Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 4-6 (1997), 479–486 © 1997 Universitat de Barcelona

The *E* and *K* functionals for the pair $(X(A), l_{\infty}(B))$

STEFAN ERICSSON

Department of Mathematics, Luleå University, S-971 87 Luleå, Sweden E-Mail: sen@sm.luth.se

Abstract

We prove some exact formulas for the *E* and *K* functionals for pairs of the type $(X(A), l_{\infty}(B))$ where *X* has the lattice property. These formulas are extensions of their well-known counterparts in the scalar valued case. In particular we generalize formulas by Pisier [4] and by the present author [2].

1. Introduction

If A and B are two quasi-normed spaces both linearly and continuously embedded in a Hausdorff topological vector space \mathcal{X} , then (A, B) is said to be a compatible pair. For $x \in A + B$, t > 0 the K and E functionals are defined as

$$K(t, f, A, B) := \inf\{ \|g\|_A + t \|h\|_B : g \in A, h \in B \text{ and } f = g + h \},\$$

$$E(t, f, A, B) := \inf\{\|f - g\|_A : \ f - g \in A, \ g \in B \text{ and } \|g\|_B \le t\}$$

respectively. By the definitions of the K and E functionals we obviously have

$$K(t, f, A, B) = \inf_{s>0} \{ E(s, f, A, B) + st \} .$$
(1)

For the purpose of describing the connection between the K and E functionals we define the following transformations: For $f: (0, \infty) \to [0, \infty]$ and t > 0 let

$$f^{\bullet}(t) := \inf_{s>0} \{ f(s) + st \}$$
(2)

ERICSSON

and

$$f^{\circ}(t) := \sup_{s>0} \{f(s) - st\}.$$
 (3)

These transformations are closely related to the Legendre transform. One can easily prove that $f^{\bullet\circ}$ is the greatest decreasing lower semicontinuous convex minorant of f, denoted by f^{\vee} , and that $f^{\circ\bullet}$ is the least concave majorant of f, denoted by f^{\wedge} . Formula (1) can now be written as $K = E^{\bullet}$. If we take the transform (3) of this formula we arrive at $E^{\vee} = K^{\circ}$. Since, in the normed space case, the E functional is convex we have $E = E^{\vee}$ with the possible exception at the point where the E functional jumps to infinity (since lower semicontinuity may be violated there). Hence, in the normed space case, $E(t, x, A, B) = K(t, x, A, B)^{\circ}$ with the possible exception where the E functional jumps to infinity.

In this paper we consider vector valued sequence spaces. The space X(A), $A = \prod_{i=0}^{\infty} A_i$, is defined by

$$X(A) := \left\{ (a_0, a_1, \ldots) \in \prod_{i=0}^{\infty} A_i : (\|a_0\|_{A_0}, \|a_1\|_{A_1}, \ldots) \in X \right\}$$

where A_i are quasi-normed spaces and X is a normed real valued sequence space. The function

$$(a_0, a_1, \ldots) := a \mapsto ||a||_{X(A)} := |||a_i||_{A_i}||_X$$

is used as quasi-norm on this space. If $a \in X$ and, for $i \in \mathbb{N}$, $0 \leq |b_i| \leq |a_i|$ implies $b \in X$ and $||b||_X \leq ||a||_X$ then X is said to have the *lattice* property. For $a \notin X$ we define norm of a as infinity. By saying that (A, B), $A = \prod_{i=0}^{\infty} A_i$ and $\prod_{i=0}^{\infty} B_i$, is a compatible sequence pair we mean that (A_i, B_i) are compatible pairs of quasi-normed spaces for $i = 0, 1, \ldots$

For a normed real valued sequence space X we define, for a weight $\omega = (\omega_0, \omega_1, \ldots)$ (a strictly positive sequence), the weighted space X^{ω} as the set of all $x = (x_0, x_1, \ldots)$ for which $x\omega = (x_0\omega_0, x_1\omega_1, \ldots) \in X$ with the norm $||x||_{X^{\omega}} := ||x\omega||_X$. Finally we define $\omega^{-1} := (\omega_0^{-1}, \omega_1^{-1}, \ldots)$ when $\omega = (\omega_0, \omega_1, \ldots)$.

