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ABSTRACT

Locally solid topologies on vector valued function spaces are studied. The rela-
tionship between the solid and topological structures of such spaces is examined.

0. Introduction and preliminaries

The topological structure of scalar valued function spaces, in particular Banach
function spaces, has been examined intensively by means of the theory of locally
solid Riesz spaces (see [3], [11], [13], [25], [26]).

For a given real Banach space (X, || - ||x) and an ideal E of L° one can consider
Banach space valued function spaces E(X) defined as the subspaces of the space
L°(X) of strongly measurable functions and consisting of all those f € L°(X) for
which the scalar function ||f(-)||x belongs to E. When E is a Banach function
space (in particular a Lebesgue space LP or an Orlicz space L¥) the space E(X) is
usually called a Kothe-Bochner space (resp. a Lebesgue-Bochner space or an Orlicz-
Bochner space). The geometric and topological properties of Kéthe-Bochner spaces
E(X) were studied by A.V. Bukhvalov [5]. The order structure of E(X) when X
is a Banach lattice was examined by E. de Jonge [9], [10] and A.V. Bukhvalov [6].
For X being a locally convex lattice and E being a Banach function space the
order properties of E(X) were studied by C.W. Mullins [18]. N.P. Cac [7] and
A.L. Macdonald [13], [14], [15] examined the topological structure and the dual of
function spaces consisting of measurable functions defined on the locally compact
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Hausdorff topological spaces with a positive Radon measure and with values in a
locally convex vector space.

In this paper, we examine the topological structure of the space E(X) in case
E is an ideal of LY and X is a real Banach space. It turns out that the notion of a
locally solid topology defined in the theory of locally solid Riesz spaces can be in a
natural way defined in F(X).

In Section 1 the solid structure of the spaces E(X) is considered. A subset H of
E(X) is said to be solid whenever || f1(w)||x < || f2(w)]|x p-a.e. and f1 € E(X), f2 €
H imply f; € H. An equivalent of the Riesz decomposition property (see [1]) for
E(X), called here the solid decomposition property is obtained (see Lemma 1.1).
This property is of a key importance for the study of the topological structure of
E(X).

In Section 2 we introduce locally solid topologies on E(X) as linear topologies
having a base of neighborhoods of 0 consisting of solid sets. It is shown that as
in the theory of locally solid Riesz spaces (see [1, Theorem 6.3], [8, Proposition
2.2.C]) every locally solid topology on E(X) can be generated by some family of
solid pseudonorms on E(X).

In Section 3 we examine the relationship between the topological structures of
E and E(X). It is shown that many of the topological properties of E can be lifted
to E(X). The first such results were obtained by A.V. Bukhvalov ([4, Theorem 2,
Theorem 3]).

Section 4 deals with entire topologies on E(X). It is proved that a locally
solid topology 7 on E(X) is entire iff the embedding (E(X)7) — (L°(X),7o(X)) is
continuous.

In Section 5 we examine locally solid topologies on F(X) that are continuous
with respect to natural order convergence in £(X). Following the terminology of the
theory of locally solid Riesz spaces we will call such topologies Lebesgue topologies.
Finally, in Section 6 we describe the finest Lebesgue topology on Orlicz-Bochner
spaces L¥(X).

For notation and terminology concerning locally solid Riesz spaces we refer to
[1], [2]. As usual, N stands for the set of all natural numbers.

Throughout this paper let (2, X, ) be a complete o-finite measure space and let
LY denote the corresponding linear space of equivalence classes of all ¥-measurable
real valued functions. Then L is a super Dedekind complete Riesz space under the
ordering u; < us whenever u; (w) < ug(w) a.e. on .

The Riesz F-norm

@)l
fullo = | s
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for u € L°(Q), where w: Q — (0, 00) is a S-measurable function with [, w(w)dp = 1,
determines the Lebesgue topology 7y on L°, which generates the convergence in
measure on subsets of finite measure.

Let (X,]| - |lx) be a real Banach space. By L°(X) we denote the linear space
of equivalence classes of all strongly Y-measurable functions f: & — X. Then the

F-norm
_ | f(w)llx
I fllox) = /Q T ol ”f(w)HXw(w)du

for f € L°(X), generates the topology 7o(X) on L°(X) of convergence in measure
on sets of finite measure.

For a function f € LO(X) let f(w) = ||f(w)||x for w € Q. Throughout the
paper E will be an ideal of L° with supp E = €. The space

B(X) = {f € L'(X): ] € E}

is called here a vector valued function space.

1. The solid structure of vector valued function spaces
In this section we examine the solid structure of E(X).

DEFINITION 1.1. (i) A subset H of E(X) is said to be solid whenever | f(w)||x <
llg(w)||x p-a.e. and f € E(X), g € H imply f € H.

(ii) A linear subspace I of F(X) is called an ideal of E(X) if I is a solid subset
of E(X).

Note that E(X) is an ideal of L%(X). Since the intersection of any family of solid
subsets of F(X) is solid, every subset A of E(X) is contained in the smallest (with
respect to the inclusion) solid set called the solid hull of A and denoted by S(A).
Note that

S(A)={g € E(X): [lgw)|lx <|f(w)llx wp-ae. forsome fec A}.

One can easily verify that S(AA) = AS(A) for X > 0. The following lemma will
be of a key importance for examination of the solid structure of E(X).

Lemma 1.1 [The solid decomposition property]
Assume that in L°(X)

[f)lx <llg1w) + g2 (W) + -+ gn(w)| x p-ace.
Then there exist fi,..., f, € L°(X) satisfying
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[filllx < llgi(w)llx  prae. (i=1,2,...,n) and f=fi+---+fu

Proof. By using induction it is enough to establish the result for n = 2. Thus

assume that [|f(w)|x < [lg1(w) + g2(w)|x p-a.e.
Let us put (for ¢ = 1,2):

gi(w) o B
Filw) = 1) + (@) flw) if g1(w)+ g2(w) >0,

(
0 if g1(w) + g2(w) =0.

It is seen that f; € LY(X) and f1 + fo = f.

