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Abstract

Here we give modular estimates for nonlinear integral operators of the form
(Tf)(s) =

∫
G
K(s, t, f(t))dt in Orlicz spaces. Namely we obtain an esti-

mate for the error of approximation Tf − f and as a consequence we state the

main result, i.e. (Twf − f) VW−→0 with w ∈ W .

1. Introduction

In previous papers ([10]-[14]), J.Musielak began the study of the modular conver-
gence for the so-called “error of approximation” Twf − f, where Tw is a family of
nonlinear operators of convolution type of the form

(Twf)(s) =
∫
G

K(s− t, f(t))dt

with respect to a filter of subsets of a set W; here f belongs to a Orlicz space Lϕ(G),
and G is a compact or a locally compact topological group provided with its Haar
measure dt. Moreover in [2] these results has been extended to the case of a general
modular function space; for literature on classical linear convolution operators in Lp

spaces see [6].
Later, on [1, 4] extensions of the previous results has been obtained when the

usual strongly-Lipschitz condition assumed on the kernel K is replaced by the weaker
(L,ψ)-Lipschitz condition.
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The aim of this paper is to obtain a modular convergence result for a filtered
family of operators Tw of the form

(Twf)(s) =
∫
G

K(s, t, f(t))dt,

where G is a locally compact topological group, dt is its Haar measure, w ∈ W
where W is a set of indices and K satisfies a strongly-Lipschitz condition.

Here our operators are nonlinear and satisfying some general homogeneity as-
sumptions.

Usually, on estimating the error of approximation for linear or nonlinear integral
operators with homogeneous kernels using the approach of the previous papers [11]-
[14], [1, 3, 4] an estimate and a convergence result for Twf − g is obtained, where
g = ηf, being η the function that appear in the definition of the subhomogeneity for
L(s, t) (see assumption (K.3)).

In this paper we are able to obtain a modular estimate just for Twf − f, using
the theory of the Young functions together with the condition (∆3); as a consequence
of this result, we obtain a modular convergence theorem for Twf − f.

A convergence result for the sequence of nonlinear operators with nonhomoge-
neous kernels is obtained in [5] using a density approach.

In section 2 we give first an estimate of the operator T in the modular sense for
f belonging to the Orlicz space Lϕ(G) and taking the kernel in a certain class K;
moreover we give the main estimate for the error of approximation Tf − f, where f

must be taken in the intersection of three different Orlicz spaces, where one of them
is of weighted type.

Then, in section 3 using an extension of the Proposition 1 of [11], in the case of a
weighted ϕ-modulus of smoothness and assuming the usual singularity assumptions,
we obtain the requested convergence result, i.e.

Iϕ1 [λ(Twf − f)] VW−→0, where VW−→ denotes the convergence with respect to the
filter VW (see [10]).

2. Notations and definitions

Let G be a locally compact group and let dt be its Haar measure; for a sake of
simplicity, we will assume G abelian.

Moreover let |A| denote the Haar measure of a measurable set A⊂G and let U
be the neighborhoods base of the neutral element θ of G.
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Let ϕ : R
+
0 →R

+
0 , where R

+
0 = [0,+∞[, be a function satisfying the following

assumption:
i) ϕ is a convex function, with ϕ(0) = 0, ϕ(u) > 0 for u > 0, and ϕ(u)/u → +∞

as u → +∞.
If ϕ satisfies assumption i), we will say that ϕ is a Φ−function and we will write

ϕ ∈ Φ.

Now, for ϕ ∈ Φ, on the space X = {f : G→R : f is Haar measurable} we define
the modular

Iϕ[f ] =
∫
G

ϕ(|f(t)|)dt

and
Lϕ(G) = {f ∈ X : Iϕ[λf ] < +∞ for some λ > 0}

will denote the corresponding Orlicz space (see [10, 9, 11, 3]).
Moreover, given a measurable function g : G→R

+, for ϕ ∈ Φ we define the
functional

Iϕg : X→R
+
0 = [0,+∞]

by means of the formula

Iϕg [f ] =
∫
G

g(t)ϕ(|f(t)|)dt.

It is well known that Iϕg is a modular and the corresponding modular space Lϕ
g (G) =

{f ∈ X : Iϕg [λf ] < +∞ for some λ > 0} will be called the “weighted Orlicz space”
generated by ϕ with weight g.

