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Abstract

In this paper we study two classes of delay partial difference equations with
constants coefficients. Explicit necessary and sufficient conditions for the os-
cillation of the solutions of these equations are obtained.

Recently, oscillation theory for partial difference equation have been studied by
some authors [1–4]. In this paper we will concern with two classes of delay partial
difference equations of the form

u(i+ 1, j) + bu(i, j + 1) + cu(i, j) + du(i− r, j) + eu(i, j − s)
+ fu(i−m, j − n) = 0, i, j = 0, 1, 2, . . . , (1)

and

u(i+ 1, j + 1) + au(i+ 1, j) + bu(i, j + 1) + cu(i, j) + du(i− r, j)
+ eu(i, j − s) + fu(i−m, j − n) = 0, i, j = 0, 1, 2, . . . (2)

where a, b, c, d, e, and f are real numbers, r, s,m and n are positive integers.
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A solution of (1) or (2) is a real double sequence u = {u(i, j)}∞i,j=0 which
satisfies (1) or (2) respectively. Since (1) can be written in the form

u(i+ 1, j) = −bu(i, j + 1) − cu(i, j) − du(i− r, j)

− eu(i, j − s) − fu(i−m, j − n), i, j = 0, 1, 2, . . . ,

it is clear that if we impose conditions such as

u(0, j) = φ(j), j = 0, 1, 2, . . . ,

u(i, j) = α(i, j), −r ≤ i ≤ 0, j ≥ 0,

u(i, j) = β(i, j), −s ≤ j ≤ 0, i ≥ 0,

u(i, j) = ϕ(i, j), −m ≤ i ≤ 0, −n ≤ j ≤ 0,

with
φ(0) = α(0, 0) = β(0, 0) = α(0, 0),

we can calculate u(1, 0);u(1, 1), u(2, 0);u(1, 2), u(2, 1), u(3, 0); . . . successively in a
unique manner. An existence and uniqueness theorem for solutions of (1) is thus
easily formulated and proved.

Similarly, since (2) can be written as

u(i+ 1, j + 1) = −au(i+ 1, j) − bu(i, j + 1) − cu(i, j) − du(i− r, j)

− eu(i, j − s) − fu(i−m, j − n), i, j = 0, 1, 2, . . . ,

it is clear that if the conditions

u(0, j) = φ(j), j = 0, 1, 2, . . . ,

u(i, 0) = ψ(i), i = 0, 1, 2, . . . ,

u(i, j) = α(i, j), −r ≤ i ≤ 0, j ≥ 0,

u(i, j) = β(i, j), −s ≤ j ≤ 0, i ≥ 0,

u(i, j) = ϕ(i, j), −m ≤ i ≤ 0, −n ≤ j ≤ 0,

with
φ(0) = ψ(0) = α(0, 0) = β(0, 0) = α(0, 0)

are imposed, we can calculate u(1, 1);u(1, 2), u(2, 1);u(1, 3), u(2, 2), u(3, 1); . . . suc-
cessively in a unique manner.

A double sequence u = {u(i, j)}∞i,j = 0 is said to be eventually positive if
u(i, j) > 0 for all sufficiently large i and j. An eventually negative sequence is
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similarly defined. The sequence u is said to be oscillatory if it is neither eventually
positive nor eventually negative. We are interested in explicit condition imposed on
the numbers a, b, c, d, e and f such that all solutions of (1) and (2) are oscillatory.

Lemma 1

Suppose c ≥ 0, d > 0, e > 0 and f > 0. If b ≥ 0, then there cannot be any pair

of positive numbers α and β such that

α+ bβ + c+ dα−r + eβ−s + fα−mβ−n = 0. (3)

The converse also holds.

Proof. Suppose b ≥ 0. Since c ≥ 0, d > 0, e > 0 and f > 0, for any pair of positive
numbers α and β, we have

α+ bβ + c+ dα−r + eβ−s + fα−mβ−n > 0.

This shows that (3) cannot hold.
Conversely, if b < 0, let α = 1 then

α+ bβ + c+ dα−r + eβ−s + fα−mβ−n = 1 + bβ + c+ d+ eβ−s + fβ−n.

Set F (β) = 1 + bβ + c + d + eβ−s + fβ−n. Since limβ→0+ F (β) = +∞ , limβ→+∞
F (β) = −∞ and F is continuous on (0,+∞), there exists β0 ∈ (0,+∞) such that
F (β0) = 0. So that (3) has a solution pair α = 1, β = β0, and the solution pair are
positive. The proof of Lemma 1 is complete. �

Theorem 1

Suppose c ≥ 0, d > 0, e > 0 and f > 0. Then every solution of (1) is oscillatory

if and only if b ≥ 0.

Proof. If b < 0, then by means of Lemma 1, we can find a pair of positive numbers
α and β such that

α+ bβ + c+ dα−r + eβ−s + fα−mβ−n = 0.

