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ABSTRACT

Let us consider the variational equation in R™

. , Vu
div <a(ac)F (| Vu ])’ o ‘) =0
where 0 < g < a(x) < Ap < oo and F'is a convex increasing function
verifying suitable conditions. We prove that the very weak solutions of such
equation, whose gradient belongs to a suitable Orlicz space, must be constant
almost everywhere. The result applies, in particular, to the case in which F'is
the power F'(t) = tP (p > 1), i.e. to the variational equation in R"

div (a(:L‘)| Vu |p_2Vu) =0.

1. Introduction

Throughout the paper we will denote by F' = F(t) a convex differentiable increasing
function on [0, co[ such that pF(t) < tF'(t) < qF(t) Vt > 0 where 1 < p < ¢ < o0,
and such that liminf; .o ti gt) > n or limsup,_, tg(g) < n. Let us consider the

very weak solutions of the variational equation in R™

(1.1) div <a(3:)F'(] vu ), gz ‘> o,
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514 FI1ORENZA

where a(x) is a measurable function such that 0 < Ay < a(z) < Ay < oo, ie.
(see Iwaniec-Sbordone [8]) the functions u € VVllocl (R™), | Vu |€ Lg, (R™), F.(t) =
F(t)t" P, max{1l,p — 1} <r < p, such that

/ a(x)F'(] Vu |)‘ gz ‘qu =0, V¢ € WH>°(R™) with compact support.

The definition of very weak solution is best visualized when F' is the power
F(t) =P (p > 1). In this case the equation (1.1) reduces to the variational equation
in R"

(1.2) div <a(a¢)] Vu \p72Vu> =0,

and any weak solution u € I/Vll’p (R™) of (1.2) must satisfy the identity

oc

(1.3) / a(z)| Vu [P*VuVe = 0, V¢ € WH>°(R™) with compact support.

In order to give meaning to the integral in (1.3), the assumption u € VVllof (R™) is

not necessary. Actually, it will be sufficient to assume
(1.4) ue WE (R,  max{l,p—1} <r <p.

Any function w verifying (1.4) is called a very weak solution (see [10]) of equation
(1.2) if (1.3) holds for any ¢ € WH°(R™) with compact support.
The aim of this paper is to prove the following Liouville-type theorem.

Theorem 1.1

There exists rog < p such that, if u is a very weak solution of (1.1) such that
| Vu |€ Lg, (R™), with ro < r < p, then u is constant.

tF' (t)

If F is such that liminf; .o F@y > nor lim sup,_, tF'(t)

F(t)
Theorem 1.1 we can deduce, in particular, the main results of [4], [2] in which, under

< n, then from

a further assumption of integrability on wu, it is proved that u must be zero a.e. The
proof of Theorem 1.1 will be deduced by using the same technique (introduced by
Lewis in [9]) as in [4], without any integrability assumption on w.

We remark that the Liouville theorem for weak solutions of the p-harmonic
equation is well-known (see [7], for instance, in which also nonhomogeneous equa-
tions are considered).
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2. Notations and preliminary results

We begin with the following

Remark 2.1. If
F(t)

tTL

F'(t
lim inf (*)

-0 F(t) =0

>n, then lim
t—0

F(t)

e has

The statement follows by noticing that for small € > 0 the function
first derivative positive near zero, and therefore has a finite limit when ¢t — 0.

Next theorem is well known in the theory of Sobolev spaces. We will use the
following version, which is a generalization in the context of the Orlicz-Sobolev
spaces theory.

Theorem 2.2 ([11], [3])
If pF(t) < tF'(t) < qF(t), ¥t > 0 with 1 < p < q < n, and if u € W,"(R™)

loc

is such that | Du |€ Lrp(R™), then there exists a constant ¢ € R such that u —c €
L, (R™), where F, is the Sobolev conjugate function of F' defined by

‘P
1 o
F: (t)—/o i vz

Let us remark that, more generally, Theorem 2.2 is true under the assumption
1 < i(F) < I(F) < n, where i(F), I(F) are the reciprocal of the Boyd indices of
F: this fact can be deduced by using some relations between the Simonenko indices
and the Boyd indices (see [5]).

Let us note also that functions u verifying the assumptions of Theorem 2.2
are such that Mu is almost everywhere finite, where M is the Hardy-Littlewood
maximal operator defined by

where the supremum is taken over all cubes ) in R™ containing y. The proof of
Theorem 2.2 may be carried out by using the Riesz potential in a standard way. It
is easy to realize also that

c¢= lim u(z)dz Vy e R"

S
= By
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where B,(y) = {z € R" :| y —x |< p}. We observe also that by using results proved
in [1] about Riesz potentials, if

/m&dt<oo
0

tl+n/n—1

where F denotes the conjugate function of F, and if u € VVlloc1 (R™) is such that
| Du |€ Lp(R™), then u is bounded. This result is proved in [1] for functions
belonging to the Orlicz-Sobolev space W1 Lg(R™).

