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Abstract

We prove some exact formulas for the E and K functionals for pairs of the type
(X(A),l∞(B)) where X has the lattice property. These formulas are extensions
of their well-known counterparts in the scalar valued case. In particular we
generalize formulas by Pisier [4] and by the present author [2].

1. Introduction

If A and B are two quasi-normed spaces both linearly and continuously embedded
in a Hausdorff topological vector space X , then (A,B) is said to be a compatible
pair. For x ∈ A+B, t > 0 the K and E functionals are defined as

K(t, f, A,B) := inf{‖g‖A + t ‖h‖B : g ∈ A, h ∈ B and f = g + h} ,

E(t, f, A,B) := inf{‖f − g‖A : f − g ∈ A, g ∈ B and ‖g‖B ≤ t}

respectively. By the definitions of the K and E functionals we obviously have

K(t, f, A,B) = inf
s>0

{E(s, f, A,B) + st} . (1)

For the purpose of describing the connection between the K and E functionals we
define the following transformations: For f : (0,∞) → [0,∞] and t > 0 let

f•(t) := inf
s>0

{f(s) + st} (2)
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and
f◦(t) := sup

s>0
{f(s) − st} . (3)

These transformations are closely related to the Legendre transform. One can easily
prove that f•◦ is the greatest decreasing lower semicontinuous convex minorant of
f , denoted by f∨, and that f◦• is the least concave majorant of f , denoted by f∧.
Formula (1) can now be written as K = E•. If we take the transform (3) of this
formula we arrive at E∨ = K◦. Since, in the normed space case, the E functional
is convex we have E = E∨ with the possible exception at the point where the
E functional jumps to infinity (since lower semicontinuity may be violated there).
Hence, in the normed space case, E(t, x,A,B) = K(t, x,A,B)◦ with the possible
exception where the E functional jumps to infinity.

In this paper we consider vector valued sequence spaces. The space X(A),
A =

∏∞
i=0Ai, is defined by

X(A) :=

{
(a0, a1, . . .) ∈

∞∏
i=0

Ai :
(
‖a0‖A0

, ‖a1‖A1
, . . .

)
∈ X

}

where Ai are quasi-normed spaces and X is a normed real valued sequence space.
The function

(a0, a1, . . .) := a �→ ‖a‖X(A) :=
∥∥‖ai‖Ai

∥∥
X

is used as quasi-norm on this space. If a ∈ X and, for i ∈ N, 0 ≤ |bi| ≤ |ai|
implies b ∈ X and ‖b‖X ≤ ‖a‖X then X is said to have the lattice property. For
a /∈ X we define norm of a as infinity. By saying that (A,B), A =

∏∞
i=0Ai and∏∞

i=0Bi, is a compatible sequence pair we mean that (Ai, Bi) are compatible pairs
of quasi-normed spaces for i = 0, 1, . . ..

For a normed real valued sequence space X we define, for a weight ω =
(ω0, ω1, . . .) (a strictly positive sequence), the weighted space Xω as the set of all
x = (x0, x1, . . .) for which xω = (x0ω0, x1ω1, . . .) ∈ X with the norm ‖x‖Xω :=
‖xω‖X . Finally we define ω−1 := (ω−1

0 , ω−1
1 , . . .) when ω = (ω0, ω1, . . .).

2. Formulas for the K and E functionals

If X has the lattice property then the E functional for the pair (X, l∞) can easily
be seen to be

E(t, f,X, l∞) = ‖(|f | − t)+‖X , (4)

see e.g. [1] and [3]. We note that this formula can be rewritten as

E(t, f,X, l∞) = ‖E(t, f(·),C,C)‖X .

Therefore, our next theorem may be regarded as a generalization of (4) to the case
of vector valued sequence spaces.
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Theorem 1
Let X be a normed sequence space with the lattice property and let (A,B) be

a compatible sequence pair. If X contains a strictly positive sequence, then

E
(
t, x,X(A), l∞(B)

)
= ‖E(t, xi, Ai, Bi)‖X . (5)

Proof. We begin to prove E(t, x,X(A), l∞(B)) ≥ ‖E(t, xi, Ai, Bi)‖X . We may
assume that E(t, x,X(A), l∞(B)) < ∞ since it holds trivially otherwise. Choose
y ∈ l∞(B) with ‖y‖l∞(B) ≤ t such that x− y ∈ X(A) arbitrarily. This implies that

‖xi − yi‖Ai
≥ E(t, xi, Ai, Bi)

and, by the lattice property, it yields that

E
(
t, x,X(A), l∞(B)

)
≥ ‖E(t, xi, Ai, Bi)‖X

follows. In order to prove E(t, x,X(A), l∞(B)) ≤ ‖E(t, xi, Ai, Bi)‖X we may assume
that ‖E(t, xi, Ai, Bi)‖X <∞. In particular this means that E(t, xi, Ai, Bi) <∞ for
all i since X is a real valued sequence space. Let ρ be a strictly positive sequence
with norm less or equal to one. For every ε > 0 we may choose y with ‖y‖l∞(B) ≤ t
such that