Then, as can easily be verified, the double sequence {u(i, j)} defined by

u(i, j) = αiβj , i, j = 0, 1, 2, . . .

is a positive solution of (1).
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Conversely, suppose b ≥ 0 and that (1) has a nonoscillatory solution u =
{u(i, j)}∞i,j = 0. We may assume without loss of generality that u(i, j) > 0 for
i, j ≥ 0. But since c ≥ 0, d > 0, e > 0 and f > 0, then left side of (1) is strictly
greater than 0. This contradiction establishes our proof of Theorem 1. �

We now deal with the question of oscillation of (2).

Lemma 2

Suppose b 	= 0, c ≥ 0, d > 0, e > 0 and r < m, s 	= n. If b > 0, a ≥ 0 and

f ≥ 0, then there cannot be any pair of positive numbers α and β such that

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n = 0. (4)

The converse also holds.

Proof. If a ≥ 0, b > 0, f ≥ 0 as well as α > 0 and β > 0, since c ≥ 0, d > 0, e > 0
and f > 0, it is obvious that (4) cannot hold:

Conversely, we need to consider seven cases:

(a) Assume a ≥ 0, b < 0 and f ≥ 0, let α = −b/2, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

=
b

2
β − ab

2
+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n .

Set

H(β) =
b

2
β − ab

2
+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n .

Since limβ→0+H(β) = +∞, limβ→+∞ F (β) = −∞ and H is continuous on (0,+∞),
there exists a β0 > 0 such that H(β0) = 0. So that (4) has a solution pair α =
−b/2, β = β0 .

(b) Assume a ≥ 0, b < 0 and f < 0.

Case (i): if s > n, let α = −b/2, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

=
b

2
β − ab

2
+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n .

Set

H(β) =
b

2
β − b

2
a+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n .
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Then limβ→+∞H(β) = −∞ and

lim
β→0+

[
eβ−s + f

(
− b

2

)−m

β−n

]

= lim
β→0+

β−s

[
e+ f

(
− b

2

)−m

βs−n

]
= +∞ .

Thus limβ→0+H(β) = +∞. So there exists β0 > 0, such that H(β0) = 0 and (4)
has a solution pair α = −b/2, β = β0 .

Case (ii): if s < n, let α = −2b, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

= −bβ − 2ab+ c+ d(−2b)−r + eβ−s + f(−2b)−mβ−n .

Set H(β) = −bβ−2ab+c+d(−2b)−r+eβ−s+f(−2b)−mβ−n, then limβ→+∞H(β) =
+∞ and

lim
β→0+

[
eβ−s + f(−2b)−mβ−n

]
= lim

β→0+
β−n

[
eβn−s + f(−2b)−m

]
= −∞ .

So limβ→0+H(β) = −∞ and there exists β0 > 0 such that H(β0) = 0. Hence (4)
has a solution pair α = −2b, β = β0.

(c) Assume a < 0, b < 0 and f ≥ 0. Let β = −a/2, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

=
a

2
α− ab

2
+ c+ dα−r + e

(
−a

2

)−s

+ fα−m
(
−a

2

)−n

.

Set
H(α) =

a

2
α− ab

2
+ c+ dα−r + e

(
−a

2

)−s

+ fα−m
(
−a

2

)−n

.

Since limα→0+H(α) = +∞ and limα→+∞H(α) = −∞, there exists α0 > 0 such
that H(α0) = 0, so that (4) has a solution pair α = α0, β = −a/2.

(d) Assume a < 0, b < 0 and f < 0.

Case (i): if s > n, let α = −b/2, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

=
b

2
β − ab

2
+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n.
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Set

H(β) =
b

2
β − ab

2
+ c+ d

(
− b

2

)−r

+ eβ−s + f

(
− b

2

)−m

β−n ,

then limβ→+∞H(β) = −∞ and

lim
β→0+

[
eβ−s + f

(
− b

2

)−m

β−n

]

= lim
β→0+

β−s

[
e+ f

(
− b

2

)−m

βs−n

]
= +∞ .

Thus limβ→0+H(β) = +∞. Hence there exists β0 > 0 such that H(β0) = 0, so that
(4) has a solution pair α = −b/2, β = β0.

Case (ii): if s < n, let α = −2b, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

= −bβ − 2ab+ c+ d(−2b)−r + eβ−s + f(−2b)−mβ−n .

Set H(β) = −bβ−2ab+c+d(−2b)−r+eβ−s+f(−2b)−mβ−n, then limβ→+∞H(β) =
+∞ and

lim
β→0+

[
eβ−s + f(−2b)−mβ−n

]
= lim

β→0+
β−n

[
eβn−s + f(−2b)−m

]
= −∞ .

So limβ→0+H(β) = −∞ and there exists β0 > 0 such that H(β0) = 0. Hence (4)
has a solution pair α = −2b, β = β0.

