Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 479-486
(c) 1997 Universitat de Barcelona

The E and K functionals for the pair $\left(X(A), l_{\infty}(B)\right)$

Stefan Ericsson
Department of Mathematics, Luleå University, S-971 87 Luleå, Sweden
E-Mail: sen@sm.luth.se

Abstract

We prove some exact formulas for the E and K functionals for pairs of the type $\left(X(A), l_{\infty}(B)\right)$ where X has the lattice property. These formulas are extensions of their well-known counterparts in the scalar valued case. In particular we generalize formulas by Pisier [4] and by the present author [2].

1. Introduction

If A and B are two quasi-normed spaces both linearly and continuously embedded in a Hausdorff topological vector space \mathcal{X}, then (A, B) is said to be a compatible pair. For $x \in A+B, t>0$ the K and E functionals are defined as

$$
\begin{gathered}
K(t, f, A, B):=\inf \left\{\|g\|_{A}+t\|h\|_{B}: g \in A, h \in B \text { and } f=g+h\right\}, \\
E(t, f, A, B):=\inf \left\{\|f-g\|_{A}: f-g \in A, g \in B \text { and }\|g\|_{B} \leq t\right\}
\end{gathered}
$$

respectively. By the definitions of the K and E functionals we obviously have

$$
\begin{equation*}
K(t, f, A, B)=\inf _{s>0}\{E(s, f, A, B)+s t\} . \tag{1}
\end{equation*}
$$

For the purpose of describing the connection between the K and E functionals we define the following transformations: For $f:(0, \infty) \rightarrow[0, \infty]$ and $t>0$ let

$$
\begin{equation*}
f^{\bullet}(t):=\inf _{s>0}\{f(s)+s t\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\circ}(t):=\sup _{s>0}\{f(s)-s t\} \tag{3}
\end{equation*}
$$

These transformations are closely related to the Legendre transform. One can easily prove that $f^{\bullet \circ}$ is the greatest decreasing lower semicontinuous convex minorant of f, denoted by f^{\vee}, and that $f^{\circ \bullet}$ is the least concave majorant of f, denoted by f^{\wedge}. Formula (1) can now be written as $K=E^{\bullet}$. If we take the transform (3) of this formula we arrive at $E^{\vee}=K^{\circ}$. Since, in the normed space case, the E functional is convex we have $E=E^{\vee}$ with the possible exception at the point where the E functional jumps to infinity (since lower semicontinuity may be violated there). Hence, in the normed space case, $E(t, x, A, B)=K(t, x, A, B)^{\circ}$ with the possible exception where the E functional jumps to infinity.

In this paper we consider vector valued sequence spaces. The space $X(A)$, $A=\prod_{i=0}^{\infty} A_{i}$, is defined by

$$
X(A):=\left\{\left(a_{0}, a_{1}, \ldots\right) \in \prod_{i=0}^{\infty} A_{i}:\left(\left\|a_{0}\right\|_{A_{0}},\left\|a_{1}\right\|_{A_{1}}, \ldots\right) \in X\right\}
$$

where A_{i} are quasi-normed spaces and X is a normed real valued sequence space. The function

$$
\left(a_{0}, a_{1}, \ldots\right):=a \mapsto\|a\|_{X(A)}:=\| \| a_{i}\left\|_{A_{i}}\right\|_{X}
$$

is used as quasi-norm on this space. If $a \in X$ and, for $i \in \mathbb{N}, 0 \leq\left|b_{i}\right| \leq\left|a_{i}\right|$ implies $b \in X$ and $\|b\|_{X} \leq\|a\|_{X}$ then X is said to have the lattice property. For $a \notin X$ we define norm of a as infinity. By saying that $(A, B), A=\prod_{i=0}^{\infty} A_{i}$ and $\prod_{i=0}^{\infty} B_{i}$, is a compatible sequence pair we mean that $\left(A_{i}, B_{i}\right)$ are compatible pairs of quasi-normed spaces for $i=0,1, \ldots$.

For a normed real valued sequence space X we define, for a weight $\omega=$ $\left(\omega_{0}, \omega_{1}, \ldots\right)$ (a strictly positive sequence), the weighted space X^{ω} as the set of all $x=\left(x_{0}, x_{1}, \ldots\right)$ for which $x \omega=\left(x_{0} \omega_{0}, x_{1} \omega_{1}, \ldots\right) \in X$ with the norm $\|x\|_{X^{\omega}}:=$ $\|x \omega\|_{X}$. Finally we define $\omega^{-1}:=\left(\omega_{0}^{-1}, \omega_{1}^{-1}, \ldots\right)$ when $\omega=\left(\omega_{0}, \omega_{1}, \ldots\right)$.