2. Formulas for the K and E functionals

If X has the lattice property then the E functional for the pair (X, l_{∞}) can easily be seen to be

$$E(t, f, X, l_{\infty}) = \|(|f| - t)_{+}\|_{X} , \qquad (4)$$

see e.g. [1] and [3]. We note that this formula can be rewritten as

$$E(t, f, X, l_{\infty}) = \left\| E(t, f(\cdot), \mathbb{C}, \mathbb{C}) \right\|_{X}.$$

Therefore, our next theorem may be regarded as a generalization of (4) to the case of vector valued sequence spaces.

Theorem 1

Let X be a normed sequence space with the lattice property and let (A, B) be a compatible sequence pair. If X contains a strictly positive sequence, then

$$E(t, x, X(A), l_{\infty}(B)) = \|E(t, x_i, A_i, B_i)\|_X .$$
(5)

Proof. We begin to prove $E(t, x, X(A), l_{\infty}(B)) \geq ||E(t, x_i, A_i, B_i)||_X$. We may assume that $E(t, x, X(A), l_{\infty}(B)) < \infty$ since it holds trivially otherwise. Choose $y \in l_{\infty}(B)$ with $||y||_{l_{\infty}(B)} \leq t$ such that $x - y \in X(A)$ arbitrarily. This implies that

$$||x_i - y_i||_{A_i} \ge E(t, x_i, A_i, B_i)$$

and, by the lattice property, it yields that

$$E\left(t, x, X(A), l_{\infty}(B)\right) \ge \left\|E(t, x_i, A_i, B_i)\right\|_X$$

follows. In order to prove $E(t, x, X(A), l_{\infty}(B)) \leq ||E(t, x_i, A_i, B_i)||_X$ we may assume that $||E(t, x_i, A_i, B_i)||_X < \infty$. In particular this means that $E(t, x_i, A_i, B_i) < \infty$ for all *i* since X is a real valued sequence space. Let ρ be a strictly positive sequence with norm less or equal to one. For every $\varepsilon > 0$ we may choose y with $||y||_{l_{\infty}(B)} \leq t$ such that

$$E(t, x_i, A_i, B_i) \ge \|x_i - y_i\|_{A_i} - \varepsilon \rho_i$$

for all $i \in \mathbb{N}$. By using the lattice property we obtain that

$$\|E(t,x_i,A_i,B_i)\|_X \ge \|x-y\|_{X(A)} - \varepsilon \ge E\left(t,x,X(A),l_{\infty}(B)\right) - \varepsilon,$$

and the theorem follows. \Box

By using formula (1) and the previous theorem we immediately get:

Corollary 2

With the same assumptions as in the previous theorem the following formula for the K functional holds:

$$K\left(t, x, X(A), l_{\infty}(B)\right) = \inf_{\lambda > 0} \left\{ \left\| E(\lambda, x_i, A_i, B_i) \right\|_X + \lambda t \right\} .$$
(6)

Remark 1. The formulas (5) and (6) can be generalized to the weighted case. We have

$$E\left(t, x, X(A), l_{\infty}^{\omega}(B)\right) = \left\|E(t, \omega_{i} x_{i}, A_{i}, B_{i})\right\|_{X^{\omega^{-1}}}$$

and

$$K\left(t, x, X(A), l_{\infty}^{\omega}(B)\right) = \inf_{\lambda > 0} \left\{ \|E(\lambda, \omega_i x_i, A_i, B_i)\|_{X^{\omega^{-1}}} + \lambda t \right\} ,$$

where ω is an arbitrary weight.

Next we state the following description of $K(t, x, l_p(A), l_{\infty}(B))$:

ERICSSON

Theorem 3

Let (A, B) be a compatible sequence pair and $1 \le p < \infty$. Then the K functional $K(t, x, l_p(A), l_{\infty}(B))$, for an $x \in l_p(A) + l_{\infty}(B)$, is equivalent to

$$\sup\left\{ \left(\sum_{i=0}^{\infty} K(t_i, x_i, A_i, B_i)^p \right)^{1/p} : t_i > 0, \ \sum t_i^p \le t^p \right\},\tag{7}$$

with the equivalence constants being $2^{1-p/p}$ and 1, with expression (7) as the smaller one.

