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Abstract

In this paper, we obtain criteria for KR and WKR points in Orlicz function
spaces equipped with the Luxemburg norm.

I. Introduction

In this paper, we introduce the concept of KR and WKR points. Some results are
obtained in Banach spaces, and then criteria for KR points and WKR points are
given in Orlicz function spaces equipped with the Luxemburg norm.

Let X be a Banach space and X∗ be the dual space of X. Let S(X), B(X) be
the unit sphere and the unit ball of X, respectively.

Definition 1 [1]. A point x ∈ S(X) is called an UR point (WUR point) provided
that for any {xn} of S(X) such that ‖xn +x‖ → 2 with n→ ∞ implies ‖xn−x‖ →
0 (xn

w−→x) as n→ ∞. If every point on S(X) is a UR point (WUR points), then
X is called a LUR (WLUR) space.

Definition 2. A point x ∈ S(X) is called a KR point (WKR point) provided
that for any {xn} ⊂ S(X) and any subsequence {xni} of {xn} such that ‖(xn(1) +
xn(2) + · · · + xn(k) + x)/(k + 1)‖ → 1 with n(1), n(2), . . . , n(k) → ∞, there holds
‖xn − x‖ → 0 as n → ∞ (xn → x weakly). If every point on S(X) is a KR point
(WKR point), then X is said to be a LKR (WLKR) space.
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Definition 3 [4]. A point x ∈ S(X) is called a WM point if for any {xn} ⊂ S(X)
such that ‖xn + x‖ → 2 with n → ∞ there exists f ∈ A(x) satisfying f(xn) → 1
as n → ∞, where A(x) = {f ∈ S(X∗) : f(x) = 1}. X is said to be a WM space if
every point on S(X) is a WM point.

Definition 4. A point x ∈ S(X) is called an H point if for any {xn} ⊂ S(X)
which is H convergent to x weakly, xn is convergent to x in norm (see [5], [6]).

Throughout this paper, we denote by ϕ: R → R an even, convex and continuous
function with limu→∞

ϕ(u)
u = ∞ and ϕ(u) = 0 if and only if u = 0. By ψ we

denote the complementary function of ϕ and by p (p−) q (q−) we denote the right
(left) derivative of ϕ and ψ, respectively. The sequence {[an, bn]}mn=1 (without loss
of generality, we may assume that m = ∞) stands for affine intervals of ψ and
S0
ψ = R \ ⋃∞

i=1[ai, bi]. Let (G,Σ, µ) be a nonnegative, finite, atomless and complete
measure space.

For a measurable function x, let

Rϕ(x) =
∫
G

ϕ
(
x(t)

)
dµ.

The function Rϕ is called a modular. We will write “ϕ ∈ ∆2” if ϕ satisfies the
∆2-condition for large u. We define the Orlicz space L(ϕ) as the linear space

{
x(t) ∈ L0 : Rϕ(λx) <∞, for some λ > 0

}
.

It is well known that L(ϕ) is a Banach space equipped with the Luxemburg norm

‖x‖(ϕ) = inf
{
c > 0 : Rϕ(c−1x) ≤ 1

}
,

(see [8] and [9]).

Theorem 1

For any x ∈ S(X) the following hold:

(1) x is a KR point if and only if x is a WKR point and an H point.

(2) x is a WUR point if and only if is a WKR point and every a WM point.
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Proof. (1) Necessity. We only need to prove that every KR point is an H point.
In fact, for any sequence {xn} of S(X) with xn → x weakly for any subsequence
{xn(i)} (i = 1, 2, . . . , k) of {xn}, we have

∥∥(xn(1) + xn(2) + · · · + xn(k) + x)/(k + 1)
∥∥ → 1,

as n(1), n(2), . . . , n(k) → ∞. Since x is a KR point, we obtain that xn tends to x
strongly.

Sufficiency. Suppose x is a WKR point and an H point. For any subsequence
{xn(i)} (i = 1, 2, . . . , k) of {xn} such that

∥∥(xn(1) + xn(2) + · · · + xn(k) + x)/(k + 1)
∥∥ → 1,

as n(1), n(2), . . . , n(k) → ∞, we get first that xn → x weakly and then, by the
assumption that x is an H point, we get that {xn} tends to x strongly. This means
that x is a KR point.

