak-Orlicz function satisfying condition (*) and $(X, \|\cdot\|_X)$ be the Banach space. Then the following statements are equivalent:

- (a) The Musielak-Orlicz sequence space $l_{\varphi}(X)$ of Bochner type is *P*-convex.
- (b) Both l_{φ} and $(X, \|\cdot\|_X)$ are *P*-convex.

(c) l_{φ} is reflexive and $(X, \|\cdot\|_X)$ is P-convex.

(d) $(X, \|\cdot\|_X)$ is P-convex, $\varphi \in \delta_2$ and $\varphi^* \in \delta_2$.

Proof. (a) \Rightarrow (b). Since the spaces l_{φ} and X are embedded isometrically into $l_{\varphi}(X)$ and P-convexity is inherited by subspaces, $L_{\Phi}(\mu)$ and X are P-convex.

(b) \Rightarrow (c). Every *P*-convex Banach space is reflexive (see Theorem 3.2 in [18]). Hence l_{φ} is reflexive.

(c) \Rightarrow (d). The reflexivity of Musielak-Orlicz sequence space l_{φ} is equivalent to the fact that $\varphi \in \delta_2$ and $\varphi^* \in \delta_2$ (see [8] and [12]).

(d) \Rightarrow (a). Suppose that $\varphi \in \delta_2$, $\varphi^* \in \delta_2$ and $(X, \|\cdot\|_X)$ is *P*-convex. Let n_0 be a natural number from Lemma 1. Define

$$z_n = \max\left\{c_n, d_n\right\}$$

for every $n \in \mathbb{N}$, where c_n, d_n are from (1) and Lemma 3, respectively, and they correspond to $\epsilon = \frac{1}{4n_0}$. Hence

$$\sum_{n=1}^{\infty} \varphi(z_n) \le \sum_{n=1}^{\infty} \varphi(c_n) + \sum_{n=1}^{\infty} \varphi(d_n) < \frac{1}{2n_0}.$$

Let *a* be the number from Lemma 4 with z_n in place of d_n and let (A_m^a) be the ascending sequence of finite sets from Lemma 2 corresponding to $\alpha = a$ and z_n in place of c_n . Since $\varphi \in \delta_2$, $I_{\varphi}\left(\frac{1}{a}z\right) < \infty$. Then there exists a natural number m_0 such that

$$\sum_{n \in \mathbb{N} \setminus A_{m_0}^a} \varphi_n\left(\frac{1}{a}z_n\right) < \frac{1}{2n_0}.$$
(4)

We have

$$\varphi_n(2u) \le k^a_{m_0}\varphi_n(u)$$

for every $n \in A^a_{m_0}$ and $u \in [az_n, 1]$. Moreover, taking $p \in \mathbb{N}$ such that $1/a \leq 2^p$ and applying p times inequality (2), we obtain

$$\varphi_n\left(\frac{1}{a}u\right) \le (k_{m_0}^a)^p \varphi_n(u)$$

for every $n \in A^a_{m_0}$ and $u \in [az_n, 1]$. Setting now $\frac{1}{a}u = v$ and $\frac{1}{(k^a_{m_0})^p} = \beta_{m_0}$, we get

$$\varphi_n(av) \ge \beta_{m_0} \varphi_n(v) \tag{5}$$

for every $n \in A_{m_0}^a$ and $v \in [z_n, 1]$. Furthermore, if $z_n/a < 1$ for some $n \in \mathbb{N}$, repeating a similar argumentation, we obtain

$$\varphi_n(2u) \le k\varphi_n(u)$$

and

$$\varphi_n\left(\frac{1}{a}u\right) \le k^p \varphi_n(u)$$

for every $u \in [z_n, 1]$. Consequently

$$\varphi_n(av) \ge \beta \varphi_n(v) \tag{6}$$

for every $v \in [\frac{z_n}{a}, 1]$, where $1/k^p = \beta$. Now, we will show that there exists a number $r_1 \in (0, 1)$ such that for every $x^1, x^2, ..., x^{n_0}$ from the unit ball B(X), we have

$$\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \varphi_n \left(\left\| \frac{x^i - x^j}{2} \right\|_X \right) \le \frac{n_0 - 1}{2} r_1 \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right)$$
(7)

for every $n \in \mathbb{N}$ such that $\max_{1 \le i \le n_0} \left\{ \left\| x^i \right\|_X \right\} \ge z_n/a$.