To show that ﬁ < g; for i = 1,2, assume first that g1 (wo) + g2(wp) > 0 for
wg € Q. Then

(o) = gitwo) % Gi(wo) S
fi(wo) §1(w0)+§2(w0)f( 0) < §1(w0)+§2(w0)(gl( 0) + G2))
= gi(wo).

Next, let §1(wo) + Go(wo) = 0 for some wo € €. Then f;(wo) = 0 = §i(wo).
Thus the proof is complete. [

Theorem 1.2
The convex hull conv H of a solid subset H of E(X) is a solid set.

Proof. Let H be a subset of E(X), and let ||f(w)||x < ||lg(w)||x p-a.e., where f €
E(X) and g € conv H. Then there exist g1,...,9, € H and nonnegative numbers
at,...,op with - oy = 1 such that g = Y. | @;g;. Hence by Lemma 1.1 there
exist f1,..., fn € L°(X) such that ||fi(w)|lx < aillgi(w)||x p-ae. fori=1,2,....n
and f = Y7 | fi. Putting h; = o " - f; we get ||hi(w)]lx < [lgi(w)||x p-a.e. for
i=1,2,...,n,80 h; € Hfori=1,2,... . But then f=>"  fi=>" ah €
conv H, so conv H is solid. [J

2. Locally solid topologies on Banach-space valued function spaces

We define locally solid topologies on E(X) that bind the solid and topological struc-
tures of the space E(X) together.
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DEFINITION 1.2. A linear topology 7 on E(X) is said to be locally solid if it has a
basis for neighborhoods of zero consisting of solid sets.

Theorem 2.1

Let 7 be a locally solid topology on E(X). Then the T-closure H of a solid
subset H of E(X) is a solid set.

Proof. Let B, be a basis at zero for 7 consisting of solid sets. Then H = "{H +
V:V € B;}. Let ||f(w)]x < |lg(w)|x wp-ae and f € E(X), g € H, and let
Vo € B;. Then g = g1 + g2, where g1 € H and g5 € Vp. Since ||f(w)]|x < |lg1(w) +
g2(w)||x p-a.e., by Lemma 1.1 there exist fi, fo € L°(X) such that f = f; + fo and
[f1(@)l[x < [lgr1(w)llx and [[f2(w)[x < [lga(w)llx p-a.e. Since E(X) is an ideal of
LX), f1,f2 € BE(X), so fi € H and fy € Vj, because the sets H and Vj are solid.
Thus f € H+ V for every V € B,, so f € H; hence H is solid. [J

DEFINITION 2.2. A linear topology 7 on E(X) that is at the same time locally solid
and locally convex will be called a locally convex-solid topology on E(X).

In view of Theorem 1.2 and Theorem 2.1 we see that for a locally convex-solid
topology 7 on E(X) the collection of all 7-closed, convex and solid T-neighborhoods
of zero forms a basis at zero for 7.

DEFINITION 2.3. A pseudonorm (resp. a seminorm) on F(X) is said to be solid,
whenever p(f1) < p(f2) if fi1, f2 € E(X) and |[fi(w)]x < [[f2(w)]x p-ae.

The next two theorems tell us that as in the theory of locally solid Riesz spaces
every locally solid topology (resp. locally convex-solid topology) 7 on E(X) can be
generated by some family of solid pseudonorms (resp. solid seminorms).

Theorem 2.2
For a linear topology T on E(X) the following statements are equivalent:

(i) T is generated by some family of solid seminorms defined on E(X).
(ii) 7 is a locally convex-solid topology.

Proof. (i) = (ii) Obvious.

(ii) = (i) Let B; = {V4:a € {a}} be a basis of 0 for 7 consisting of 7-closed,
solid and convex sets. Let p, denote the Minkowski functional generated by V,,
that is

pa(f) =inf{X>0:f € AV,} for fe E(X).

Then p, is a solid 7-continuous seminorm and

{f € E(X):pa(f) <1} C Vo= {f € B(X):pa(f) < 1}.
This means that the family {p,:a € {a}} generates the topology 7. [J
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Theorem 2.3
For a linear topology T on E(X) the following statements are equivalent:

(i) T is generated by some family of solid pseudonorms defined on E(X).
(ii) 7 is a locally solid topology.

Proof. (i) = (ii) Obvious.

(ii) = (i) Let V be a 7-neighborhood of 0. Choose a sequence of solid
T-neighborhoods of 0 such that Vy, € V and V41 + Viy1 + Vur C V, for
n=0,1,2,...

Define a function d: E(X) — R by

L itfgW
d(f): 27" iffevn\vn-‘rlv n:0a1727'--
0 if fe N V.
n=1
Then ||fi(w)||lx < ||f2(w)|lx p-a.e. implies d(fi1) < d(f2), because V,, for

n=20,1,2,... are solid.
Define p: E(X) — R by

o(f) = inf{zdm): f=fi me N}.

Using Lemma 1.1 and arguing as in the proof of [8, Proposition 2.2.C] one can check
that p is a 7-continuous solid pseudonorm on E(X) and {f € E(X): p(f) <1} C V.
It follows that 7 is generated by some family of solid pseudonorms. [J

3. The relationship between topological structures of E and E(X)

In this section we examine the relationship between topological structures of £ and
E(X). It is shown that some topological properties of E are inherited by E(X).

Let E be an ideal of L° with supp E = Q. Given a Riesz pseudonorm (resp. a
Riesz seminorm) p on E, let us set

B(f) =p(f) forall fe E(X).

It is easy to check that p is a solid pseudonorm (resp. a solid seminorm) on E(X).
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Let z € Sx. Given u € E let us put (w) = u(w) -z for w € Q. Thenu € L°(X)
and |[u(w)||x = |u(w)] for w € Q, so w € E(X). Given a solid pseudonorm (resp. a
solid seminorm) p on E(X), let us set

p(u) = p(u) for we€E.

It is seen that p is well defined, because p(uw) does not depend on =z € Sx due to
the solidness of p. It is easy to verify that p is a Riesz pseudonorm (resp. a Riesz
seminorm) on E.