Remark 2. For the case p = 1 this result can be found in [4] as Corollary 3. Our proof below is completely different.

Proof. First we note that, according to Corollary 2, it yields that

$$K\left(t, x, l_p(A), l_\infty(B)\right) = \inf_{\lambda>0} \left\{ \left(\sum_{i=0}^\infty E(\lambda, x_i, A_i, B_i)^p\right)^{1/p} + \lambda t \right\}.$$
 (8)

We begin to prove that expression (7) is greater than or equal to a constant times the right hand side of (8). Since

$$2^{(1-p)/p} \inf_{\lambda>0} \left\{ \left(\sum_{i=0}^{\infty} E(\lambda, x_i)^p \right)^{1/p} + \lambda t \right\} \le \left\{ \inf_{\lambda>0} \sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p \right\}^{1/p},$$

we have to show that

$$\inf_{\lambda>0} \sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p \le \sup_{t_i} \sum_{i=0}^{\infty} K(t_i, x_i)^p.$$

But $\sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p$ is convex as a function of λ and converges to infinity at infinity. Since the E functional may be infinite on an initial segment $\sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p$ is infinite on (0, c) and finite on (c, ∞) . By (8) this c is finite since $x \in l_p(A) + l_{\infty}(B)$. Hence, the infimum is attained in an interior point of (c, ∞) (case I) or it is the limit as $\lambda \searrow c$ (case II).

The E and K functionals for the pair $(X(A), l_{\infty}(B))$ 483

Case I: Let λ_0 be the point where the infimum is attained. We have

$$\frac{1}{p\lambda_0^{p-1}} \left(\sum_{i=0}^{\infty} E(\lambda_0, x_i)^p \right)_l' \le -t^p \le \frac{1}{p\lambda_0^{p-1}} \left(\sum_{i=0}^{\infty} E(\lambda_0, x_i)^p \right)_r', \tag{9}$$

where $f'_l(f'_r)$ is the left (right) derivative of f. Choose α such that

$$\frac{\alpha}{p\lambda_0^{p-1}} \left(\sum_{i=0}^\infty E(\lambda_0, x_i)^p\right)_l' + \frac{1-\alpha}{p\lambda_0^{p-1}} \left(\sum_{i=0}^\infty E(\lambda_0, x_i)^p\right)_r' = -t^p.$$

Define t_i via

$$-t_{i}^{p} = \frac{\alpha}{p\lambda_{0}^{p-1}} \left(E(\lambda_{0}, x_{i})^{p} \right)_{l}' + \frac{1-\alpha}{p\lambda_{0}^{p-1}} \left(E(\lambda_{0}, x_{i})^{p} \right)_{r}'.$$

By the fact that the difference quotient of a convex function increases it follows, by uniform convergence, that we may differentiate termwise in (9). This implies that $\sum t_i^p = t^p$ and that the infimum of $E(\lambda, x_i)^p + \lambda^p t_i^p$ is attained at $\lambda = \lambda_0$. Hence

$$\begin{split} \inf_{\lambda>0} \sum_{i=0}^{\infty} E(\lambda, x_i)^p &+ \lambda^p t^p \\ &= \sum_{i=0}^{\infty} E(\lambda_0, x_i)^p + \lambda_0^p t^p = \sum_{i=0}^{\infty} \left(E(\lambda_0, x_i)^p + \lambda_0^p t_i^p \right) \\ &= \sum_{i=0}^{\infty} \inf_{\mu_i} \left(E(\mu_i, x_i)^p + \mu_i^p t_i^p \right) \leq \sum_{i=0}^{\infty} \left(\inf_{\mu_i} E(\mu_i, x_i) + \mu_i t_i \right)^p \\ &= \sum_{i=0}^{\infty} K(t_i + x_i)^p \leq \sup_{t_i} \sum_{i=0}^{\infty} K(t_i, x_i)^p \,, \end{split}$$

note that we need have t_i + since t_i may be zero. **Case II:** Now we thus assume that $\sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p$ increases on (c, ∞) . Let J be the set if i for which c is in the interior of the set where $E(\cdot, x_i)$ is finite. Choose t_i as

$$-t_i^p = \frac{1}{pc^{p-1}} \left(E(c, x_i)^p \right)'_r, \quad \text{if } i \in J$$

and

$$t_i^p = \xi_i \left(t^p - \sum_{i \in J} t_i^p \right), \quad \text{if } i \notin J,$$