E(t, xi, Ai, Bi) ≥ ‖xi − yi‖Ai
− ερi

for all i ∈ N. By using the lattice property we obtain that

‖E(t, xi, Ai, Bi)‖X ≥ ‖x− y‖X(A) − ε ≥ E
(
t, x,X(A), l∞(B)

)
− ε ,

and the theorem follows. �

By using formula (1) and the previous theorem we immediately get:

Corollary 2
With the same assumptions as in the previous theorem the following formula

for the K functional holds:

K
(
t, x,X(A), l∞(B)

)
= inf

λ>0
{‖E(λ, xi, Ai, Bi)‖X + λt} . (6)

Remark 1. The formulas (5) and (6) can be generalized to the weighted case. We
have

E
(
t, x,X(A), lω∞(B)

)
= ‖E(t, ωixi, Ai, Bi)‖Xω−1

and
K

(
t, x,X(A), lω∞(B)

)
= inf

λ>0

{
‖E(λ, ωixi, Ai, Bi)‖Xω−1 + λt

}
,

where ω is an arbitrary weight.

Next we state the following description of K(t, x, lp(A), l∞(B)):
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Theorem 3

Let (A,B) be a compatible sequence pair and 1 ≤ p < ∞. Then the K func-

tional K(t, x, lp(A), l∞(B)), for an x ∈ lp(A) + l∞(B), is equivalent to

sup




( ∞∑
i=0

K(ti, xi, Ai, Bi)p
)1/p

: ti > 0,
∑

tpi ≤ tp


 , (7)

with the equivalence constants being 21−p/p and 1, with expression (7) as the smaller

one.

Remark 2. For the case p = 1 this result can be found in [4] as Corollary 3. Our
proof below is completely different.

Proof. First we note that, according to Corollary 2, it yields that

K
(
t, x, lp(A), l∞(B)

)
= inf

λ>0




( ∞∑
i=0

E(λ, xi, Ai, Bi)p
)1/p

+ λt


 . (8)

We begin to prove that expression (7) is greater than or equal to a constant times
the right hand side of (8). Since

2(1−p)/p inf
λ>0




( ∞∑
i=0

E(λ, xi)p
)1/p

+ λt


 ≤

{
inf
λ>0

∞∑
i=0

E(λ, xi)p + λptp

}1/p
,

we have to show that

inf
λ>0

∞∑
i=0

E(λ, xi)p + λptp ≤ sup
ti

∞∑
i=0

K(ti, xi)p .

But
∑∞

i=0E(λ, xi)p + λptp is convex as a function of λ and converges to infin-
ity at infinity. Since the E functional may be infinite on an initial segment∑∞

i=0E(λ, xi)p + λptp is infinite on (0, c) and finite on (c,∞). By (8) this c is
finite since x ∈ lp(A) + l∞(B). Hence, the infimum is attained in an interior point
of (c,∞) (case I) or it is the limit as λ↘ c (case II).
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Case I: Let λ0 be the point where the infimum is attained. We have

1
pλp−1

0

( ∞∑
i=0

E (λ0, xi)p
)′
l

≤ −tp ≤ 1
pλp−1

0

( ∞∑
i=0

E(λ0, xi)p
)′
r

, (9)

where f ′l (f ′r) is the left (right) derivative of f . Choose α such that

α

pλp−1
0

( ∞∑
i=0

E(λ0, xi)p
)′
l

+
1 − α

pλp−1
0

( ∞∑
i=0

E(λ0, xi)p
)′
r

= −tp .

Define ti via

−tpi =
α

pλp−1
0

(
E(λ0, xi)p

)′

l
+

1 − α

pλp−1
0

(
E(λ0, xi)p

)′

r
.

By the fact that the difference quotient of a convex function increases it follows, by
uniform convergence, that we may differentiate termwise in (9). This implies that∑
tpi = tp and that the infimum of E(λ, xi)p + λptpi is attained at λ = λ0. Hence

inf
λ>0

∞∑
i=0

E(λ, xi)p + λptp

=
∞∑
i=0

E(λ0, xi)p + λp0t
p =

∞∑
i=0

(
E(λ0, xi)p + λp0t

p
i

)

=
∞∑
i=0

inf
µi

(
E(µi, xi)p + µpi t

p
i

)
≤

∞∑
i=0

(
inf
µi

E(µi, xi) + µiti

)p

=
∞∑
i=0

K(ti+, xi)p ≤ sup
ti

∞∑
i=0

K(ti, xi)p ,

note that we need have ti+ since ti may be zero.
Case II: Now we thus assume that

∑∞
i=0E(λ, xi)p + λptp increases on (c,∞).