Lemma 3.1
(i) If p is a solid pseudonorm on E(X), thenp(f) = p(f) for f € E(X).
(ii) If p is a Riesz pseudonorm on E, then p(u) = p(u) for u € E.

Proof. (i) For f € E(X) we have j(f) = p(J) = p(f), when | f(w)llx = .f(w)lx
for w € Q. Hence by the solidness of p we see that p(f) = p(f).
(ii) For u € E we have p(u) = p(u) = p(u), where u(w) = |[a(w)|x = |u(w)]

for w € €. Since p is a Riesz pseudonorm, p(i) =p(u). O

Let 7 be a locally solid topology (resp. a locally convex-solid topology) on
E(X). Then in view of Theorem 2.3 (resp. Theorem 2.2) 7 is generated by some
family {pn: a € {a}} of solid pseudonorms (resp. solid seminorms) on E(X).

By 7 we will denote the locally solid topology (resp. locally convex-solid
topology) on E generated by the family {p,: a € {a}} of Riesz pseudonorm (resp.
Riesz seminorms) on E. It is seen that if 7 is a Hausdorff topology, then so is 7.

In turn, let & be a locally solid topology (resp. a locally convex-solid topology)
on E. Then ¢ is generated by some family {p,: o € {a}} of Riesz pseudonorms
(resp. Riesz seminorms) on E ([1, Theorem 6.1, Theorem 6.3]).

By & we will denote the locally solid topology (resp. locally convex-solid topo-
logy) on E(X) generated by the family {p,: a € {a}} of solid pseudonorms (resp.
solid seminorms) on E(X). It is seen that if ¢ is a Hausdorff topology, then so is €.

By applying Lemma 3.1 we have the following:

Theorem 3.2
Let E be an ideal of L° with supp E = Q.
(i) For a locally solid topology T on E(X) we have: T =rT.
(ii) For a locally solid topology £ on E we have: z =¢.
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Theorem 3.3
Let 7 and 12 be locally solid topologies on E(X), and let &1,&2 be locally solid
topologies on E. Then:
(1) If 71 C To, then 2:1 C fQ
(11) If & C &, then 61 - 62.

Proof. (i) Let {po: @ € {a}} and {pg: B € {B}} be families of solid pseudonorms
on E(X) that generate 7, and 75 resp. Then the topologies 73 and T on E are
generated by the families {po: @ € {a}} and {pg: 5 € {8}} of Riesz pseudonorms

on E resp. To prove that 7, C 73, let u, — 0 for a net (u,) in E. This means that
ps(uy)— 0 for each B € {B}. Since ps(uy) = ps(Us), We get Uy, — 0, 50 Uy — 0
because 7 C T2. Hence p,(u,)— 0 for each a € {a}, and since p,(uy) = pa(ts)

we get po(ug) — 0 for each o € {a}, s0 uy—=0. This means that 7, C 7.

(ii) Let {po: @ € {a}} and {ps: B € {B}} be families of Riesz pseudonorms
on E that generate £; and & resp. Then the topologies &, and &, on F(X) are
generated by the families {p,: a € {a}} and {ps: B € {B}} of solid pseudonorms on

E(X) resp. To prove that £, C &,, let faio for a net (f,) in E(X). This means
that ps(fs)— 0 for each 8 € {B}. Since ps(fs) = p/g(f";,), fgi(), SO ]?ULO
because £; C &. Thus pa(fs)— 0 for each o € {a}, and since B, (f,) = pa(f,) we

get P, (fo)— 0 for each a € {a}, so fgg 0. Thus & C&,. 0

In case E is endowed with a Hausdorff locally convex-solid topology & the topo-
logical properties of (E(X), ) were studied by A.V. Buchvalov [4]. It is shown that
if (E,£) is a sequentially complete space (resp. a complete space) and ¢ is a Fatou
topology then the space (E(X),£) is sequentially complete (resp. complete) (see [4,
Theorem 2, Theorem 3)).

Let us recall that a Hausdorff locally solid topology & on a Riesz space L is
called minimal, if £ is coarser than any other Hausdorff locally solid topology on L

(see [3]).
Theorem 3.4
If & is a minimal topology on E then &, is a minimal topology on E(X).

Proof. Let 7 be a Hausdorff locally solid topology on E(X). Then {y C 7, and by
Theorem 3.3 and Theorem 3.2 we have {; C 7 = 7. This means that , is a minimal
topology on E(X). O
Theorem 3.5

If E has no minimal topology, then E(X) has no minimal topology.
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Proof. Assume, on the contrary, that 7o is a minimal topology on E(X ). Let & be
a Hausdorff locally solid topology on E(X). Then £ D 79, so by Theorem 3.2 and

Theorem 3.3 £ = £ D 7o, and this means that 7 is a minimal topology on E, which
is impossible. [J

Corollary 3.6

(i) The topology To(X) is a minimal topology on L°(X).

(ii) If ¢ is a finite valued Orlicz function, than 7o(X)|r+(x) is a minimal topology
on L?(X).

(iii) Let (Q,%, 1) a be a o-finite atomless measure space. Then L*°(X) has no
minimal topology.

Proof. (i) It is well known that the topology 7y of the Riesz F-norm | - [|o is a
minimal topology on L° (see [3]). Since || f||zo(x) = [|fllo for f € L°(X), the identity
7o(X) = Ty holds, so by Theorem 3.4 75(X) is a minimal topology on L°(X). O

(ii) It follows from Theorem 3.4, because 7y|r¢ is a minimal topology on L¥
(see [3], [18, Corollary 1.5]).

(iii) It follows from Theorem 3.5, because L has no minimal topology (see [3,
Theorem 8§J). OJ

Theorem 3.7

If ngy is a finest locally solid topology on E, then 7, is the finest locally solid
topology on E(X).