Next theorem, due to Gustavsson-Peetre ([6]), is from Interpolation theory, and
is a particular case of the original statement.

Theorem 2.3

Let p*, p, ¢*, q €]1,00[ and let T be a continuous linear operator
T : Lp-(2) — Lp(2)
T : Ly (2) — Ly(2)

respectively with norm ||T'||p p, ||T||q+,q, where Q is a bounded open set in R".
Let 7 :]0, 00[—]0, 0o[ be such that

an(t) <tn'(t) < pBn(t)  vt>0
for some &, 3 €]0,1[ and let
A7) =ty (tl/p*fl/q*> . B7(t) =ty (tl/pfl/q> .

Then the operator
T : LA<Q) — LB(Q)

is a continuous linear operator with norm ||T'|| 4.5 < max(||T

P*,p> HT

q*vq)'
Next lemmas are parts of the proof of the main theorem of [4].

Lemma 2.4 ([4])
Ifu € W2 (R™) is a very weak solution of (1.1) such that | Vu |€ Lp, (R™) with

loc
ro < r < p, and if u is the truncation of u at levels k and —k, u’p“ = ukqﬁp where ¢,
are cut-off, \, = cp™" f32 | Vu’;(y) | dy, and
E(\) = {z € R : M(| Vubi(x) |) < A},

then we have lim,_.oc A, = 0 and xg(»,)—0 a.e. in R™.
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Lemma 2.5 ([4])

Ifu € W2H(R™) is a very weak solution of (1.1) such that | Vu |€ L, (R™) with
rog < r < p, then if 6 = p — r > 0 the following inequality holds

1 Vu
( ) 6 B4P\E(>‘Ph) ! (| ! |)‘ Vu | UP( (| Up |)) L
_Aié Vu
+ p CI/F, Vu vukd$
6 JE(,) ( D\ Vul| °

IN

s [ ar (v e Vi )

4p

3. Proof of Theorem 1.1

We will proceed as follows: first we prove it suffices to show that there exists ro < p
such that for every k& > 0, rg < r < p there exists a sequence (pp)nen such that

[u* ]|,
(3.1) lim — - @en)
h—oo Ph

=0

where u* for k > 0 is defined by

w i |u(z) <k
uf(x)=<{ k if wu(z) >k
—k if wu(z) < —k

and Q, = By, — B, Vp>0.
Then we will prove (3.1) by considering the following three cases:

/
Case 1: liminf 280 > n.
t—0 F(t)
) tF'(t) ) tF'(t)
2: 1 < d 1 <n.
Case 1r;1ﬂs(§1p Fit) = n  an I?isogp Fit) = n
tF (t "t
Case 3: limsup ®) <n and limsup ®) n.

-0 F(t) t—oo F(1)
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To show that (3.1) is sufficient to prove Theorem 1.1, we begin by noticing that
IVl — VuF|| L, ey = [(VUF) (8 — 1) + 0"V, Ly )

< [(VuP) (dp = Dllng, ey + 165Vl mn)-

The first term on the right hand side goes to 0 as p — oo because of the Lebesgue
Dominated Convergence Theorem and

1u* L, e,

14"V &l L, 2y < p

By using (3.1) we get that there exists a sequence (pp)nen such that Vu’p“h — VuF
in Ly (R™). Now let us pass to the limit in the second term on the left hand side of
(2.1). We will call H(x) a function in Lg, (R™) that majorizes a subsequence of Vulp“h
and we will denote, for simplicity of notations, by pp again, the relative subsequence
of indices. We have

/ k =6
‘/E(A aF'( |Vu|),v Vup, (M (| Ve, D) dal

o)

Vu s
= aF'(| Vu ok (M( Vuk i
‘/E(/\ph)ﬁﬂ ( ’)| Vu | Ph( (| Vuy, ) ‘

< / aF(| Vu ) (M(| Vi, 1)) da
Q

Ph

g/ aF'(| Vu [)(M(H))' ™ dz — 0

Ph

because the last integrand is in L;(R™) by virtue of Lemma 2.3 of [4].

At this point we can conclude the proof by using Lemma 2.4 exactly as in [4],
one has only to remember that the § in Step 4 has to be chosen also such that
0<d<p—rop.

Now we prove (3.1).

/
Case 1: liminf LE(1) >n
t—0 F(t)

Since
tF!(t) B tF'(t)

F.(t)  F(t)

—(p—r),
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let 1 < rg < p be such that for every ro <r <p

PR 7 24(3)
hItIi}ltl)lf F.() >n

and let (t,)nen any decreasing sequence such that t, — 0, and therefore, by Re-
mark 2.1, such that

lim
h—o0 tZ

Set ¢, = [(2" — 1)w,] ! where w,, denotes the measure of the unit ball in R”, and
B Cn 1/n
Ph= F, (th) .