Let J be the set if i for which c is in the interior of the set where E(·, xi) is finite.
Choose ti as

−tpi =
1

pcp−1

(
E(c, xi)p

)′

r
, if i ∈ J

and

tpi = ξi

(
tp −

∑
i∈J

tpi

)
, if i /∈ J ,
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where

ξi =

(
E(c+, xi)p

)′

r∑
i/∈J

(
E(c+, xi)p

)′

r

,

if not all (E(c+, xi)p)′r = 0 otherwise we choose ξi > 0 and such that
∑

i/∈J ξi = 1.
Obviously,

∑
tpi = tp and a simple calculation shows that E(λ, xi)p + λptpi

decreases to its infimum as λ↘ c, and

inf
λ>0

∞∑
i=0

E(λ, xi)p + λptp ≤ sup
ti

∞∑
i=0

K(ti, xi)p ,

follows as in case I.
Conversely, choose ε > 0 arbitrary. We can find t′i > 0 such that

∑
(t′i)

p ≤ tp

and

sup

( ∞∑
i=0

K(ti, xi)p
)1/p

≤ ε+

( ∞∑
i=0

K(t′i, xi)
p

)1/p
.

For an arbitrary λ′ we have, in view of formula (1), that

sup

( ∞∑
i=0

K(ti, xi)p
)1/p

≤ ε+

( ∞∑
i=0

(
E(λ′, xi) + λ′t′i

)p
)1/p

≤ ε+

( ∞∑
i=0

E(λ′, xi)p
)1/p

+ λ′t .

Since λ′ is arbitrary we can assume that it satisfies

( ∞∑
i=0

E(λ′, xi)p
)1/p

+ λ′t ≤ ε+ inf
λ>0




( ∞∑
i=0

E(λ, xi)p
)1/p

+ λt


 .

Thus we have proved

sup

( ∞∑
i=0

K(ti, xi)p
)1/p

≤ 2ε+ inf
λ>0




( ∞∑
i=0

E(λ, xi)p
)1/p

+ λt


 ,

and the proof is complete. �
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Before we state the next theorem we need same notations. Let Lp,q, where
p = (p0, p1, . . .) and 0 < pn < ∞, denote the sequence (Lp0,q, Lp1,q, . . .). The
spaces Lpn,q are the Lorentz spaces (one star definition). By l∞(L∞) we mean
l∞(L∞, L∞, . . .). For f = (fn) ∈ lq(Lp,q) + l∞(L∞) we define

T (λ) :=

(∑∞
n=0 ‖(|fn| − λ)+‖q−1

pn(q−1)/q,q−1

)1/(q−1)

(∑∞
n=0 ‖(|fn| − λ)+‖qpn,q

)1/q
,

for λ < λ < ‖f‖l∞(L∞) where

λ := inf

{
λ ≥ 0 :

∞∑
n=0

‖(|fn| − λ)+‖qpn,q
<∞

}
.

Theorem 4

Assume that 1 < q <∞ and f = (fn) ∈ lq(Lp,q) + l∞(L∞). If λ < ‖f‖l∞(L∞),

then

K
(
t, f, lq(Lp,q), l∞(L∞)

)

=




( ∞∑
n=0

‖(|fn| − λ)+‖qpn,q

)1/q
+ λt, t1/(q−1) > T (λ) for all λ < λ < ‖f‖l∞(L∞) ,

( ∞∑
n=0

‖(|fn| − λ)+‖qpn,q

)1/q

+ λt, t1/(q−1) = T (λ),

t ‖f‖l∞(L∞) , t1/(q−1) < T (λ) for all λ < λ < ‖f‖l∞(L∞) .

In the remaining case, i.e. when λ = ‖f‖l∞(L∞), we have that the K functional

equals t ‖f‖l∞(L∞).

Proof. To prove this we use Corollary 2 together with the well-known formula

E(t, fn, Lpn,q, L∞) = ‖ (|fn| − t)+‖pn,q
,

see e.g. [1] and [3]. The rest of the proof follows the proof in the scalar valued case,
see [2]. �
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We end this paper by stating an exact version of the following well-known
equivalence formula

‖K(t, xi, A,B)‖∞ ≤ K
(
t, x, l∞(A), l∞(B)

)
≤ 2 ‖K(t, xi, A,B)‖∞ .

Proposition 5

Let (A,B) be a compatible sequence pair of normed spaces. Then

K
(
t, x, l∞(A), l∞(B)

)
= ‖K(t, xi, Ai, Bi)‖∧∞ .

Proof. To prove this we use the connection between the K and E functionals. Since
there are at most a countable set of points where the formula E = K◦ doesn’t hold
it can be used when we are taking infimum over all λ > 0. It yields that

K
(
t, x, l∞(A), l∞(B)

)
= inf

λ>0
{sup

i
E(λ, xi, Ai, Bi) + λt}

= inf
λ>0

sup
i

sup
s>0

{K(s, xi, Ai, Bi) − sλ+ λt}

= inf
λ>0

sup
s>0

sup
i

{K(s, xi, Ai, Bi) − sλ+ λt}

= ‖K(t, xi, Ai, Bi)‖∧∞ ,

and the proof is complete. �
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