Proof. Let 7 be a locally solid topology on E(X). Then 7 C 79, and by Theorem
3.2 and Theorem 3.3, 7 = 7 C 7. This means that 7, is the finest locally solid
topology on E(X). O

Corollary 3.8

Let (E,|| - ||g) be a complete F-normed function space. Then the topology
TE(X) of the F-norm || - || g(x) is the finest locally solid topology on E(X).

Proof. It is known that the topology 7x of the F-norm || - || is the finest locally
solid topology on E (see [1, Theorem 16.7]). Since || f|lgx) = || f|le for f € E(X),
the identity 7g(X) = 7 g holds, so by Theorem 3.7, 7 (X) is the finest locally solid
topology on E(X). O

Corollary 3.9

The topology Ty(X) of the F-norm || - || Lo(x is the only Hausdorff locally solid
topology on L°(X).

Proof. It follows from Corollary 3.6 and Corollary 3.8. [J
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4. Entire topologies on E(X)

Let us recall that a locally solid topology & on a Riesz space E is said to be entire if
its carrier C¢ is an order dense ideal of E. Entire topologies are always Hausdorff,
and Hausdorff Fatou topologies (and therefore also Hausdorff Lebesgue topologies)
are entire (see [2], [3]).

In case E is an ideal of L° and (Q, X, 1) is a o-finite measure space ¢ is entire
if and only if supp Ce = Q. W. Wnuk [17] showed that a locally solid topology & on
E is entire iff the embedding (E, &) — (L, 7y) is continuous.

In this section we consider entire topologies on E(X). For a solid pseudonorm
pon E(X) let

N, ={h € E(X): p(h) =0} and N;)i ={f € E(X): fAR=0 forall he N,}.
Then both N, and N¢ are ideals of E(X).
DEFINITION 4.1. The carrier C, of a locally solid topology 7 on E(X) is defined by

C, = U {Ng: p is a 7-continuous solid pseudonorm}.

Theorem 4.1
The carrier C; of a locally solid topology T on E(X) is an ideal of E(X).

Proof. 1t is seen that C; is a solid subset of E(X). To prove that C; is a li-
near subspace of E(X), let fi, fo € Cy. Then f; € Ngl,fz € N;l:) for some solid
T-continuous pseudonorms p1, p2 on E(X). Let p(f) = p1(f) V p2(f) for f € E(X).
Then p is a solid 7-continuous pseudonorm on E(X) and N, = N, N N,,. Mo-
reover, for each h € N, = N, N N,, we have 0 < fi+ fo Ah < (fi + f2) Ah <
(fiAR)+ (faAh) =0,s0 f1 + f2 € Ng C C,. Since f € C; and A € R implies
Af € C, the proof is complete. [

Note that

supp C; = | J {supp f: f € C+}

= U {supp N;l: p is T-continuous solid pseudonorm}.

DEFINITION 4.2. A locally solid topology 7 on E(X) is said to be entire if
suppC, = Q.
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We are going to show that supp C = supp C.. For this purpose, for a solid
T

pseudonorm p on E(X) let

N.={u€ E: p(u) =0} and Nd {veE: |uA|v=0 forall uGN}
P
We shall need the following lemmas.

Lemma 4.2

For a solid pseudonorm p on E(X)

N.={u€ E: [u(w)| < || f(w)||x p—a.e. for some f € N,}.
p

Proof. Let u € N_, i.e. p(u) = p(u) = 0. Then |u(w)| = |[u(w)|x for w € O and

p
€ N, Nextlet u € F and |u(w)| < ||f(w)||x p-a.e. for some f € N,. Then
p(u) = p(a) < p(f), so p(u) =0, that is u € N.. O

p

Lemma 4.3

For a solid pseudonorm p on E(X), supp N/‘f = supp N<.
p

Proof. To prove that supp N;l C supp N¢, let w € supp N;jl =J{supp f: f € Ng}.
Then f(w) # 0 for some f € Ng. It is Znough to show that f € N Indeed, let
u € N.. Then by Lemma 4.1, |u(w)| < ||h(w)||x p-a.e. for some ffe N,. Then
0< fp/\ lul < fAR =0,s0 f € N% as desired. Since f(w) > 0 we see that
w € supp Nd ’

Next, let w e supde U {suppu:u € Nd} Then u(w) # 0 for some u € Nd

Hence u(w) # 0 and it is enough to show that @ E Nd Indeed, let h € Nd Then by
Lemma 4.1, heN.and uAh = |u] A h= 0,s0w € N;f, as desired. Since u(w) =0
P

it means that w € supp N;l. O

Lemma 4.4
Let 7 be a locally solid topology on E(X).

(i) If p is a solid T-continuous pseudonorm on E(X), then p is a solid T-continuous
pseudonorm on E.

(ii) If p is T-continuous solid pseudonorm on E, then P is a solid T-continuous
pseudonorm on E(X).
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Proof. Let 7 be generated by some family {p,: o € {a}} of solid pseudonorms on
E(X). Then 7T is generated by the family {p,: @ € {a}}.

(i) Assume that p is 7-continuous. To prove that p is 7-continuous let u,—— 0
for a net (uy) in E. It means that p,(u,)— 0 for each a € {a}. But ﬁa(uj) =
Pa(Ts), 80 pa(ty)— 0 for each a € {a}. But Pa(ty) = palty), SO po(tiy)— 0 for
each a € {a}. Hence p(ty)— 0, because p is T-continuous. Since p(u,) :(,fo(ﬂ,,) it
means that p is F-continuous.

(ii) Assume that p is a 7-continuous. To prove that p is 7-continuous let
fo——= 0 for anet (f,) in E(X). It means that p,(f,)— 0 for each o € {a}. But

Palfa) = palfs) = palfs), s0 pa(fo)— 0 for each a € {a}. Hence p(fs) — 0
because p is T-continuous. Since p(fy) = p(fg), it means that p is 7-continuous. [J

Denote by P (E(X)) the family of all 7-continuous solid pseudonorms on E(X),
and by P_(E) the family of all 7-continuous solid pseudonorms on E.

Lemma 4.5
We have the following identity: P_(E) = {p: p € P.(E(X))}.