We recall that a function ϕ : R
+
0 →R

+
0 is called a Young function if it satisfies

the following assumption:
i′) ϕ is convex with ϕ(0) = 0 and limu→+∞ ϕ(u) = +∞ (see [10, 15]).
Now it is easy to verify that every function ϕ ∈ Φ is a Young function. For

ϕ ∈ Φ, we will denote by ψ the complementary function to ϕ, defined as

ψ(y) = sup{xy − ϕ(x) : x ∈ R
+
0 }, y ∈ R

+
0 . (1)

It results that ψ is a Young function and from (1) we may deduce the Young’s
inequality for the pair (ϕ,ψ), i.e.

xy ≤ ϕ(x) + ψ(y), x, y ∈ R
+
0 . (2)

We will need the following condition (∆
′
g).
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Let ϕi : R
+
0 →R

+
0 , i = 1, 2, 3 be three functions with ϕi ∈ Φ, i = 1, 2, 3 (or

Young functions) satisfying the following condition (see [15]):

there exists a > 0 such that

(∆
′

g) ϕ1(auv) ≤ ϕ2(u) ϕ3(v), ∀u, v ∈ R
+
0 .

Moreover if ϕ : R
+
0 →R

+
0 is a function belonging to the class Φ (or is a Young

function) and if ψ denotes the complementary function to ϕ, we say that ϕ is a ∆3

function if:

(∆3) (ψ ◦ ϕ)(u) ≤ ϕ(cu),

for some c > 0 and u ≥ uo ≥ 0 (see [15]).

Remark 1. We observe that if in the condition ∆
′
g we put ϕ1 = ϕ2 = ϕ3 = ϕ

and ϕ is a N-function, i.e. ϕ is a Young function with ϕ(x) = 0 iff x = 0
and limx→0+ ϕ(x)/x = 0, limx→+∞ ϕ(x)/x = +∞, then our condition ∆

′
g becomes

equivalent to the original ∆
′

condition with xo = 0, i.e. ∆
′
g becomes a global ∆

′

condition (see [15], pp. 28–29).
Moreover we observe that in the case when (ϕ,ψ) is a complementary pair of

N-functions, our condition ∆3 becomes equivalent to the original ∆3-condition, i.e.
there exists a b > 0 such that

(∆3) xϕ(x) ≤ ϕ(bx), x ≥ xo ≥ 0.

An example of function ϕ satisfying ∆3-condition is given by ϕ(x) = ex
2 − 1. For

other examples see [15].
Let now denote by K the class of all functions K : G×G× R→R satisfying the

following assumptions:
K.1) K(·, ·, u) is measurable on G×G for every u ∈ R and K(s, t, 0) = 0 for

every (s, t) ∈ G×G.

K.2) K(s, t, ·) is strongly Lipschitz, i.e. there exists a globally measurable func-
tion L : G×G→R

+
0 such that

|K(s, t, u) −K(s, t, u + h)| ≤ L(s, t)|h|,

for every s, t ∈ G, u, h ∈ R.

K.3) L(s, t) is η−subhomogeneous (see [3]), i.e. there exists a measurable func-
tion η : G→R

+ such that the following inequality holds:

L(s + v, t + v) ≤ η−1(t) η(t + v) L(s, t)

for every t, s, v ∈ G.
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As example of property K.3), we may consider the case of G = (R+, ·) and L

homogeneous of degree α ∈ R; then L is η−homogeneous with respect to η(t) = tα

and the inequality in K.3) becomes an equality.
We now consider the following integral operator T :

(Tf)(s) =
∫
G

K(s, t, f(t))dt, f ∈ DomT

where DomT is the subset of X on which Tf is well defined as an Haar integral for
almost all s ∈ G and Tf is measurable on G.

3. Modular estimates for Tf and for the error of approximation Tf − f

First of all we establish an estimate for Tf which is an extension to classical Orlicz
spaces of Theorem 1 of [3] for nonlinear operators.

Theorem 1

Let K ∈ K, ϕ ∈ Φ, λ > 0 and let us suppose that

0 < D :=
∫
G

η−1(z)L(θ, z)dz < +∞.