(2) We only need to prove the sufficiency. For any {xn} of S(X) such that
‖xn + x} → 2, by the assumption that x is a WM point, there exists f ∈ A(x) that
satisfies f(xn) → 1 as n → ∞. Hence for any subsequence {xn(i)} (i = 1, 2, . . . , k)
of {xn} we have

∥∥(xn(1) + xn(2) + · · · + xn(k) + x)/(k + 1)
∥∥ → 1,

as n(1), n(2), . . . , n(k) → ∞.
Since x is a WKR point we get that {xn} tends to x weakly. This show that x

is a WUR point. �

It is obvious that x is a UR point if and if x is a WUR point and an H point.
So we have the following result.

Corollary 1

A point x ∈ S(X) is a UR point if and only if x is a KR point and a WM point.

Corollary 2

For any Banach space X the following hold:

(1) X is a LUR space if and only if X is a LKR and a WM space.

(2) X is a LKR space if and only if X is a WLKR space with the H property.

(3) X is a WLUR space if and only if X is a WLKR space and a WM space.
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Theorem 2

For any x ∈ S(Lϕ) the following statements are equivalent:

(1) X is a UR point.

(2) x is a WUR point.

(3) x is a KR point.

(4) x is a WKR point.

(5) (i) ϕ ∈ ∆2,

(ii) x(t) ∈ Sϕ for µ-a.e. t ∈ G,

(iii) µ{t ∈ G : x(t) = b} = 0 or ψ ∈ ∆2 and µ{t ∈ G : x(t) = a} = 0,

where [a, b] is an affine interval of ϕ.

Proof. By the definitions and the facts that (1) is equivalent to (5) (see [1]), we only
need to prove that (4) implies (5). First, we will prove that (4) implies (i) in (5).

Take D large enough with µG0 > 0, where G0 = {t ∈ G : |x(t) ≤ D}. If
ϕ �∈ ∆2, then there exists z ∈ S(l(ϕ)) such that R(ϕ)(λz) = ∞ for any λ > 1. Hence
there exists a singular functional ϕ that satisfies ϕ(z) �= 0.

If Gn = {t ∈ G0 : |z(t)| > n}, then µGn → 0 as n → ∞ and G1 ⊇ G2 ⊇ . . . .
Put xn = xχG\Gn

+ zχGn , n = 1, 2, . . . . Then

lim
n→∞

‖xn‖(ϕ) = lim
n→∞

‖xχG\Gn
+ zχGn

‖(ϕ)

≤ lim
n→∞

‖xχG\Gn
‖ϕ) + lim

n→∞
‖zχGn‖(ϕ)

= lim
n→∞

‖xχG\Gn
‖(ϕ) ≤ ‖x‖(ϕ) = 1

and
lim
n→∞

‖xn‖(ϕ) = lim
n→∞

‖xχG\Gn
+ zχGn

‖(ϕ)

≥ lim
n→∞

‖xχG\Gn
‖(ϕ) = ‖x‖(ϕ) = 1.

This means that limn→∞ ‖xn‖(ϕ) = 1.

For all subsequences {xn(i)} (i = 1, 2, . . . , k) of {xn} we have

∥∥(x+ Σxn(i))/(k + 1)
∥∥

(ϕ)
≥

∥∥xχG\G(mi)

∥∥
(ϕ)

→ 1,

where mi = min{n(i) : i = 1, 2, . . . , k}. But

ϕ(xn − x) = ϕ(zχGn) − ϕ(xχGn) = ϕ(zχGn) �= 0.

This contradiction shows that (i) holds true.
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Next we will prove that (4) implies (ii) in (5). Otherwise, there exist an interval
(a, b) and ε > 0 such that ϕ is an affine function on [a, b], i.e., ϕ(u) = Au + B
whenever u ∈ [a, b] and µG0 > 0, where G0 = {t ∈ G : x(t) ∈ [a+ ε, b− ε]}.