2. Formulas for the K and E functionals

If X has the lattice property then the E functional for the pair $\left(X, l_{\infty}\right)$ can easily be seen to be

$$
\begin{equation*}
E\left(t, f, X, l_{\infty}\right)=\left\|(|f|-t)_{+}\right\|_{X} \tag{4}
\end{equation*}
$$

see e.g. [1] and [3]. We note that this formula can be rewritten as

$$
E\left(t, f, X, l_{\infty}\right)=\|E(t, f(\cdot), \mathbb{C}, \mathbb{C})\|_{X}
$$

Therefore, our next theorem may be regarded as a generalization of (4) to the case of vector valued sequence spaces.

Theorem 1

Let X be a normed sequence space with the lattice property and let (A, B) be a compatible sequence pair. If X contains a strictly positive sequence, then

$$
\begin{equation*}
E\left(t, x, X(A), l_{\infty}(B)\right)=\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X} \tag{5}
\end{equation*}
$$

Proof. We begin to prove $E\left(t, x, X(A), l_{\infty}(B)\right) \geq\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X}$. We may assume that $E\left(t, x, X(A), l_{\infty}(B)\right)<\infty$ since it holds trivially otherwise. Choose $y \in l_{\infty}(B)$ with $\|y\|_{l_{\infty}(B)} \leq t$ such that $x-y \in X(A)$ arbitrarily. This implies that

$$
\left\|x_{i}-y_{i}\right\|_{A_{i}} \geq E\left(t, x_{i}, A_{i}, B_{i}\right)
$$

and, by the lattice property, it yields that

$$
E\left(t, x, X(A), l_{\infty}(B)\right) \geq\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X}
$$

follows. In order to prove $E\left(t, x, X(A), l_{\infty}(B)\right) \leq\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X}$ we may assume that $\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X}<\infty$. In particular this means that $E\left(t, x_{i}, A_{i}, B_{i}\right)<\infty$ for all i since X is a real valued sequence space. Let ρ be a strictly positive sequence with norm less or equal to one. For every $\varepsilon>0$ we may choose y with $\|y\|_{l_{\infty}(B)} \leq t$ such that

$$
E\left(t, x_{i}, A_{i}, B_{i}\right) \geq\left\|x_{i}-y_{i}\right\|_{A_{i}}-\varepsilon \rho_{i}
$$

for all $i \in \mathbb{N}$. By using the lattice property we obtain that

$$
\left\|E\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{X} \geq\|x-y\|_{X(A)}-\varepsilon \geq E\left(t, x, X(A), l_{\infty}(B)\right)-\varepsilon
$$

and the theorem follows.
By using formula (1) and the previous theorem we immediately get:

Corollary 2

With the same assumptions as in the previous theorem the following formula for the K functional holds:

$$
\begin{equation*}
K\left(t, x, X(A), l_{\infty}(B)\right)=\inf _{\lambda>0}\left\{\left\|E\left(\lambda, x_{i}, A_{i}, B_{i}\right)\right\|_{X}+\lambda t\right\} \tag{6}
\end{equation*}
$$

Remark 1. The formulas (5) and (6) can be generalized to the weighted case. We have

$$
E\left(t, x, X(A), l_{\infty}^{\omega}(B)\right)=\left\|E\left(t, \omega_{i} x_{i}, A_{i}, B_{i}\right)\right\|_{X^{\omega}-1}
$$

and

$$
K\left(t, x, X(A), l_{\infty}^{\omega}(B)\right)=\inf _{\lambda>0}\left\{\left\|E\left(\lambda, \omega_{i} x_{i}, A_{i}, B_{i}\right)\right\|_{X^{\omega-1}}+\lambda t\right\}
$$

where ω is an arbitrary weight.
Next we state the following description of $K\left(t, x, l_{p}(A), l_{\infty}(B)\right)$:

Theorem 3

Let (A, B) be a compatible sequence pair and $1 \leq p<\infty$. Then the K functional $K\left(t, x, l_{p}(A), l_{\infty}(B)\right)$, for an $x \in l_{p}(A)+l_{\infty}(B)$, is equivalent to

$$
\begin{equation*}
\sup \left\{\left(\sum_{i=0}^{\infty} K\left(t_{i}, x_{i}, A_{i}, B_{i}\right)^{p}\right)^{1 / p}: t_{i}>0, \sum t_{i}^{p} \leq t^{p}\right\} \tag{7}
\end{equation*}
$$

with the equivalence constants being $2^{1-p / p}$ and 1 , with expression (7) as the smaller one.