Take $x^1, x^2, ..., x^{n_0} \in B(X)$. Let k be an index such that

$$||x^k||_X = \max_{1 \le i \le n_0} \{ ||x^i||_X \}$$

For the clarity of the proof, we will divide it into two parts.

I. Suppose that there exists $i_1 \in \{1, 2, ..., n_0\}$ such that $\|x^{i_1}\|_X / \|x^k\|_X < a$. Since $||x^k|| \ge z_n/a \ge z_n$, by inequality (3), we have

$$\varphi_n\left(\left\|\frac{x^{i_1}-x^k}{2}\right\|_X\right) \le \varphi_n\left(\frac{\|x^{i_1}\|_X+\|x^k\|_X}{2}\right)$$
$$\le \frac{1}{2}(1-\gamma)\left(\varphi_n\left(\|x^{i_1}\|_X\right)+\varphi_n\left(\|x^k\|_X\right)\right)$$

Hence, by the convexity of φ_n $(n \in \mathbb{N})$ on the interval [0, 1], we get

$$\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \varphi_n \left(\left\| \frac{x^i - x^j}{2} \right\|_X \right)$$

$$\leq \frac{n_0 - 1}{2} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right) - \frac{\gamma}{2} \left(\varphi_n \left(\left\| x^{i_1} \right\|_X \right) + \varphi_n \left(\left\| x^k \right\|_X \right) \right)$$

$$\leq \frac{n_0 - 1}{2} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right) - \frac{\gamma}{2n_0} \left(n_0 \varphi_n \left(\left\| x^k \right\|_X \right) \right)$$

$$\leq \frac{n_0 - 1}{2} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right) - \frac{\gamma}{2n_0} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right)$$

$$= \frac{n_0 - 1}{2} \left(1 - \frac{\gamma}{n_0(n_0 - 1)} \right) \sum_{i=1}^{n_0} \varphi_n \left(\left\| x^i \right\|_X \right)$$
(8)

for every $n \in \mathbb{N}$ such that the inequality $\max_{1 \leq i \leq n_0} \{ \|x^i\|_X \} \geq z_n/a$ holds true.

II. Assume that for all $i \neq k$ we have

$$\frac{\left\|x^{i}\right\|_{X}}{\left\|x^{k}\right\|_{X}} \ge a.$$

$$\tag{9}$$

Then $||x^i|| > 0$ for every $i \neq k$. Let i_0, j_0 be from Lemma 1. We may assume that

$$a \le \frac{\|x^{i_0}\|_X}{\|x^{j_0}\|_X} \le \frac{1}{a}.$$
(10)

Really, otherwise we have

$$a > \frac{\|x^{i_0}\|_X}{\|x^{j_0}\|_X} \ge \frac{\min\left\{\|x^{i_0}\|_X, \|x^{j_0}\|_X\right\}}{\max\left\{\|x^{i_0}\|_X, \|x^{j_0}\|_X\right\}} \ge \frac{\min\left\{\|x^{i_0}\|_X, \|x^{j_0}\|_X\right\}}{\|x^k\|_X},$$

which contradicts inequality (9). Hence applying Lemma 1 and inequality (10), we get

$$\begin{split} \left\| \frac{x^{i_0} - x^{j_0}}{2} \right\|_X &\leq \frac{\left\| x^{i_0} \right\|_X + \left\| x^{j_0} \right\|_X}{2} \left(1 - \frac{2\delta \min\left\{ \left\| x^{i_0} \right\|_X, \left\| x^{j_0} \right\|_X \right\}}{\left\| x^{i_0} \right\|_X + \left\| x^{j_0} \right\|_X} \right) \\ &\leq \left(1 - \frac{2\delta a}{1+a} \right) \frac{\left\| x^{i_0} \right\|_X + \left\| x^{j_0} \right\|_X}{2} \,. \end{split}$$