Then for every f ∈ Lϕ(G)∩DomT such that g := ηf ∈ Lϕ(G), it results Tf ∈ Lϕ(G)
and

Iϕ[λ(Tf)] ≤ Iϕ[λDη f ]. (3)

Proof. By the properties of K ∈ K, we may write

Iϕ[λ(Tf)] =
∫
G

ϕ
(
λ
∣∣∫

G

K(s, t, f(t))dt
∣∣)ds

≤
∫
G

ϕ
(
λ

∫
G

L(s, t)|f(t)|dt
)
ds =

∫
G

ϕ
(
λ

∫
G

L(s, z + s)|f(z + s)|dz
)
ds

≤
∫
G

ϕ
(
λ

∫
G

η−1(z)η(z + s)L(θ, z)|f(z + s)|dz
)
ds.

Now, by Jensen inequality and Fubini-Tonelli’s theorem, we have

Iϕ[λ(Tf)] ≤ 1
D

∫
G

η−1(z)L(θ, z)
{∫

G

ϕ(λDη(z + s)|f(z + s)|)ds
}
dz

=
1
D

∫
G

η−1(z)L(θ, z)Iϕ[λDg]dz = Iϕ[λDηf ]. �
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Remark 2. We remark that the inequality of Theorem 1 states that Tf ∈ Lϕ(G)
whenever ηf ∈ Lϕ(G) and in general it is not possible to replace the assumption
ηf ∈ Lϕ(G) with f ∈ Lϕ(G) (see [3] for some particular cases). Moreover if η(t) ≤ C,
for some C > 0, a.e. t ∈ G, the inequality of Theorem 1 implies that Tf ∈ Lϕ(G)
whenever f ∈ Lϕ(G). This happens for example for homogeneous kernel of degree
zero, as in the convolution type operators.

In order to state a modular estimate for the error of approximation Tf − f, we
will use the following notations:

a) In a weighted Orlicz space Lϕ
g (G) with weight g, we will denote by ωϕ(g, f, U)

the weighted ϕ-modulus of smoothness of the function f, for the neighborhood U ∈ U
of θ, that is we put

ωϕ(g, f, U) = sup
z∈U

∫
G

g(t)ϕ[|f(t) − f(t− z)|]dt.

b) for h > 0, Ah
z (µ), An, A

h(µ) will denote respectively the sets

Ah
z (µ) = {t ∈ G : µ |f(t) − f(t− z)| > h},
An = {s ∈ G : |f(s)| > n}, n = 1, 2, . . . ,

Ah(µ) = {s ∈ G : µ|f(s)| > h},
for a suitable constant µ > 0.

c) rn(s) = sup
0<|u|≤n

∣∣∣ 1
u

∫
G

K(s, t, u)dt− 1
∣∣∣, s ∈ G, n = 1, 2, . . . .

Now we are ready to formulate the following

Theorem 2
Let K ∈ K, and let ϕi ∈ Φ, i = 1, 2, 3 be the functions satisfying condition ∆

′
g

and let (ϕ3, ψ3) be a complementary pair of Young functions satisfying condition
∆3. Let moreover f ∈ Lϕ1+ϕ3(G)∩Lϕ3

ϕ2◦η(G)∩DomT, η ∈ L(ϕ3◦ϕ2)+ϕ2(G) and take

λ > 0 sufficiently small such that
√
λ < min

{ a

4D
, 1

}
where a is the constant of

∆
′
g. Then for every U ∈ U , h ≥ uo, uo being the constant from the condition ∆3,

and n = 1, 2, 3, . . . , the operator Tf satisfies the inequality

Iϕ1 [λ(Tf − f)] ≤ 1
2
ωϕ3(ϕ2 ◦ η,

4
√
λ f, U)

+
{
Iϕ3◦ϕ2 [

4
√
λ η] + Iϕ3 [2c

4
√
λ f ] + H Iϕ2 [

4
√
λ η]

} 1
2D

∫
G\U

η−1(z)L(θ, z)dz

+
1

4D

∫
G

η−1(z)L(θ, z)Iϕ3◦ϕ2 [
4
√
λ η(z + ·)χAn

]dz +
1
4
Iϕ3 [c

4
√
λ fχAn

] (4)

+
H

4D

∫
G

η−1(z)L(θ, z)Iϕ2 [
4
√
λ η(z + ·)χAn

]dz +
1
4
Iϕ1 [4λfχAn

] +
1
2
Iϕ1 [2λrnf ]
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where D > 0 is the constant of Theorem 1 that we suppose to be finite and H =
ϕ3[h].