Proof. Let p € P-(E). Then by Lemma 3.1 p = p. Thus p = p where p =P €
P-(E(X)) by (ii) of Lemma 4.4.

Now, let p = p where p € P.(E(X)). By (i) of Lemma 4.4 p is 7-continuous,
and we are done. [J

Now we are in position to prove our desired result.

Theorem 4.6

For a locally solid topology T on E(X), suppC; = suppC-.

Proof.  Since suppC, = |J{supp Ng: p € P(E(X)}, we have suppC. =
U {supp N;,l: p € P.(E)}. Using Lemma 4.3 and Lemma 4.5 we get suppC, =
suppC.. O

As an application of Theorem 4.6 we have the following two theorems.

Theorem 4.7
For a locally solid topology T on E(X) the following statements are equivalent:
(i) T is entire.
(ii) T is entire.
(iii) The embedding (E,7T) — (L°,7p) is continuous.
(iv) The embedding (E(X),7) — (L°(X),7o(X)) is continuous.
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Proof. (i) < (ii) It follows from Theorem 4.6.

(ii) < (iii) See [17].

(iii) = (iv) Assume that 7 D Zy|g. Then by Theorem 3.3 and Theorem 3.2
T=TD %’E(X)-
iv) = (iii) Assume that 7 D 79(X)|g(x). Then by Theorem 3.3 7 D
To(X)|px) = Tole- O

—~
—

Theorem 4.8
For a locally solid topology £ on E the following statements are equivalent:
(i) & is entire.
(i) € is entire.
(iii) The embedding (E,¢) — (L°,7y) is continuous.
(iv) The embedding (E(X),€) — (L°(X),7o(X)) is continuous.

Proof. Let 7 = . Then by Theorem 3.2 £ = € = 7, and by Theorem 4.7 the proof
is complete. [

Remark. A.V. Bukhvalov [4] showed that if £ is a locally convex-solid topology
on E with the Fatou property (so E is entire), then the embedding (E(X),§) —
(L°(X), 7 (X)) is continuous.

Corollary 4.9
Every entire topology 7 on E(X) is Hausdorft.

Proof. Assume that 7 is entire. Then by Theorem 4.7 T is entire on E, so T is
Hausdorff. Since 7 = 7 (see Theorem 3.2), 7 is Hausdorff. O

5. Lebesgue topologies on E(X)

In this section, following the concept from the theory of locally solid Riesz spaces, we
defined some class of locally solid topologies on E(X) (called Lebesgue topologies)
connecting the solid structure of E(X) and topological continuity.

DEFINITION 5.1. A sequence (f,) in E(X) is said to be order convergent to 0

in E(X), in symbols f, QO, if f, ©.0 in E; ie, [[fn(w)|x — 0 p-a.e. and

Ifn(@)]lx < u(w) p-a.e. for some u € E (n=1,2,...).
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DEFINITION 5.2. A solid pseudonorm p on E(X) is said to be order continuous
whenever for f, € E(X), fn ©. implies p(f,) — 0.

Let us recall that for a sequence (A,) in ¥ we write A, \, # whenever (A,) is
a decreasing sequence and p(A, N A) — 0 for every A € ¥ with u(A) < oo.

DEFINITION 5.3. A solid pseudonorm p on E(X) is said to be absolutely continuous,
whenever p(xa, f) — 0as f € E(X) and A, \, 0.

By a standard argument (see [14]) one can prove the following:

Theorem 5.1
For a solid pseudonorm p on E(X) the following statements are equivalent:

(i) p is absolutely continuous.
(ii) For every f € E(X) and € > 0 there exist 6 > 0 and a set Ay € ¥ with
p(Ag) < oo such that p(xo\a,f) < € and p(xaf) < e whenever u(A) < 6.

Theorem 5.2

For a solid pseudonorm p on E(X) and a subset D of E(X) the following
statements are equivalent:

(i) D is of uniformly absolute continuous pseudonorm p, i.e.,

sup p(xa, f) =0 as A\ 0.
febD

(ii) For every € > 0 there exist 6 > 0 and a set Ay € ¥ with u(Ag) < oo such that
p(Xona,f) < & and supyep p(xaf) < e whenever ju(A) < 6.

Theorem 5.3
For a solid pseudonorm p on E(X) the following statements are equivalent:

(1) [ fullLocxy — 0 and || fr(w)|| x < w(w) p-a.e. for someu € E (n=1,2,...) imply

p(fn) = 0.
(ii) p is order continuous.

(iii) || fn(w)|lx In O p-a.e. implies p(f,) — 0.
(iv) p is absolutely continuous.
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Proof. (i) = (ii) Obvious.

(ii) = (i) Assume that || f||zo(x) — 0 p-a.e. and || fn(w)||x < u(w) p-a.e. for
some u € E. Then fn — 0 (p) in LY, so by the Riesz theorem for every subsequence
(fr,) of (fn) there exists a subsequence (flkn) of (fx,) such that ﬁkn (w) = 0 p-a.e.,
. i, (@)lx — 0 pace. Hence by (i), p(fy,,) — 05 hence p(f,) — 0.

(iii) = (ii) Assume that ||f,(w)|]|x — 0 p-a.e. and ||fp(w)]|x < u(w) p-a.e.
for some u € E. Let u,(w) = supys, ||fx(w)]|x for w € Q,n = 1,2,..., and let
B (w) = tn(w)a for some x € Sx. Then hy, € E(X) and ||y (w)||x In 0 for w € Q.
To see that ||k, (w)||x — 0 for w € Q, let € > 0 be given. Then there exists ng € N
such that for k > ng, |[|fr(w)|x < e for w € Q. Then for n > ng, u,(w) <e, ie.,
|hn(w)||x < e for w e Q. Thus ||k, (w)|lx In 0 for w € Q, so p(h,) — 0 by (iii).
Since || fu(@)llx < [[hn(W)llx  p-ae, p(fn) < p(hn), so p(fn) — 0.