Remark 2. For the case $p=1$ this result can be found in [4] as Corollary 3. Our proof below is completely different.

Proof. First we note that, according to Corollary 2, it yields that

$$
\begin{equation*}
K\left(t, x, l_{p}(A), l_{\infty}(B)\right)=\inf _{\lambda>0}\left\{\left(\sum_{i=0}^{\infty} E\left(\lambda, x_{i}, A_{i}, B_{i}\right)^{p}\right)^{1 / p}+\lambda t\right\} \tag{8}
\end{equation*}
$$

We begin to prove that expression (7) is greater than or equal to a constant times the right hand side of (8). Since

$$
2^{(1-p) / p} \inf _{\lambda>0}\left\{\left(\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}\right)^{1 / p}+\lambda t\right\} \leq\left\{\inf _{\lambda>0} \sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p}\right\}^{1 / p}
$$

we have to show that

$$
\inf _{\lambda>0} \sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p} \leq \sup _{t_{i}} \sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}
$$

But $\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p}$ is convex as a function of λ and converges to infinity at infinity. Since the E functional may be infinite on an initial segment $\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p}$ is infinite on $(0, c)$ and finite on (c, ∞). By (8) this c is finite since $x \in l_{p}(A)+l_{\infty}(B)$. Hence, the infimum is attained in an interior point of (c, ∞) (case I) or it is the limit as $\lambda \searrow c$ (case II).

Case I: Let λ_{0} be the point where the infimum is attained. We have

$$
\begin{equation*}
\frac{1}{p \lambda_{0}^{p-1}}\left(\sum_{i=0}^{\infty} E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{l}^{\prime} \leq-t^{p} \leq \frac{1}{p \lambda_{0}^{p-1}}\left(\sum_{i=0}^{\infty} E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{r}^{\prime} \tag{9}
\end{equation*}
$$

where $f_{l}^{\prime}\left(f_{r}^{\prime}\right)$ is the left (right) derivative of f. Choose α such that

$$
\frac{\alpha}{p \lambda_{0}^{p-1}}\left(\sum_{i=0}^{\infty} E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{l}^{\prime}+\frac{1-\alpha}{p \lambda_{0}^{p-1}}\left(\sum_{i=0}^{\infty} E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{r}^{\prime}=-t^{p}
$$

Define t_{i} via

$$
-t_{i}^{p}=\frac{\alpha}{p \lambda_{0}^{p-1}}\left(E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{l}^{\prime}+\frac{1-\alpha}{p \lambda_{0}^{p-1}}\left(E\left(\lambda_{0}, x_{i}\right)^{p}\right)_{r}^{\prime}
$$

By the fact that the difference quotient of a convex function increases it follows, by uniform convergence, that we may differentiate termwise in (9). This implies that $\sum t_{i}^{p}=t^{p}$ and that the infimum of $E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t_{i}^{p}$ is attained at $\lambda=\lambda_{0}$. Hence

$$
\begin{aligned}
\inf _{\lambda>0} & \sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p} \\
& =\sum_{i=0}^{\infty} E\left(\lambda_{0}, x_{i}\right)^{p}+\lambda_{0}^{p} t^{p}=\sum_{i=0}^{\infty}\left(E\left(\lambda_{0}, x_{i}\right)^{p}+\lambda_{0}^{p} t_{i}^{p}\right) \\
& =\sum_{i=0}^{\infty} \inf _{\mu_{i}}\left(E\left(\mu_{i}, x_{i}\right)^{p}+\mu_{i}^{p} t_{i}^{p}\right) \leq \sum_{i=0}^{\infty}\left(\inf _{\mu_{i}} E\left(\mu_{i}, x_{i}\right)+\mu_{i} t_{i}\right)^{p} \\
& =\sum_{i=0}^{\infty} K\left(t_{i}+, x_{i}\right)^{p} \leq \sup _{t_{i}} \sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}
\end{aligned}
$$

note that we need have $t_{i}+$ since t_{i} may be zero.
Case II: Now we thus assume that $\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p}$ increases on (c, ∞). Let J be the set if i for which c is in the interior of the set where $E\left(\cdot, x_{i}\right)$ is finite. Choose t_{i} as