Take two subsets G1 and G2 of G0 such that G1 ∩ G2 = ϕ, (ϕ stand for the
empty set), G1 ∪G2 = G0 and µG1 = µG2. Put

xn = xχG\G0 + (x− ε)χG\G1 + (x+ ε)χG\G2 ,

n = 1, 2, . . . . Then Rϕ(xn) = Rϕ(x) = 1 and for all subsequences {xn(i)} (i =
1, 2, . . . , k) of {xn}, we have

Rϕ
(
(x+ Σxn(i))/(k + 1)

)

= Rϕ(xχG\G0) +
∫
G1

(
Ax(t) +B − kAε/(k + 1)

)
dt

+
∫
G2

(
Ax(t) +B + kAε/(k + 1)

)
dt

= Rϕ(xχG\G0) +Rϕ(xχG1) +Rϕ(xχG2) = Rϕ(x) = 1.

Taking y = χG2 − χG1 , we have 〈x, y〉 = εµ(G0) > 0. This contradiction shows that
condition (ii) holds true.

Finally, we will prove that (4) implies (iii) in (5). We will divide the proof into
two parts.
(1) If ψ �∈ ∆2 and µG0 > 0, where G0 = {t ∈ G : x(t) = b}. Take ε > 0 small
enough such that ϕ(u) = Au+B for any u ∈ [b− ε, b] and kb ≥ (k + 1)ε.

Since ψ �∈ ∆2, there exist un ↗ ∞ satisfying

ϕ
(
un/(k + 1)

)
> (1 − 1/2n)ϕ(un)/(k + 1), n = 1, 2, . . . .

Choose a subsetG0 ofG0 with µG0 = µG0/2 andGn ⊆ G0\G0 such thatGi∩Gj = φ
if i �= j and ϕ(un)µGn = AεµG0 (n = 1, 2, . . .). It is obvious that µGn → 0 as
n→ ∞. Put

xn(t) = x(t)χG\G0(t) + (b− ε)χG0\Gn
(t) + unχGn(t).

Then

(1)

Rϕ(xn) = Rϕ(xχG\G0) + (Ab+B −Aε)µ(G \Gn) + ϕ(un)µ(Gn)

≤ Rϕ(xχG\G0) +Rϕ(bχG\Gn
) −Aεµ(G0 \Gn) +Aεµ(G0)

= Rϕ(xχG\Gn
) +Aεµ(Gn) → Rϕ(x) = 1.
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Moreover, for any subsequence {xn(i)} (i = 1, 2, . . . , k) of {xn} we have

Rϕ((x+ xn(1) + · · · + xn(k))/(k + 1))(2)

= Rϕ(xχG\G0) +Rϕ((xχG0 + (b− ε)χG\Gn(1)
+ un(1)χGn(1)

+ · · · + (b− ε)χG\Gn(k)
+ un(k)χGn(k))/(k + 1))

= Rϕ(xχG\G0) +Rϕ((bχG0 + k(b− ε)χG0 − (b− ε)χGn(1)

− · · · − (b− ε)χGn(k) + un(1)χGn(1) + · · · + un(k)χGn(k))/(k + 1))

= Rϕ(xχG\G0) +Rϕ(((k + 1)bχG0 − kεχG0 + (un(1) − (b− ε))χGn(1)

+ · · · + (un(k) − (b− ε))χGn(k))/(k + 1))

= Rϕ(xχG\G0) +Rϕ((k + 1)bχG0\Gn(1)∪...∪Gn(k)
− kεχG0\Gn(1)∪...∪Gn(k)

+ ((k + 1) − kε+ un(1) − (b− ε))χGn(1)

+ · · · + (k + 1) − kε+ un(k) − (b− ε))χGn(k))/(k + 1))

= Rϕ(xχG\G0) +Rϕ(((k + 1)b− kε)χG0\Gn(1)∪...∪Gn(k)
/(k + 1)

+Rϕ((kb− (k + 1)ε)χGn(1)/(k + 1))

+ . . .+Rϕ((kb− (k + 1)ε)χGn(k)/(k + 1))

≥ Rϕ(xχG\G0) +Rϕ(bχG0\Gn(1)∪...∪Gn(k)
)

− kAεµ(G0 \Gn(1) ∪ . . . ∪Gn(k))