Proof. We may suppose that λ > 0 is so small that Iϕ1 [4λf ] < +∞, Iϕ3 [2c
4
√
λ f ] <

+∞, Iϕ3◦ϕ2 [
4
√
λ η] < +∞ and Iϕ2 [

4
√
λ η] < +∞. Moreover we can assume rn(s) <

+∞ a.e. s ∈ G. Since

|(Tf)(s) − f(s)| =
∣∣∫

G

K(s, t, f(t))dt− f(s)
∣∣

≤
∣∣∫

G

{K(s, t, f(t)) −K(s, t, f(s))}dt
∣∣

+
∣∣∫

G

K(s, t, f(s))dt− f(s)
∣∣,

then, by convexity of ϕ1 ∈ Φ, we have

Iϕ1 [λ(Tf − f)] ≤ 1
2

∫
G

ϕ1

[
2λ

∫
G

L(s, t)|f(t) − f(s)|dt
]
ds

+
1
2

∫
G

ϕ1

[
2λ

∣∣∫
G

K(s, t, f(s))dt− f(s)
∣∣]ds

=: J1 + J2.

Now we evaluate J1. Since K ∈ K and putting t = z + s, it results

J1 =
1
2

∫
G

ϕ1

[
2λ

∫
G

L(s, t)|f(t) − f(s)|dt
]
ds

=
1
2

∫
G

ϕ1

[
2λ

∫
G

L(s, z + s)|f(z + s) − f(s)|dz
]
ds

≤ 1
2

∫
G

ϕ1

[
2λ

∫
G

η−1(z)η(z + s)L(θ, z)|f(z + s) − f(s)|dz
]
ds

≤ 1
2

∫
G

{
1
D

∫
G

η−1(z)L(θ, z)ϕ1[2λD|f(z + s) − f(s)| η(z + s)]dz
}
ds.

Now, since 2
√
λD ≤ a, by condition ∆

′
g, putting in the inner integral z = t− s and

applying Fubini-Tonelli’s theorem, we may write

J1 ≤ 1
2

∫
G

{
1
D

∫
G

η−1(z)L(θ, z)ϕ2[
4
√
λ η(z + s)]ϕ3[

4
√
λ |f(z + s) − f(s)|]dz

}
ds

=
1
2

∫
G

{
1
D

∫
G

η−1(t− s)L(θ, t− s)ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(s)|]dt

}
ds

=
1

2D

∫
G

ϕ2[
4
√
λ η(t)]

{∫
G

η−1(t− s)L(θ, t− s)ϕ3[
4
√
λ |f(t) − f(s)|]ds

}
dt.
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Now, putting in the inner integral s = t− z and applying Fubini-Tonelli’s theorem,
we have

J1 ≤ 1
2D

∫
G

ϕ2[
4
√
λ η(t)]

{∫
G

η−1(z)L(θ, z) ϕ3[
4
√
λ |f(t) − f(t− z)|]dz

}
dt

=
1

2D

∫
U

η−1(z)L(θ, z)
{∫

G

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

}
dz

+
1

2D

∫
G\U

η−1(z)L(θ, z)
{∫

G

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

}
dz

=: J1
1 + J2

1 .

Now, being λ < 1, we have J1
1 ≤ 1

2
ωϕ3(ϕ2 ◦ η, 4

√
λ f, U), while in order to evaluate

J2
1 we first consider the inner integral; let us fix h ≥ uo. We have

∫
G

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

=
∫
Ah

z (
4√
λ)

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

+
∫
G\Ah

z (
4√
λ)

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

=: Q1 + Q2.

By Young’s inequality and condition ∆3 applied to the complementary pair (ϕ3, ψ3),
it results

Q1 =
∫
Ah

z (
4√
λ)

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

≤
∫
Ah

z (
4√
λ)

(ϕ3 ◦ ϕ2)[
4
√
λ η(t)]dt +

∫
Ah

z (
4√
λ)

(ψ3 ◦ ϕ3)[
4
√
λ |f(t) − f(t− z)|]dt

≤
∫
G

(ϕ3 ◦ ϕ2)[
4
√
λ η(t)]dt +

∫
G

ϕ3[c
4
√
λ |f(t) − f(t− z)|]dt.