$$
-t_{i}^{p}=\frac{1}{p c^{p-1}}\left(E\left(c, x_{i}\right)^{p}\right)_{r}^{\prime}, \quad \text { if } \quad i \in J
$$

and

$$
t_{i}^{p}=\xi_{i}\left(t^{p}-\sum_{i \in J} t_{i}^{p}\right), \quad \text { if } \quad i \notin J
$$

where

$$
\xi_{i}=\frac{\left(E\left(c+, x_{i}\right)^{p}\right)_{r}^{\prime}}{\sum_{i \notin J}\left(E\left(c+, x_{i}\right)^{p}\right)_{r}^{\prime}}
$$

if not all $\left(E\left(c+, x_{i}\right)^{p}\right)_{r}^{\prime}=0$ otherwise we choose $\xi_{i}>0$ and such that $\sum_{i \notin J} \xi_{i}=1$.
Obviously, $\sum t_{i}^{p}=t^{p}$ and a simple calculation shows that $E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t_{i}^{p}$ decreases to its infimum as $\lambda \searrow c$, and

$$
\inf _{\lambda>0} \sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}+\lambda^{p} t^{p} \leq \sup _{t_{i}} \sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}
$$

follows as in case I.
Conversely, choose $\varepsilon>0$ arbitrary. We can find $t_{i}^{\prime}>0$ such that $\sum\left(t_{i}^{\prime}\right)^{p} \leq t^{p}$ and

$$
\sup \left(\sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}\right)^{1 / p} \leq \varepsilon+\left(\sum_{i=0}^{\infty} K\left(t_{i}^{\prime}, x_{i}\right)^{p}\right)^{1 / p}
$$

For an arbitrary λ^{\prime} we have, in view of formula (1), that

$$
\begin{aligned}
\sup \left(\sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}\right)^{1 / p} & \leq \varepsilon+\left(\sum_{i=0}^{\infty}\left(E\left(\lambda^{\prime}, x_{i}\right)+\lambda^{\prime} t_{i}^{\prime}\right)^{p}\right)^{1 / p} \\
& \leq \varepsilon+\left(\sum_{i=0}^{\infty} E\left(\lambda^{\prime}, x_{i}\right)^{p}\right)^{1 / p}+\lambda^{\prime} t
\end{aligned}
$$

Since λ^{\prime} is arbitrary we can assume that it satisfies

$$
\left(\sum_{i=0}^{\infty} E\left(\lambda^{\prime}, x_{i}\right)^{p}\right)^{1 / p}+\lambda^{\prime} t \leq \varepsilon+\inf _{\lambda>0}\left\{\left(\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}\right)^{1 / p}+\lambda t\right\}
$$

Thus we have proved

$$
\sup \left(\sum_{i=0}^{\infty} K\left(t_{i}, x_{i}\right)^{p}\right)^{1 / p} \leq 2 \varepsilon+\inf _{\lambda>0}\left\{\left(\sum_{i=0}^{\infty} E\left(\lambda, x_{i}\right)^{p}\right)^{1 / p}+\lambda t\right\}
$$

and the proof is complete.

Before we state the next theorem we need same notations. Let $L_{p, q}$, where $p=\left(p_{0}, p_{1}, \ldots\right)$ and $0<p_{n}<\infty$, denote the sequence $\left(L_{p_{0}, q}, L_{p_{1}, q}, \ldots\right)$. The spaces $L_{p_{n}, q}$ are the Lorentz spaces (one star definition). By $l_{\infty}\left(L_{\infty}\right)$ we mean $l_{\infty}\left(L_{\infty}, L_{\infty}, \ldots\right)$. For $f=\left(f_{n}\right) \in l_{q}\left(L_{p, q}\right)+l_{\infty}\left(L_{\infty}\right)$ we define

$$
T(\lambda):=\frac{\left(\sum_{n=0}^{\infty}\left\|\left(\left|f_{n}\right|-\lambda\right)_{+}\right\|_{p_{n}(q-1) / q, q-1}^{q-1}\right)^{1 /(q-1)}}{\left(\sum_{n=0}^{\infty}\left\|\left(\left|f_{n}\right|-\lambda\right)_{+}\right\|_{p_{n}, q}^{q}\right)^{1 / q}},
$$

for $\underline{\lambda}<\lambda<\|f\|_{l_{\infty}\left(L_{\infty}\right)}$ where

$$
\underline{\lambda}:=\inf \left\{\lambda \geq 0: \sum_{n=0}^{\infty}\left\|\left(\left|f_{n}\right|-\lambda\right)_{+}\right\|_{p_{n}, q}^{q}<\infty\right\}
$$