Ericsson

where

$$\xi_i = \frac{\left(E(c+,x_i)^p\right)'_r}{\sum_{i \notin J} \left(E(c+,x_i)^p\right)'_r},$$

if not all $(E(c+, x_i)^p)'_r = 0$ otherwise we choose $\xi_i > 0$ and such that $\sum_{i \notin J} \xi_i = 1$. Obviously, $\sum t_i^p = t^p$ and a simple calculation shows that $E(\lambda, x_i)^p + \lambda^p t_i^p$ decreases to its infimum as $\lambda \searrow c$, and

$$\inf_{\lambda>0} \sum_{i=0}^{\infty} E(\lambda, x_i)^p + \lambda^p t^p \le \sup_{t_i} \sum_{i=0}^{\infty} K(t_i, x_i)^p,$$

follows as in case I.

Conversely, choose $\varepsilon > 0$ arbitrary. We can find $t'_i > 0$ such that $\sum (t'_i)^p \le t^p$ and

$$\sup\left(\sum_{i=0}^{\infty} K(t_i, x_i)^p\right)^{1/p} \le \varepsilon + \left(\sum_{i=0}^{\infty} K(t'_i, x_i)^p\right)^{1/p}.$$

For an arbitrary λ' we have, in view of formula (1), that

$$\begin{split} \sup\left(\sum_{i=0}^{\infty} K(t_i, x_i)^p\right)^{1/p} &\leq \varepsilon + \left(\sum_{i=0}^{\infty} \left(E(\lambda', x_i) + \lambda' t_i'\right)^p\right)^{1/p} \\ &\leq \varepsilon + \left(\sum_{i=0}^{\infty} E(\lambda', x_i)^p\right)^{1/p} + \lambda' t \,. \end{split}$$

Since λ' is arbitrary we can assume that it satisfies

$$\left(\sum_{i=0}^{\infty} E(\lambda', x_i)^p\right)^{1/p} + \lambda' t \le \varepsilon + \inf_{\lambda>0} \left\{ \left(\sum_{i=0}^{\infty} E(\lambda, x_i)^p\right)^{1/p} + \lambda t \right\}.$$

Thus we have proved

$$\sup\left(\sum_{i=0}^{\infty} K(t_i, x_i)^p\right)^{1/p} \le 2\varepsilon + \inf_{\lambda > 0} \left\{ \left(\sum_{i=0}^{\infty} E(\lambda, x_i)^p\right)^{1/p} + \lambda t \right\},\$$

and the proof is complete. \Box

Before we state the next theorem we need same notations. Let $L_{p,q}$, where $p = (p_0, p_1, \ldots)$ and $0 < p_n < \infty$, denote the sequence $(L_{p_0,q}, L_{p_1,q}, \ldots)$. The spaces $L_{p_n,q}$ are the *Lorentz* spaces (one star definition). By $l_{\infty}(L_{\infty})$ we mean $l_{\infty}(L_{\infty}, L_{\infty}, \ldots)$. For $f = (f_n) \in l_q(L_{p,q}) + l_{\infty}(L_{\infty})$ we define

$$T(\lambda) := \frac{\left(\sum_{n=0}^{\infty} \|(|f_n| - \lambda)_+\|_{p_n(q-1)/q, q-1}^{q-1}\right)^{1/(q-1)}}{\left(\sum_{n=0}^{\infty} \|(|f_n| - \lambda)_+\|_{p_n, q}^{q}\right)^{1/q}},$$

for $\underline{\lambda} < \lambda < \|f\|_{l_{\infty}(L_{\infty})}$ where

$$\underline{\lambda} := \inf \left\{ \lambda \ge 0 : \sum_{n=0}^{\infty} \| (|f_n| - \lambda)_+ \|_{p_n, q}^q < \infty \right\}.$$