(e) Assume a < 0, b > 0 and f ≥ 0. Let β = −a/2, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

=
a

2
α− ab

2
+ c+ dα−r + e

(
−a

2

)−s

+ fα−m
(
−a

2

)−n

.

Set
H(α) =

a

2
α− ab

2
+ c+ dα−r + e

(
−a

2

)−s

+ fα−m
(
−a

2

)−n

.

Since limα→0+H(α) = +∞ and limα→+∞H(α) = −∞, there exists α0 > 0 such
that H(α0) = 0, so that (4) has a solution pair α = α0, β = −a/2.

(f) Assume a < 0, b > 0 and f < 0. Let β = −2a, then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

= −aα− 2ab+ c+ dα−r + r(−2a)−s + fα−m(−2a)−n .
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Set H(α) = −aα−2abc+dα−r+r(−2a)−s+fα−m(−2a)−n, then limα→+∞H(α) =
+∞ and

lim
α→0+

[
dα−r + fα−m(−2a)−n

]
= lim

α→0+
α−m

[
dαm−r + f

]
= −∞ .

Thus limα→0+H(α) = −∞ and there exists a α0 > 0 such thatH(α0) = 0. Hence (4)
has a solution pair α = α0, β = −2a.

(g) Assume a ≥ 0, b > 0 and f < 0, let β = 1 then

αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

= (1 + a)α+ b+ c+ dα−r + e+ fα−m.

Set H(α) = (1 + a) + b+ c+ dα−r + e+ fα−m, then limα→+∞H(α) = +∞ and

lim
α→0+

[
dα−r + fα−m

]
= lim

α→0+
α−m

[
dαm−r + f

]
= −∞ .

Thus limα→0+H(α) = −∞ and there exists a α0 > 0 such that H(α0) = 0. Hence
(4) has a solution pair α = α0, β = 1.

In all the cases above, the solution pairs are positive. The proof of Lemma 2 is
complete. �

Similarly we have.

Lemma 3
Suppose b 	= 0, c ≥ 0, α > 0, e > 0, s < n and r 	= m. If b > 0, a ≥ 0 and

f ≥ 0, then there cannot be any pair of positive numbers α and β such that (4)
holds. The converse also holds.

Theorem 2
Suppose b 	= 0, c ≥ 0, d > 0, e > 0, r < m and s 	= n. Then every solution

of (2) is oscillatory if and only if b > 0, a ≥ 0 and f ≥ 0.

Proof. If one of the numbers a, b and f is negative, by Lemma 2, we can find a pair
of positive numbers α and β such that

αβ + aα+ bβ + c+ dα−r + eα−s + fα−mβ−n = 0 .

Then, as can easily be verified, the double sequence u = {u(i, j)} defined by u(i, j) =
αiβj is a positive solution of (2).

Conversely, suppose b > 0, a ≥ 0, f ≥ 0 and that (2) has a nonoscillatory
solution u = {u(i, j)}∞i,j=0 .We may assume without loss of generality that u(i, j) > 0
for i, j ≥ 0. But as c ≥ 0, d > 0, and e > 0, the left side of (2) is strictly positive,
which is a contradiction. The proof of Theorem 2 is complete. �
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Similarly, from Lemma 3 we have.

Theorem 3
Suppose b 	= 0, c ≥ 0, d > 0, e > 0, s < n and r 	= m, then every solution

of (2) is oscillatory if and only if b > 0, a ≥ 0 and f ≥ 0.

We remark that equation (3) will occur in a natural manner if we seek solution
of the form u = {u(i, j)} defined by u(i, j) = αiβj . Indeed, if we substitute u(i, j) =
αiβj into (1), we obtain

αiβj
{
α+ bβ + c+ dα−r + eβ−s + fα−mβ−n

}
= 0 .

Similarly, if we substitute u(i, j) = αiβj into (2) we obtain

αiβj
{
αβ + aα+ bβ + c+ dα−r + eβ−s + fα−mβ−n

}
= 0.

Example 1: Consider the equation

u(i+ 1, j) + 2u(i, j + 1) + 5u(i, j) + 5u(i− 2, j)

+ 3u(i, j − 3) + 4u(i− 4, j − 5) = 0 , i, j ≥ 5 . (5)

According Theorem 1, every solution of equation (5) is oscillatory. In fact, this
equation has an oscillatory solution u(i, j) = (−1)i+j .

Example 2: Consider the equation

u(i+ 1, j + 1) + 3u(i+ 1, j) + 3u(i, j + 1) + 2u(i, j) + 3u(i− 1, j)

+ 3u(i, j − 2) + u(i− 3, j − 4) = 0, i, j ≥ 4. (6)

According Theorem 2, every solution of (6) is oscillatory. In fact, (6) has an oscilla-
tory solution u(i, j) = (−1)ij.
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