Moreover

Q2 =
∫
G\Ah

z (
4√
λ)

ϕ2[
4
√
λ η(t)] ϕ3[

4
√
λ |f(t) − f(t− z)|]dt

≤ H

∫
G

ϕ2[
4
√
λ η(t)]dt.
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Hence

J2
1 ≤ 1

2D

∫
G\U

η−1(z)L(θ, z)
{∫

G

(ϕ3 ◦ ϕ2)[
4
√
λ η(t)]dt

}
dz

+
1

2D

∫
G\U

η−1(z)L(θ, z)
{∫

G

ϕ3[c
4
√
λ |f(t) − f(t− z)|]dt

}
dz

+
H

2D

∫
G\U

η−1(z)L(θ, z)
{∫

G

ϕ2[
4
√
λ η(t)]dt

}
dz

=: R1 + R2 + R3.

Now,

R1 = Iϕ3◦ϕ2 [
4
√
λ η]

1
2D

∫
G\U

η−1(z)L(θ, z)dz,

R2 ≤ 1
2D

∫
G\U

η−1(z)L(θ, z)
{

1
2

∫
G

ϕ3[2c
4
√
λ |f(t)|]dt

}
dz

+
1

2D

∫
G\U

η−1(z)L(θ, z)
{

1
2

∫
G

ϕ3[2c
4
√
λ |f(t− z)|]dt

}
dz

≤ Iϕ3 [2c
4
√
λ f ]

1
2D

∫
G\U

η−1(z)L(θ, z)dz,

and
R3 = Iϕ2 [

4
√
λ η]

H

2D

∫
G\U

η−1(z)L(θ, z)dz.

Hence

J2
1 ≤

{
Iϕ3◦ϕ2 [

4
√
λ η] + Iϕ3 [2c

4
√
λ f ] + HIϕ2 [

4
√
λ η]

} 1
2D

∫
G\U

η−1(z)L(θ, z)dz.

We now estimate J2.

J2 =
1
2

∫
G

ϕ1

[
2λ

∣∣∫
G

K(s, t, f(s))dt− f(s)
∣∣]ds

≤ 1
2

∫
An

ϕ1

[1
2

4λ
∫
G

∣∣K(s, t, f(s))|dt +
1
2

4λ|f(s)
∣∣]ds

+
1
2

∫
G\An

ϕ1

[
2λ

∣∣∫
G

K(s, t, f(s))dt− f(s)
∣∣]ds

=: J1
2 + J2

2 .
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Now, since K(s, t, 0) = 0, we have

J1
2 ≤ 1

4

∫
An

ϕ1

[
4λ

∫
G

L(s, t)|f(s)|dt
]
ds +

1
4

∫
An

ϕ1[4λ|f(s)|]ds

= P1 +
1
4
Iϕ1 [4λfχAn ].

Since 4
√
λD < a, using condition ∆

′
g and Jensen inequality, we have

P1 ≤ 1
4

∫
An

ϕ1

[
4λ

∫
G

η−1(z)L(θ, z)η(z + s)|f(s)|dz
]
ds

≤ 1
4

∫
An

{
1
D

∫
G

η−1(z)L(θ, z)ϕ2[
4
√
λ η(z + s)] ϕ3[

4
√
λ |f(s)|]dz

}
ds.

Now, using Young’s inequality with ϕ = ϕ3 and ψ = ψ3 in (2), and applying
condition ∆3 and Fubini-Tonelli’s theorem, we obtain for h ≥ uo,

P1 ≤ 1
4

∫
An∩Ah(

4√
λ)

{
1
D

∫
G

η−1(z)L(θ, z)(ϕ3 ◦ ϕ2)[
4
√
λ η(z + s)]dz

}
ds

+
1
4

∫
An∩Ah(

4√
λ)

{
1
D

∫
G

η−1(z)L(θ, z)ϕ3[c
4
√
λ |f(s)|]dz

}
ds

+
1
4

∫
An\Ah(

4√
λ)

{
1
D

∫
G

η−1(z)L(θ, z)ϕ2[
4
√
λ η(z + s)] ϕ3[h]dz

}
ds

≤ 1
4

∫
An

{
1
D

∫
G

η−1(z)L(θ, z)(ϕ3 ◦ ϕ2)[
4
√
λ η(z + s)]dz

}
ds

+
1
4

∫
An

{
1
D

∫
G

η−1(z)L(θ, z)ϕ3[c
4
√
λ |f(s)|]dz

}
ds

+
H

4D

∫
An

{∫
G

η−1(z)L(θ, z)ϕ2[
4
√
λ η(z + s)]dz

}
ds

≤ 1
4D

∫
G

η−1(z)L(θ, z)Iϕ3◦ϕ2 [
4
√
λ η(z + ·)χAn

]dz

+
1
4
Iϕ3 [c

4
√
λ fχAn

] +
H

4D

∫
G

η−1(z)L(θ, z)Iϕ2 [
4
√
λ η(z + ·)χAn

]dz.