(i) = (iv) Let f € E(X) and 4, \, 0, and let us put f,(w) = xa, (w)f(w)
forweQ, n=1,2,... . Let ¢ > 0 be given and let A € ¥ with p(A4) < oo. Since
{we A [[fu(w)|lx > e} € ANA, and u(ANA,) — 0 it follows that || f,,||Lox) — O.

But ||fn(w)|lx < f(w) prae. (n=1,2,...),s0 by (i) p(xa, f) — 0, as desired.

(iv) = (i) Assume that || f,| Lox) — 0 and || fn(w)||x < u(w) p-a.e. for some
u€eFE (n=12,...), and let € > 0 be given. Since supp E = (2, there exists an
increasing sequence (€2,,) in ¥ such that |J,-; Q, = Q, u(©,) < oo and xq,, € E for
n=1,2,... (see [26, Theorem 86.2]).

Let A, = Q—Q, (n=1,2,...). Then A4,, \, 0. Let ho(w) = u(w)xp, where
xo € Sx. Since p(xa, ho) — 0and p(xa, fm) < p(xa,ho) form =1,2,..., it follows
that sup,, p(xa, fm) — 0.

Choose ng € N such that

Wl ™

(1) sup p(xA,, fm) <

Let fo(w) = o for all w € Q. Then x4, fo € E(X) and choose 19 > 0 such that

(2) p(noxe,, fo) <

Wl ™

Write Cy, = {w € Qny: [[fa(W)llx > Mo}, Bn = {w € Quyt [[fa(w)llx < no} (n =
1,2,...). Since || ful|lrox) — 0, we get u(Cp) — 0, so by (ii) there exists n; € N
such that for n > ny

(3) p(xc, ho) <

Wl M
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But (x5, (@) fa(w)lx < [Inoxe,, @) fo(w)|x p-ae., hence by (1), (2) and (3) we
get for n > ny:

p(fn)

p(XC, frn + XBo frn + XA, fn)
p(xc, fn) + p(XB, fn) + p(XAnO fn)

< p(xc,ho) + p(noxe,, fo) + p(xa,, fn) <

IA

W M
Wl ™

Thus the proof is complete. [

Remark. Since the measure space (€2, X, 1) is o-finite, the space E has the countable
sup property. It follows that every o-Lebesgue topology & on E is a Lebesgue
topology. Therefore in the below definition of a Lebesgue topology on E(X) one can
also take sequences instead of nets.

DEFINITION 5.4. A locally solid topology 7 on E(X) is said to be a Lebesgue topology
whenever for f, € E(X), f, ﬂo implies f,, —0.

Applying Theorem 2.3 and Theorem 5.3 we obtain some general characteriza-
tions of Lebesgue topologies on E(X).

Theorem 5.4

For a locally solid topology T on E(X) the following statements are equivalent:
(i) T is a Lebesgue topology.
(i) | fullLox)y — 0 and || fn(w)||x < u(w) p-a.e. for someu € E (n=1,2,...) imply
fn—0.
(iii) || fu(w)|lx | O p-a.e. implies f,,——0.
(iv) T is generated by some family of absolutely continuous pseudonorms.

Theorem 5.5

Let p be an absolutely continuous pseudonorm on FE(X), and let f € E(X), f, €
E(X)(n=1,2,...) with f, — f for 7y(X) and sup,, P(XAn,fm)T’ 0as A, \, 0.
Then p(f, — f) — 0.

Proof. Let € > 0 be given. Since suppF = Q there exists a sequence (£2,,) in 2
such that Q, 1 Q,xq, € E(n=1,2,...),and let A, =Q—-Q,, (n=1,2,...). Then
An ™\ 0, so there exists ng € N such that sup,, p(xa,, fm) < €/6 and p(xa,, f) <
g/6. Since p(xa,, (fm — f)) < p(xa,, fm) + p(xa,, f) for m € N, we see that

() sup (X, (i = ) < 5.
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Let fo(w) = z¢ for w € Q, where z¢ € Sx. Then xq, fo € E(X), and choose 9 > 0
such that

(2) p(MoXa,, fo) <

Wl ™

Write (n = 1,2,..) Cu = {& € Quyt /(@) — F@)llx > m}. Bu = {w €
Qo [ fn(w) = f(w)llx < no}. Since f, — f for To(X), we get pu(Cy) — 0; so by
Theorem 5.2 there exists ny € N such that for n > ny, sup,, p(xc, frn) < €/6 and
p(xc, f) < e/6. Hence for n > ny

(3) sup (xc, (fm — f)) < % :

Since [[xB, (w)(fn(w) = f(W))llx < XxQ,, (@) - 10 = [[n0X0,, fo(w)l[x, by (2) we have
forn=1,2,...

(4) p(xs,(fa =) < 5.

Hence by (1), (3) and (4) for n > ny we have:

e €
<g+5+5=¢

p(fn - f) < P(ch(fn - f)) +p(XBn(fn - f)) +p(XQ—QnO (fn - f))
3
=333

Thus the proof is complete. [

The next theorem describes sequential convergence in E(X) endowed with a
Lebesgue topology.

Theorem 5.6

Let 7 be a Lebesgue topology on E(X) generated by a family {p,: o € {a}}
of absolutely continuous pseudonorms on E(X), and assume that To(X)|gx) C 7.
Then for f € E(X), f, € E(n=1,2,...) the following statements are equivalent:

(i) fn — f forT.
(ii) fn — f for To(X), and for every o € {a}, sup,, Pa(XAnfm)T 0 as A, \, 0.
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Proof. (i) = (ii) Let o € {a}, and let € > 0 be given. Choose ny € N such that
Po(fr — f) < /2 for n > ng. Since p, in absolutely continuous, there exists 6 > 0
and By € ¥ with p(By) < oo such that po(xpf) < e/2 for B € ¥, pu(B) < ¢ and
p(xa—B,f) < /2. It follows that for B € ¥ with u(B) <4,

p(xefn) <e and p(xa-B,fn) <e for n > ng.