L S S 7 AR
)

We have

Ph Ph ,OhFr_l(CnP;_Ln

as h — oo and therefore in this case the proof is complete.

tF'(t) tF'(t)
Case 2: i < dli
ase thjélp Fit) = n an 13501? Fit)

Since the inverse I(F) of the upper Boyd index of F' is such that (see [5])

tF'(t) tF'(t) }
I(F) < max < limsu ,lim su ,
() < max im0 i S

<n.

we have I(F') < n and therefore (see [5]) I(F,) < n—(p—r) < n, so we may assume,
eventually considering a function equivalent to F)., that

(3.2) pF(t) SLFU) < g Fi(t) V>0

for some 1 < p,, g < n. Just to simplify the notations, let us drop the index r in
all the symbols of (3.2), until the end of the proof of this case: no confusion arise,
because we never need to consider the function F.

The proof of (3.1) easily follows from the following inequality

(3.3) lollLre,) <cmpllvliy @, Vv €Lp@n, Vp>0
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where F™* is the Sobolev-conjugate function of F', in fact, after (3.3), we have

[u* L,

0 < lim < c(n) lim [|u"|L, (0,) =0

p— 00 ph
because we may assume, without loss of generality, that u* € L F.(rn) Dy virtue of
Theorem 2.2.

In the case of powers, i.e. F'(t) =t" with r €]1, n], inequality (3.3) follows from
Holder inequality:

(3.4) ollz, (2, < 0llz,e 2, [ 9 [4777Y7= cln)pllvllz,. (g,
where c(n) = [(2" — 1)w,]"/™ and r* = U is the Sobolev-conjugate exponent
of r.

If F is not a power, we will proceed by the following interpolation argument.
By (3.2) we have
/

%F*(t)gt(F—l(t)) S%F_l(t) vt >0,

with % < % < 110 < 1. Therefore F~! may be written as follows

F~Ht) =ty (tl/pl—l/ql) vt >0

with 7 as in Theorem 2.3 and % < q—ll < é <ic p% < 1. Let p7, ¢i be the Sobolev-
conjugate exponents of p1,q; and let T" be the identity operator. We can apply
Theorem 2.3 with = Q, because (3.4) shows that

1T

pI,p1 < c(n)p, HTHQT,lh < c(n)p.

Then we have
Ivllzs@,) < cn)pllvlizae,)
with B(t) = F(t) and A(t) given by

A7) = /9y (tl/pf—l/qf) Vit > 0.
But L4(Q,) = L, (Q,) because the function A~! is equivalent to F !, in fact

t Fﬁl(T) t 7-1/11177 (7—1/?1—1/‘11)
—1 _ _
F ' (t) = sy dr = /0 sy dr

t 1/q7 1/pi—1/ai t g—1
:/ T 77(7— )dT:/ A (T)dT.
0 0

T T
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Therefore we obtain (3.3) and Theorem 1.1 is proved also in this case.

. tF'(t) . tF'(t)
Case 3: limsu < n and limsu
t—0 P F(t) — t—»oop F(t)

> n.

Roughly speaking, this case will be treated by noticing that the behavior of F.
on big values of ¢ does not influence substantially the norm of u* in Lg (©,), and
therefore this case can be reduced to the previous one. Now let us see the proof in
details.

Since
tE/(t)  tF'(1)

R~ Fo P
let 1 < 79 < p be such that for every rg <r <p

tE!(¢) tE!(¢)
lim su 2 <n and lim su T
t—0 P Fr (t) t—>oop Fr (t)

>n

and let £ > 0 be such that
rF(t) < tF(t) < qFe(t) vt e0,1]
for some r < ¢ < n. Define
(t) if tel0,t]
G(t) =

F,
F’t;ﬁt)tr it t €]f, ool

so that GG is convex, increasing and such that

(3.5) G(t) < F.(t) Vi >0
and elt)
< <q .
l<r< 0 <qg<n Vit >0

We may assume that
lim sup ||ukHLFr(QP) >0,

p—00

otherwise the proof is trivial, and therefore there exists (pp)nen such that

[\ Lp, 0,,) >€ VheEN
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for

T

some 0 < € < 2. By (3.5) we have

o~

G(t) < F.(t) < G(t) £ (<) Vi € [0, g

and therefore

k

421, 0,,) =it {A>0: [ F, <“7> dr<1)
Q

Ph

=inf{\>e: Fu—kd<1<fk*’“
—m{ > € o r b\ T = _C(7 ,G)H’U, HLG(Qph)

Ph

from which, by the Case 2 applied to G, we have the assertion. [

10.

11.
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