Hence, we can conclude that

J1
2 ≤ 1

4D

∫
G

η−1(z)L(θ, z)Iϕ3◦ϕ2 [
4
√
λ η(z + ·)χAn

]dz

+
1
4
Iϕ3 [c

4
√
λ fχAn

] +
H

4D

∫
G

η−1(z)L(θ, z)Iϕ2 [
4
√
λ η(z + ·)χAn

]dz

+
1
4
Iϕ1 [4λfχAn ].
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Now, we evaluate J2
2 .

J2
2 =

1
2

∫
G\An

ϕ1[2λ|
∫
G

K(s, t, f(s))dt− f(s)|]ds

≤ 1
2
Iϕ1 [2λrnf ].

Hence the assertion follows �

4. A convergence theorem

Let G be an abelian locally compact topological group. First of all we recall (see [4])
that for every measurable subset A⊂G of finite measure |A|, there holds the condition

(o) lim
s→θ

|A∆(A− s)| = 0,

where ∆ denotes the symmetric difference of sets.
This property follows by using an approximation of the characteristic function

of A by means of continuous functions with compact support (see [8]).
Now we may state the following

Proposition 1

Let ϕ ∈ Φ. Then, for every function f ∈ Lϕ
g (G) there exists a λo ∈ R

+ such

that for every ε > 0 there exists a neighborhood U ∈ U of θ such that

ωϕ(g, λf, U) < ε, for 0 < λ ≤ λo,

where g : G→R
+ is a weight function.

Proof. Let µ : B(G)→R
+ be defined by µ(E) =

∫
E

g(t)dt; we may write

ωϕ(g, λf, U) = sup
z∈U

∫
G

ϕ(λ|f(t) − f(t− z)|)dµ(t).

Now, the proof follows using (o) and taking into account that when ϕ does not
depend on the parameter t, Theorem 5 of [11] holds also for an abstract measure µ. �
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Now, let us take an abstract set of indices and let VW be a filter of subsets of
a set W.

We take a family K = (Kw)w∈W of functions Kw ∈ K such that

|Kw(s, t, u + h) −K(s, t, u)| ≤ Lw(s, t)|h|

for every s, t ∈ G, u, h ∈ R and where L = (Lw)w∈W is a family of functions Lw :
G×G→R

+
0 , η−subhomogeneous. We shall denote this by IK. The corresponding

family of operators IΓ = (Tw)w∈W is defined by

(Twf)(s) =
∫
G

Kw(s, t, f(t))dt

where f ∈ Dom IΓ = ∩w∈W DomTw (see [4]).
We will say that the family of kernels K ∈ IK is L-singular if

a) Dw =
∫
G

η−1(z)Lw(θ, z)dz ≤ S < +∞, for all w ∈ W.

b) for every U ∈ U ,
1

Dw

∫
G\U

η−1(z)Lw(θ, z)dz VW−→0.

c) rwn (s) = sup
0<|u|≤n

∣∣∣ 1
u

∫
G

Kw(s, t, u)dt− 1
∣∣∣ VW−→0 uniformly with respect to s ∈ G

(see [11]-[14], [1, 3, 2]).
Now, we may prove the following convergence theorem.

Theorem 3

Let K = (Kw)w∈W ∈ IK be a family of L-singular kernels and let be ϕi ∈
Φ, i = 1, 2, 3 satisfying the conditions of Theorem 2. Then for any f ∈ Lϕ1+ϕ3(G)∩
Lϕ3
ϕ2◦η(G) ∩ Dom IΓ and η ∈ L(ϕ3◦ϕ2)+ϕ2(G), we have that Iϕ1 [λ(Twf − f)] VW−→0, for

sufficiently small λ > 0.