Theorem 4

Assume that $1<q<\infty$ and $f=\left(f_{n}\right) \in l_{q}\left(L_{p, q}\right)+l_{\infty}\left(L_{\infty}\right)$. If $\underline{\lambda}<\|f\|_{l_{\infty}\left(L_{\infty}\right)}$, then

$$
\begin{gathered}
K\left(t, f, l_{q}\left(L_{p, q}\right), l_{\infty}\left(L_{\infty}\right)\right) \\
= \begin{cases}\left(\sum_{n=0}^{\infty}\left\|\left(\left|f_{n}\right|-\underline{\lambda}\right)_{+}\right\|_{p_{n}, q}^{q}\right)^{1 / q}+\underline{\lambda} t, & t^{1 /(q-1)}>T(\lambda) \text { for all } \underline{\lambda}<\lambda<\|f\|_{l_{\infty}\left(L_{\infty}\right)} \\
\left(\sum_{n=0}^{\infty}\left\|\left(\left|f_{n}\right|-\lambda\right)_{+}\right\|_{p_{n}, q}^{q}\right)^{1 / q}+\lambda t, & t^{1 /(q-1)}=T(\lambda) \\
t\|f\|_{l_{\infty}\left(L_{\infty}\right)}, & t^{1 /(q-1)}<T(\lambda) \text { for all } \underline{\lambda}<\lambda<\|f\|_{l_{\infty}\left(L_{\infty}\right)}\end{cases}
\end{gathered}
$$

In the remaining case, i.e. when $\underline{\lambda}=\|f\|_{l_{\infty}\left(L_{\infty}\right)}$, we have that the K functional equals $t\|f\|_{l_{\infty}\left(L_{\infty}\right)}$.

Proof. To prove this we use Corollary 2 together with the well-known formula

$$
E\left(t, f_{n}, L_{p_{n}, q}, L_{\infty}\right)=\left\|\left(\left|f_{n}\right|-t\right)_{+}\right\|_{p_{n}, q}
$$

see e.g. [1] and [3]. The rest of the proof follows the proof in the scalar valued case, see [2].

We end this paper by stating an exact version of the following well-known equivalence formula

$$
\left\|K\left(t, x_{i}, A, B\right)\right\|_{\infty} \leq K\left(t, x, l_{\infty}(A), l_{\infty}(B)\right) \leq 2\left\|K\left(t, x_{i}, A, B\right)\right\|_{\infty}
$$

Proposition 5

Let (A, B) be a compatible sequence pair of normed spaces. Then

$$
K\left(t, x, l_{\infty}(A), l_{\infty}(B)\right)=\left\|K\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{\infty}^{\wedge}
$$

Proof. To prove this we use the connection between the K and E functionals. Since there are at most a countable set of points where the formula $E=K^{\circ}$ doesn't hold it can be used when we are taking infimum over all $\lambda>0$. It yields that

$$
\begin{aligned}
K\left(t, x, l_{\infty}(A), l_{\infty}(B)\right) & =\inf _{\lambda>0}\left\{\sup _{i} E\left(\lambda, x_{i}, A_{i}, B_{i}\right)+\lambda t\right\} \\
& =\inf _{\lambda>0} \sup _{i} \sup _{s>0}\left\{K\left(s, x_{i}, A_{i}, B_{i}\right)-s \lambda+\lambda t\right\} \\
& =\inf _{\lambda>0} \sup _{s>0} \sup _{i}\left\{K\left(s, x_{i}, A_{i}, B_{i}\right)-s \lambda+\lambda t\right\} \\
& =\left\|K\left(t, x_{i}, A_{i}, B_{i}\right)\right\|_{\infty}^{\wedge}
\end{aligned}
$$

and the proof is complete.

Acknowledgment: The author thanks Professors Lech Maligranda and Lars-Erik Persson for their generous advice and encouragement, which have improved the final version of this paper.

References

1. Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, NorthHolland, Amsterdam, 1991.
2. S. Ericsson, Exact descriptions of some K and E functionals, J. Approx. Theory (to appear).
3. L. Maligranda and L. E. Persson, The E-functional for some pairs of groups, Results Mat. 20 (1991), 538-553.
4. G. Pisier, The K_{t}-functional for the interpolation couple $L_{1}\left(A_{0}\right), L_{\infty}\left(A_{1}\right)$, J. Approx. Theory 73 (1993), 106-117.