Moreover, for every n = 1,...,ng there exist §,, > 0 and C,, € ¥ with u(C,) < oo
such that p(xcfn) < € for C € ¥ with pu(C) < 6 and p(xa—c, fn) < €. Then for
Co =U.2, Cy, 80 = min(éy, ..., 8,) we have pu(Ag) < co and

sup pa(xcfn) <e for C€X, p(C) <éy and  sup pa(xa-c,fn) <e.
1<n<ng 1<n<ng

Putting 6’ = min(6, §p) and Ag = By U Cy we get

sup pa(xafn) <e for A€¥ with p(A) <¢', and suppa(xo-a,fn) <e.

By Theorem 5.2 it follows that sup,, pa(xa, fm) — 0 as A, \, 0.
(ii) = (i) It follows from Theorem 5.5. OJ

The relationship between Lebesgue topologies on E and E(X) is explained by
the next theorem.

Theorem 5.7

(i) If ¢ is a Lebesgue topology on E, then ¢ Lebesgue topology on E(X).

(ii) If T is a Lebesgue topology on E(X), then T is a Lebesgue topology on E.

(iii) If ¢ is the finest Lebesgue topology on E, then € is the finest Lebesgue topology
on E(X).

Proof. (i) Let £ be generated by a family {p,: o € {a}} of solid pseudonorms on
E. Let f, e E(X) (n=1,2,...) and || fn(w)]|x — 0 p-a.e. and || fn(w)||x < u(w)

p-a.e. for some u € £ (n=1,2,...). This means that fn ﬂO in E, so fni@, ie.
for each a € {a},pa(ﬁl)f 0. Then for each o € {a}, p,(fn) — 0, ie. f, — 0 for
£, and in view of Theorem 5.4 this means that & is a Lebesgue topology.

(ii) Let 7 be generated by a family {p,: @ € {a}} of solid pseudonorms on
E(X) and assume u,, ©.0 in E,ie. up(w) — 0 prae. and |u,(w)| < u(w) p-ae.
for some u € E (n=1,2,...). Let U,(w) = up(w) - x for w € Q and some x € Sx.
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Then by Theorem 5.4 %, ——0, i.e., for each a € {a}, pa(@,)— 0. Thus for each
a € {a}, pa(u,) — 0, ie., u, — 0 for 7. It means that 7 is a Lgbesgue topology.

(iii) Let 7 be a Lebesgue topology on E(X). Then 7 is a Lebesgue topology
on E,so7 C & Hencer =7 C € (see Theorem 3.2 and Theorem 3.3), so ¢ is the
finest Lebesgue topology on E(X). O

6. The finest Lebesgue topology on Orlicz-Bochner spaces

In this section we describe the finest Lebesgue topology on Orlicz-Bochner spaces
L?(X).

First we recall some terminology concerning the theory of Orlicz spaces and
Orlicz-Bochner spaces (see [13], [23]). By an Orlicz function we mean a function
@: [0,00) — [0, 00] which is non decreasing, left continuous at zero and ¢p(u) = 0 iff
u = 0. A convex Orlicz function will be called a Young function.

An Orlicz function ¢ defines two functionals mg: L — [0,00] and
M,: L°(X) — [0,00] by

mo(w) = [ lu@dn Mo = [ ol5)1x)dn.
The space
LX) ={f e L%X): fe L} = {f: L°(X): M,(\f) < oo for some A >0}

will be called an Orlicz-Bochner space (here L? is the Orlicz space defined by ).
The functional M, restricted to L¥(X) is a modular (see [21], [25]). L¥(X) can be
equipped with the complete metrizable linear topology 7.,(X) of the solid F-norm
|flpexy = nf{A > 0: My(f/A) < A}. Moreover, when ¢ is a Young function, the
topology 7, (X) can be generated by the so-called Luxemburg norm ||| f[||z¢(x) =
inf{\ > 0: M,(f/\) < 1}.

DEFINITION 6.1. A sequence (f,) in L¥(X) is said to be modular convergent to

f € L?(X) (in symbols fn&f) whenever M, (A(f,, — f)) — 0 for some A > 0.
For e > 0 let Uy(e) = {f € L¥(X): M,(f) < e}. Then the family of all sets of
the form:

N

( Uw(gn)>a

1 n=1

(%)

TCe
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where (g,,) is a sequence of positive numbers, is a basis at 0 for a linear topology on

L#?(X), that will be called the modular topology on L¥(X) and will be denoted by
T/ (X). Using Lemma 1.1 it is easy to show that the sets of the form (%) are solid,
so T)'(X) is a locally solid topology.

The modular topology 7 on Orlicz spaces L has been examined in [19],
[20], [22].

Arguing as in the proofs of [19, Theorem 1.2, Theorem 1.3] we obtain:

Theorem 6.1

(i) 7/'(X) is the finest of all linear topologies T on L¥(X) for which fn&o implies
fn——0.

(i) T)(X) C T,(X) and the identity 7/ (X) = T,(X) holds whenever p € Ay, i.e.
lim sup ¢(2u)/p(u) < 0o as u — 0 and u — 0.

Theorem 6.2
For a locally solid topology T on L¥(X) the following statements are equivalent:

(i) T is a Lebesgue topology.
(ii) fn 220 implies f,,—-0.

Proof. (i) = (ii) Let fn—>0 ie. fn—>0 Hence by [21, Corollary 2.4] f( "0

Thus for any subsequence (fy, ) of (f,) there exists a subsequence ( flk ) of (fe, )
such that flk @0 in L¥, ie. flk (w) = 0 p-a.e. and ’flkn (w)] < u(w) p-ae. for

some u € L¥. Since 7 is a Lebesgue topology, fi, —0. This means that fn(T—)> 0,
S0 fn— 0, as desired.

(ii) = (i) Let f, € L¥(X) and || fn(w)]|x — 0 and || fn(w)|x < u(w) p-a.e. for

some u € L¥, i.e. f, ©.0in L. Then by [21, Theorem 1.3] f,—%0, i.e. fn% 0.
By (ii) f,— 0, and it means that 7 is a Lebesgue topology. [J

Theorem 6.3

(i) 7,\(X) is the finest Lebesgue topology on L¥(X).
(ii) 7' (X) is generated by the family of all absolutely continuous solid pseudonorms
on L¥(X).
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Proof. (i) It follows from Theorem 6.1 and Theorem 6.2.
(ii) It follows from (i) and Theorem 2.3. OJ

To present a basic description of the modular topology Tf (X) we recall some
relations among Orlicz functions and next, distinguish some classes of Orlicz and
Young functions.