Theorem 4

Assume that $1 < q < \infty$ and $f = (f_n) \in l_q(L_{p,q}) + l_\infty(L_\infty)$. If $\underline{\lambda} < ||f||_{l_\infty(L_\infty)}$, then

$$K(t, f, l_q(L_{p,q}), l_\infty(L_\infty))$$

$$= \begin{cases} \left(\sum_{n=0}^{\infty} \|(|f_n| - \underline{\lambda})_+\|_{p_n,q}^q\right)^{1/q} + \underline{\lambda}t, & t^{1/(q-1)} > T(\lambda) \text{ for all } \underline{\lambda} < \lambda < \|f\|_{l_{\infty}(L_{\infty})}, \\ \left(\sum_{n=0}^{\infty} \|(|f_n| - \lambda)_+\|_{p_n,q}^q\right)^{1/q} + \lambda t, & t^{1/(q-1)} = T(\lambda), \\ t \|f\|_{l_{\infty}(L_{\infty})}, & t^{1/(q-1)} < T(\lambda) \text{ for all } \underline{\lambda} < \lambda < \|f\|_{l_{\infty}(L_{\infty})}. \end{cases}$$

In the remaining case, i.e. when $\underline{\lambda} = \|f\|_{l_{\infty}(L_{\infty})}$, we have that the K functional equals $t \|f\|_{l_{\infty}(L_{\infty})}$.

Proof. To prove this we use Corollary 2 together with the well-known formula

$$E(t, f_n, L_{p_n,q}, L_{\infty}) = \| (|f_n| - t)_+ \|_{p_n,q}$$

see e.g. [1] and [3]. The rest of the proof follows the proof in the scalar valued case, see [2]. \Box

Ericsson

We end this paper by stating an exact version of the following well-known equivalence formula

$$\|K(t, x_i, A, B)\|_{\infty} \le K\Big(t, x, l_{\infty}(A), l_{\infty}(B)\Big) \le 2 \|K(t, x_i, A, B)\|_{\infty}.$$

Proposition 5

Let (A, B) be a compatible sequence pair of normed spaces. Then

$$K(t, x, l_{\infty}(A), l_{\infty}(B)) = ||K(t, x_i, A_i, B_i)||_{\infty}^{\wedge}.$$

Proof. To prove this we use the connection between the K and E functionals. Since there are at most a countable set of points where the formula $E = K^{\circ}$ doesn't hold it can be used when we are taking infimum over all $\lambda > 0$. It yields that

$$\begin{split} K\Big(t, x, l_{\infty}(A), l_{\infty}(B)\Big) &= \inf_{\lambda > 0} \left\{ \sup_{i} E(\lambda, x_{i}, A_{i}, B_{i}) + \lambda t \right\} \\ &= \inf_{\lambda > 0} \sup_{i} \sup_{s > 0} \left\{ K(s, x_{i}, A_{i}, B_{i}) - s\lambda + \lambda t \right\} \\ &= \inf_{\lambda > 0} \sup_{s > 0} \sup_{i} \left\{ K(s, x_{i}, A_{i}, B_{i}) - s\lambda + \lambda t \right\} \\ &= \| K(t, x_{i}, A_{i}, B_{i}) \|_{\infty}^{\wedge} \,, \end{split}$$

and the proof is complete. \Box

Acknowledgment: The author thanks Professors Lech Maligranda and Lars-Erik Persson for their generous advice and encouragement, which have improved the final version of this paper.

References

- 1. Yu. A. Brudnyi and N. Ya. Krugljak, *Interpolation Functors and Interpolation Spaces*, North-Holland, Amsterdam, 1991.
- 2. S. Ericsson, Exact descriptions of some K and E functionals, J. Approx. Theory (to appear).
- 3. L. Maligranda and L. E. Persson, The *E*-functional for some pairs of groups, *Results Mat.* 20 (1991), 538–553.
- 4. G. Pisier, The K_t -functional for the interpolation couple $L_1(A_0), L_{\infty}(A_1), J$. Approx. Theory **73** (1993), 106–117.