+Rϕ(yn(1)χGn(1)/(k + 1)) + · · · +Rϕ(un(k)χGn(k)/(k + 1))

= Rϕ(xχG\Gn(1)∪...∪Gn(k)
) − kAεµ(G0 \Gn(1) ∪ . . . ∪Gn(k))/(k + 1)

+ ϕ(un(1)/(k + 1))µ(Gn(1)) + · · · + ϕ(un(k)/(k + 1))µ(Gn(k))

≥ Rϕ(xχG\Gn(1)∪...∪Gn(k)
) − kAεµ(G0)/(k + 1)

+ kAεµ(Gn(1) ∪ . . . ∪Gn(k))/(k + 1)

+ (1 − 1/2n(1))ϕ(un(1))µ(Gn(1))/(k + 1)

+ . . .+ (1 − 1/2n(k))ϕ(un(k))µ(Gn(k))/(k + 1)

≥ Rϕ(xχG\Gn(1)∪...∪Gn(k)
) + kAεµ(Gn(1) ∪ . . . ∪Gn(k))/(k + 1)

− (1/2n(1) + . . .+ 1/2n(k))Aεµ(G0)/(k + 1) → Rϕ(x) = 1.

Combining (1) and (2), we obtain

‖xn‖ → 1 and
∥∥(x+ xn(1) + . . .+ xn(k))/(k + 1)

∥∥ → 1

as n→ ∞ and n(1), . . . , n(k) → ∞, respectively. But∫
G

(
x(t) − xn(t)

)
χG0(t)dt = εµ(G0)/2 > 0,

which contradicts the fact that {xn} tends to x weakly.
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Now we will show that (4) implies (ii) in (5). Otherwise, denote G0 = {t ∈
G : x(t) = b} and G1 = {t ∈ G : x(t) = a}. Then µG0 > 0 and µG1 > 0. For a
convenience, we may assume that µG0 ≤ µG1.

Take a subset G2 of G1 and numbers A,B,A1, B1, ε, ε1, δ, δ1 such that µG2 =
µG0, ϕ(u) = Au + B for u ∈ (a, a + ε), ϕ(u) = A1u + B1 for u ∈ (b − ε1, b), 0 <
δ < ε, 0 < δ1 < ε1 and Aδ = A1δ1. Put

xn = xχG\G0∪G2 + (a+ δ)χG2 + (b− δ1)χG0 n = 1, 2, . . . .

Then
Rϕ(xn) = Rϕ(xχG\G0∪G2) +

[
(a+ δ)A+B

]
µG2 +

[
(b− δ1)A1 +B1

]
µG0

= Rϕ(xχG\G0∪G2) +Rϕ(xχG2) +Rϕ(xχG) = Rϕ(x) = 1,

i.e., ‖xn‖ = 1. Moreover, for all subsequences {xn(i)} (i = 1, 2, . . . , k;
n(i) ∈ {1, 2, . . .}) of {xn}, we have

Rϕ
(
(x+ xn(1) + xn(2) + . . .+ xn(k))/(k + 1)

)
= Rϕ(xχG\G0∪G2) + kδA/(k + 1)µG2 +Rϕ(xχG2)

− kδ1A1/(k + 1)µG0 +Rϕ(xχG0)

= Rϕ(x) = 1,

i.e., ‖(x+ xn(1) + xn(2) + . . .+ xn(k))/(k + 1))‖ = 1.
Take y(t) = χG2(t) − χG0(t). Then

〈xn, y〉 =
∫
G

(
xn(t) − x(t)

)
dt = δµG2 + δ1µG0 > 0.

This contradiction shows that the condition holds, so the proof is finished. �

Corollary 3
For any Orlicz space L(ϕ) the following statements are equivalent:

(1) L(ϕ) is LUR;
(2) L(ϕ) is WLUR;
(3) L(ϕ) is KR;
(4) L(ϕ) is WKR;
(5) L(ϕ) is LRK;
(6) L(ϕ) is WLKR;
(7) ϕ ∈ ∆2 and ϕ is a strictly convex function.

Proof. This follows from Theorem 3 and the result that L(ϕ) is LUR if and only if
ϕ ∈ ∆2 and ϕ is a strictly convex function (see [1]).
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