We shall say that an Orlicz function 1 is completely weaker than another ¢ for
all u (resp. for small u; resp. for large u), in symbols g ¢ (resp. ¢ 3 p; resp. P i] ®),
if for arbitrary ¢ > 1 there exists d > 1 such that ¥ (cu) < dp(u) for u > 0 (res. for
0 < u < ugp; resp. for u > uy > 0) (see [19], [20]). It is seen that ¢ satisfies the so
called As-condition for all u (resp. for small u; resp. for large u) if and only if gp%gp
(resp. p<p; resp. 4 ©).

An Orlicz function ¢ continuous for all u > 0, taking only finite values and
such that ¢(u) — oo as u — oo is usually called a ¢-function. We will denote by
® the collection of all p-functions. A Young function ¢ taking only finite values is
called an N-function whenever lim, .o ¢(u)/u = 0 and lim, . ¢(u)/u = co. We
will denote by ® the collection of all N-functions.

Let @ be the collection of all Orlicz functions such that ¢(u) — oo as u — oo.
Let

P01 = {p € Po: p(u) < 0 for u >0},
Po2 = {p € Po: ¢ jumps to oo, ie., p(u) =00 for u>ug>0}.

The next two theorems give a basic characterization of the modular topology
7, (X) in terms of some family of solid norms on L#(X) defined by Orlicz functions.

Theorem 6.4

Let ¢ € ®o; (i = 1,2). Then the modular topology T)'(X) on L?(X) is ge-
nerated by the family of solid F-norms {| - |p.(x): ¥ € V§;}, where ¥, = {¢ €

O papl, U, ={p € by}

Proof. Let ¢ € ®¢; (i = 1,2). Then 7" is the finest Lebesgue topology on L¥ and is
generated by the family {|-|,: ¥ € 9g;} of F-norms (see [22, Theorem 1.1, Theorem
1.2]). Then the topology T_f on L?(X) is generated by the family {]| - |L¢(X): (NS
Ui} of solid F-norms and by Theo&n 5.7. ’T_é\ is the finest Lebesgue topology on
L#(X). By Theorem 6.3 7)'(X) = 7', and we are done. [J
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Now let ®§ be the collection of all Young functions ¢ and such that
limy, 00 (1) /u = 00. Let us write:

q’ocl 906(1)((;: o(u) < oo forall u>0 and 1ij:0}7

u—0 U

q)(%:{cpefbgzgp jumps to oo and limM:O},

u—0 U
oo 0 € ®S: p(u) < oo forall u>0 and iig%)$>0},
@&:{cpefbg: ¢ jumps to oo and iﬁ)# >0}.
Then ®§ = U?:l ®§., and the sets ®f, are pairwise disjoint. It is seen that

®§; = ®n. Denote by

()
U5, (C) = {v € Oy: d)glgp} whenever ¢ € ®§,
U5 (C) = {v € Oy: d)iup} whenever ¢ € ®§;
U (C) = ®S;, whenever ¢ € &,

Theorem 6.5

Let ¢ € ®f; (i = 1,2,3,4). Then the modular topology T/ (X) on L?(X) is
generated by the family of solid norms:  {||| - |||+ (x): ¥ € &, (C)}.

Proof. Let ¢ € ®f, (i = 1,2,3,4). Then Tf is the finest Lebesgue topology
on L¥ and is generated by the family {||| - [|l¢: ¥ € ¥, (C)} of norms (see [22,
Theorem 1.1, Theorem 1.5]). Then the topology T_(PA on L¥(X) is generated by the
family {[|| - |[|rv(x): ¥ € ¥E(C)} of solid norms on L¥(X), and by Theorem 5.7
7/ is the finest Lebesgue topology on L¥(X). In view of Theorem 6.3 the identity
T)(X) =17 holds. O

Corollary 6.6

Let ¢ € ®f; (i =1,2,3,4). Then the space (L*(X), T'(X)) is complete.
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Proof. The modular topology ’Z:p/\ on L? has the Fatou property (see [1, p. 80]), so
T is generated by same family {p,: a € {a}} of Fatou seminorms (i.e. p, satisfy
the condition C' in the paper [4]). Since the space (L¥,7/') is complete (see [20,
Theorem 1.3]), by [4, Theorem 3] the space (L¥(X), 7/ (X)) is complete, because
T)(X) =17} (see the proof of Theorem 6.5). OJ

As an application of Theorem 6.5 we obtain the following characterization of

absolutely continuous seminorms on L¥(X).

Corollary 6.7

Let o € ®. (i = 1,2,3,4). Then for a solid seminorm p on L¥(X) the following

statements are equivalent:

(i) p is absolutely continuous on L#(X).
(ii) There exist 1 € V¥ .(C) and a number a > 0 such that

p(f) < alllflllpex) forall fe L?(X).
Proof. (i) = (ii) Let ¢ € ®f; (i = 1,2,3,4). Since T/'(X) is the finest Lebesgue

topology on L#(X), by Theorem 6.5 and [12, Ch. 4, § 18,(4)] there exist 11, ...,¥, €
U (C) and a number a > 0 such that

p(f) < amax(|[[f[[|Le: x) -5 I Fllen x)) for all f e L?(X).

Let ¢(u) = max(¢1(u), ..., ¥n(u)) for u>0. Then ¢ € Ui (C) and ||| f||] v, x) <
H‘f|||L¢(X) for j=1,2,...,n,so

p(f) < alllfllpex) forall fe L?(X).

(ii) = (i) By Theorem 6.3 and Theorem 6.5 for each v € ¥§.(C),
|- I[lz¥(x) is an continuous norm on L¥(X), so p is also absolutely continuous. [J
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