Proof. We replace in inequality (4), D,L, rn with Dw, Lw, r
w
n . For a sake of simplicity

we write the second member of (4) in the form

Iϕ1 [λ(Twf − f)] ≤ F1 + F2 + F3 + F4 + F5 + F6 + F7.

Let λo > 0 be the number of Proposition 1 and let ε > 0 be fixed. Since f ∈ Lϕ3
ϕ2◦η(G)

for sufficiently small λ > 0, there is an U ∈ U such that F1 < ε. Moreover by the
assumptions and property b) of L-singularity, there is a set W1 ∈ W such that
F2 < ε.
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Now since f ∈ Lϕ1+ϕ3(G) and η ∈ L(ϕ3◦ϕ2)+ϕ2(G), there is n(ε) > 0 : ∀n ≥
n, F4 + F6 < ε and moreover, by absolute continuity of the integrals,

Iϕ3◦ϕ2 [
4
√
λ η(z + ·)χAn

] + Iϕ2 [
4
√
λ η(z + ·)χAn

] < ε/S,

uniformly with respect to z ∈ G. Hence by a) of L-singularity, we have that F3+F5 <

ε.

Now, keeping n fixed, by c) of L-singularity, we have that rwn (s) VW−→0 uniformly
with respect to s ∈ G and so, from f ∈ Lϕ1(G) we deduce that there is a set W2 ∈
VW such that F7 < ε for every w ∈ W2. Thus we obtain that Iϕ1 [λ(Twf − f)] < ε

for w ∈ W1 ∩W2 ∈ VW �

Remarks 3.

3.a) We want to point out that if we assume the condition η ∈ L∞(G), where
η : G→R

+ is the function of the assumption (K.3), then following the same idea
and techniques of Theorem 3 of [3] and taking into account the new assumptions
of the nonlinear case (see also Theorem 3 of [4]), it is possible to obtain an easier
estimate for the error of approximation Tf − f and hence, as consequence, we may
state a convergence theorem for Twf − f. So, in this case (i.e. η ∈ L∞(G)), it is
possible to obtain extensions of the results of [3] to the operator T of the form:
(Tf)(s) =

∫
G
K(s, t, f(t))dt.

Of course the assumption η ∈ L∞(G) is more meaningful for compact groups
G. Indeed, when G = (R+, ·), among the kernels homogeneous of degree α ∈ R, the
only one which satisfies η(t) = tα ∈ L∞(R+) is a homogeneous kernel of degree zero,
and this happens for example for convolution type operators.

Moreover given η ∈ L∞(R+), η > 0 and a function L : R
+ × R

+→R
+
0 ho-

mogeneous of degree zero, then H(s, t) = η(t)L(s, t) is a non trivial example of
η−homogeneous kernel with bounded η.

In the case of compact groups G, as for example G = (S1, ·), where S1 = {z ∈
C : |z| = 1} with Lebesgue measure, the assumption η ∈ L∞(G) is always satisfied
by η(t) = tα, for each α ∈ R

+
0 ; in this case the operator T takes the form

(Tf)(s) =
∫ 2π

0

K(s, t, f(t))dt.

3.b) Other particular cases of our operator T of the form

(Tf)(s) =
∫
G

K(s, t, f(t))dt,
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are the following:
α) G = (R,+) with Lebesgue measure; in this case the operator T is of the
form

(Tf)(s) =
∫ +∞

−∞
K(s, t, f(t))dt.

β) G = (Z,+) with the counting measure; in this case T takes the form

(Tf)j =
+∞∑

i=−∞
Kj,i(ai), j ∈ Z

where f = (ai)i∈Z and Kj,i(ai) = K(j, i, ai), i, j ∈ Z.

γ) G = (Zn + (modn)) = {0, 1, . . . , n− 1}; in this case T becomes

(Tf)j =
n−1∑
i=0

Kj,i(ai)

where f = (ao, a1, . . . , an−1) and Kj,i(ai) = K(j, i, ai), i, j = 0, 1, . . . , n−1.
δ) Other examples are G = (Rn,+), G = (Zn,+).

3.c) As a particular case of Theorem 3, we have that when W = N and VW is
the filter of all sets of the form N \B, where B⊂N is finite and if ϕ(u) = up, p ≥ 1,
we obtain ‖Tnf − f‖p→0 as n→+∞.
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