Therefore, by the convexity of each φ_n on [0, 1], we obtain

$$\varphi_n\left(\left\|\frac{x^{i_0}-x^{j_0}}{2}\right\|_X\right) \le \frac{1}{2}(1-\alpha)\left(\varphi_n\left(\left\|x^{i_0}\right\|_X\right) + \varphi_n\left(\left\|x^{j_0}\right\|_X\right)\right),\tag{11}$$

where $\alpha = \frac{2\delta a}{1+a} \in (0,1)$. Consequently, by inequalities (11) and (6), we have

$$\sum_{i=1}^{n_{0}} \sum_{j=i}^{n_{0}} \varphi_{n} \left(\left\| \frac{x^{i} - x^{j}}{2} \right\|_{X} \right) \\
\leq \frac{n_{0} - 1}{2} \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) - \frac{\alpha}{2} \left(\varphi_{n} \left(\left\| x^{i_{0}} \right\|_{X} \right) + \varphi_{n} \left(\left\| x^{j_{0}} \right\|_{X} \right) \right) \\
\leq \frac{n_{0} - 1}{2} \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) - \alpha \varphi_{n} \left(a \left\| x^{k} \right\|_{X} \right) \\
\leq \frac{n_{0} - 1}{2} \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) - \frac{\alpha \beta}{n_{0}} \left(n_{0} \varphi_{n} \left(\left\| x^{k} \right\|_{X} \right) \right) \\
\leq \frac{n_{0} - 1}{2} \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) - \frac{\alpha \beta}{n_{0}} \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) \\
= \frac{n_{0} - 1}{2} \left(1 - \frac{2\alpha \beta}{n_{0}(n_{0} - 1)} \right) \sum_{i=1}^{n_{0}} \varphi_{n} \left(\left\| x^{i} \right\|_{X} \right) \tag{12}$$

for every $n \in \mathbb{N}$ satisfying $\max_{1 \leq i \leq n_0} \{ \|x^i\|_X \} \geq z_n/a$. Define

$$r_1 = \max\left\{1 - \frac{\gamma}{n_0(n_0 - 1)}, 1 - \frac{2\alpha\beta}{n_0(n_0 - 1)}\right\}.$$

Combining inequalities (8) and (12), we get inequality (7). Repeating the same argumentation as in the proof of inequality (7), a number $r_2 \in (0, 1)$ can be found such that

$$\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \varphi_n\left(\left\|\frac{x^i - x^j}{2}\right\|_X\right) \le \frac{n_0 - 1}{2} r_2 \sum_{i=1}^{n_0} \varphi_n\left(\left\|x^i\right\|_X\right)$$
(13)

for every $n \in A_{m_0}^{\alpha}$ satisfying $\max_{1 \le i \le n_0} \{ \|x^i\|_X \} \ge z_n.$

Let $\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^{n_0} \in S(l_{\varphi}(X))$. Taking $\tilde{x}^i = (x_n^i)$ for $i = 1, 2, ...n_0$, define

$$\mathcal{I} = \left\{ n \in \mathbb{N} : \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right) \ge n_0 \varphi_n(z_n) \right\}.$$

Obviously

$$\max_{1 \le i \le n_0} \left\{ \left\| x_n^i \right\|_X \right\} \ge z_n$$

for every $n \in \mathcal{I}$. Decompose the set \mathcal{I} into the following sets

$$\mathcal{I}_{1} = \left\{ n \in \mathcal{I} : \max_{1 \le i \le n_{0}} \left\{ \left\| x_{n}^{i} \right\|_{X} \right\} \ge \frac{z_{n}}{a} \right\},$$
$$\mathcal{I}_{2} = \left\{ n \in \mathcal{I} : z_{n} \le \max_{1 \le i \le n_{0}} \left\{ \left\| x_{n}^{k} \right\|_{X} \right\} < \frac{z_{n}}{a} \right\}.$$

Next divide the set \mathcal{I}_2 into two subsets \mathcal{I}_{21} and \mathcal{I}_{22} defined by

$$\mathcal{I}_{21} = \mathcal{I}_2 \cap A^a_{m_0}$$
 and $\mathcal{I}_{22} = \mathcal{I}_2 \setminus A^a_{m_0}$.

By inequalities (7) and (13), we have

$$\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \varphi_n \left(\left\| \frac{x_n^i - x_n^j}{2} \right\|_X \right) \le \frac{1}{n_0} \binom{n_0}{2} r \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right)$$
(14)

for every $n \in \mathcal{I}_1 \cup \mathcal{I}_{21}$, where $r = \{r_1, r_2\}$. Moreover, by the definitions of the set \mathcal{I} and the sequence (z_n) , we have

$$\sum_{n \in \mathbb{N} \setminus \mathcal{I}} \sum_{i=1}^{n_0} \varphi_n\left(\left\| x_n^i \right\|_X \right) < \frac{1}{2}.$$
(15)

Now, let $n \in \mathcal{I}_{22}$. It follows, by inequality (4) that

$$\sum_{n \in \mathcal{I}_{22}} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right) = \sum_{n \in \mathcal{I}_2 \setminus A_{m_0}^a} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right)$$
$$\leq \sum_{n \in \mathcal{I}_2 \setminus A_{m_0}^a} n_0 \varphi_n \left(\left\| x_n^k \right\|_X \right) < \sum_{n \in \mathcal{I}_2 \setminus A_{m_0}^a} n_0 \varphi_n \left(\frac{z_n}{a} \right)$$
$$\leq \sum_{n \in \mathbb{N} \setminus A_{m_0}^a} n_0 \varphi_n \left(\frac{z_n}{a} \right) < \frac{1}{2}.$$
(16)

Hence, by inequalities (15) and (16) we get

$$\sum_{n \in \mathbb{N} \setminus (\mathcal{I}_{1 \cup} \mathcal{I}_{21})} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right)$$
$$= \sum_{n \in \mathbb{N} \setminus \mathcal{I}} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right) + \sum_{n \in \mathcal{I}_{22}} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right) < 1.$$

Since $\|\widetilde{x}^i\| = 1$ for $i = 1, 2, ..., n_0$ and $\varphi \in \delta_2$, $\widetilde{I_{\varphi}}(\widetilde{x}^i) = 1$, for $i = 1, 2, ..., n_0$. Consequently

$$\sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \sum_{i=1}^{n_0} \varphi_n \left(\left\| x_n^i \right\|_X \right) \ge n_0 - 1.$$
(17)

Therefore, by inequalities (14) and (17), we have

$$\begin{split} &\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \widetilde{I_{\varphi}} \left(\frac{1}{2} \left(x^i - x^j \right) \right) \\ &= \sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \varphi_n \left(\left\| \frac{x_n^i - x_n^j}{2} \right\|_X \right) + \sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \sum_{n \in \mathbb{N} \setminus (\mathcal{I}_1 \cup \mathcal{I}_{21})} \varphi_n \left(\left\| \frac{x_n^i - x_n^j}{2} \right\|_X \right) \\ &\leq \frac{1}{n_0} \binom{n_0}{2} r \sum_{i=1}^{n_0} \sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \varphi_n \left(\left\| x_n^i \right\|_X \right) + \frac{1}{n_0} \binom{n_0}{2} \sum_{i=1}^{n_0} \sum_{n \in \mathbb{N} \setminus (\mathcal{I}_1 \cup \mathcal{I}_{21})} \varphi_n \left(\left\| x_n^i \right\|_X \right) \\ &= \frac{1}{n_0} \binom{n_0}{2} r \sum_{i=1}^{n_0} \sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \varphi_n \left(\left\| x_n^i \right\|_X \right) \\ &+ \frac{1}{n_0} \binom{n_0}{2} \left(\sum_{i=1}^{n_0} \widetilde{I_{\varphi}} \left(x^i \right) - \sum_{i=1}^{n_0} \sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \varphi_n \left(\left\| x_n^i \right\|_X \right) \right) \end{split}$$

$$= \binom{n_0}{2} \left(1 - \frac{1-r}{n_0} \sum_{i=1}^{n_0} \sum_{n \in \mathcal{I}_1 \cup \mathcal{I}_{21}} \varphi_n \left(\left\| x_n^i \right\|_X \right) \right)$$
$$\leq \binom{n_0}{2} \left(1 - \frac{(1-r)(n_0-1)}{n_0} \right).$$

Finally,

$$\sum_{i=1}^{n_0} \sum_{j=i}^{n_0} \widetilde{I_{\varphi}} \left(\frac{1}{2} \left(x^i - x^j \right) \right) \le {\binom{n_0}{2}} (1-p),$$

where $p = \frac{(1-r)}{2}$. So there exist i_1, j_1 such that

$$\widetilde{I_{\varphi}}\left(\frac{1}{2}\left(x^{i_{1}}-x^{j_{1}}\right)\right) \leq 1-p$$

Hence, by δ_2 -condition and (*) (see [13], Lemma 9), we get

$$\left\|\frac{1}{2}\left(x^{i_1} - x^{j_1}\right)\right\| \le 1 - q(p), \qquad 0 < q(p) < 1,$$

i.e. $l_{\varphi}(X)$ is *P*-convex. \Box

Corollary 1

The Lebesgue-Bochner sequence space l^p (1 is P-convex iff X is P-convex.

Proof. The Lebesgue space l^p is a Musielak-Orlicz space generated by the Orlicz function $\varphi_n(u) = |u|^p$ for every $n \in \mathbb{N}$ satisfying all the assumptions of Theorem 1. \Box

The following characterization of P-convexity, proved directly in [22] in a long way, is an immediate consequence of Theorem 1.

Corollary 2

The following statements are equivalent:

(a) l_{φ} is *P*-convex. (b) l_{φ} is reflexive. (c) $\varphi \in \delta_2$ and $\varphi^* \in \delta_2$.

Proof. It is enough to apply Theorem 1 with $X = \mathbb{R}$. \Box

The authors wish the thank Professor H. Hudzik for helpful comments.

KOLWICZ AND PŁUCIENNIK

References

- 1. G. Alherk and H. Hudzik, Uniformly non- l_n^1 Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403–410.
- 2. D. Amir and C. Franchetti, The radius ratio and convexity properties in normed linear spaces, *Trans. Amer. Math. Soc.* **282** (1984), 275–291.
- 3. M. Denker and H. Hudzik, Uniformly non- l_n^1 Musielak-Orlicz sequence spaces, *Proc. Indian* Acad. Sci. (Math. Sci.) **101** (1991), 71–86.
- S. Chen and H. Hudzik, On some convexities of Orlicz and Orlicz-Bochner spaces, *Comment. Math. Univ. Carolin.* 29.1 (1988).
- 5. D.P. Giesy, On a convexity condition in normed linear spaces, *Trans. Amer. Math. Soc.* **125** (1966), 114–146.
- 6. H. Hudzik, Uniformly non- $l_n^{(1)}$ Orlicz spaces with Luxemburg norm, *Studia Math.* 81 (1985), 271–283.
- 7. H. Hudzik, Some classes of uniformly non-square Orlicz-Bochner spaces, *Comment. Math. Univ. Carolin.* 26 (1985), 269–274.
- 8. H. Hudzik and A. Kamińska, On uniformly convexifiable and *B*-convex Musielak-Orlicz spaces, *Comment. Math.* **25** (1985), 59–75.
- H. Hudzik, A. Kamińska and W. Kurc, Uniformly non-l_n⁽¹⁾ Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 35 7–8 (1987), 441–448.
- 10. R.C. James, Uniformly non-square Banach spaces, Ann. of Math. 2 (1964), 542-550.
- 11. R.C. James, A nonreflexive Banach space that is uniformly nonoctathedral, *Israel J. Math.* **18** (1974), 145–155.
- A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 30 7–8 (1982), 347–352.
- 13. A. Kamińska, Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302–322.
- A. Kamińska, Rotundity of Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 29 3–4 (1981), 137–144.
- 15. A. Kamińska and B. Turett, Uniformly non- $l_n^{(1)}$ Orlicz-Bochner spaces, *Bull. Polish Acad. Sci. Math.* **35** 3–4 (1987), 211–218.
- P. Kolwicz and R. Pł uciennik, On P-convex Musielak-Orlicz spaces, *Comment. Math. Univ. Carolin.* 36 4 (1995), 655–672.
- 17. P. Kolwicz and R. Płuciennik, P-convexity of Orlicz-Bochner spaces, to appear.
- C.A. Kottman, Packing and reflexivity in Banach spaces, *Trans. Amer. Math. Soc.* 150 (1970), 565–576.
- 19. I.E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265.
- 20. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (1983), 1–222.
- Ye Yining, He Miaohong and R. Pł uciennik, P-convexity and reflexivity of Orlicz spaces, *Comment. Math.* 31 (1991), 203–216.
- Ye Yining and Huang Yafeng, P-convexity property in Musielak-Orlicz sequence spaces, *Collect. Math.* 44 (1993), 307–325.