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Abstract

The aim of the present article is to introduce and investigate topological pro-
perties by operator. We obtain good stability properties for the density condition
and the strong dual density condition by taking injective tensor products. Further
we analyze the connection to (DF)-properties by operator.

Introduction

Many function spaces are in fact injective tensor products or spaces of linear con-
tinuous mappings. In this paper we investigate the stability of the density condition
(DC) and of the strong dual density condition (SDDC) under the formation of injec-
tive tensor products of Fréchet or (DF)-spaces with a Banach space and of spaces of
linear continuous mappings from a Banach space into Fréchet or (DF)-spaces. The
density condition was introduced by S. Heinrich [10] in the context of ultrapowers of
locally convex spaces. The density condition plays an important role in the theory
of Köthe echelon spaces [1] - [3], for extensions of linear operators [8] and in the
theory of unbounded operator ∗-algebras [11].
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This article is divided into two parts. In Section 1 we introduce and investigate
the properties density condition by operator (DCO) and strong dual density condi-
tion by operator (SDDCO). By this properties we obtain good stability properties
for density condition and strong dual density condition by taking tensor products
and these properties are, in a certain sense, optimal. The method to define proper-
ties by operators was introduced by A. Peris for quasinormable spaces [15] and for
(DF)-spaces [6].

Section 2 is devoted to investigate the relations between the density condition
and strong dual density condition by operator and (DF)-spaces by operator (DFO).
(DF)-spaces by operator and the density condition present a general frame in which
the following problems of topologies of Grothendieck are solvable:

(1) Let E1, E2 be (DF)-spaces, is E1⊗εE2 a (DF)-space?
(2) Let (F1, F2) be Fréchet spaces. Can every bounded subset M of the

projective tensor product F1⊗̃πF2 be localized, i.e. there are bounded subsets
Bi ⊂ Fi, i = 1, 2 such that M ⊂ Γ(B1 ⊗B2)?

Due to J. Taskinen it is known that the answer to these problems is negative
in general. The class of (DF)-spaces by operator is related to the class of (DF)-
spaces satisfying strong dual density condition by operator and by dualization to
the class of Fréchet spaces satisfying density condition by operator. For example the
(DF) property by operator implies the equivalence of (SDDC) and (SDDCO). As
against the situation for density condition and strong dual density condition there
is no simple duality relation between density condition by operator and strong dual
density condition by operator. There exists a duality theory in the frame of (DF)-
spaces by operator, but it is impossible to construct the corresponding operators with
the present methods. Further, we will show that equivalent definitions for the strong
dual density condition give different properties by operator, see Example 2.5.(3).
Therefore it is a non-trivial problem to find the right concepts by operator. We
collect different definitions for (DF)-spaces by operator, (DFo) and (DFop) by A.
Peris, and we prove the equivalence of the definitions for large classes of spaces.

There exist applications for the strong dual density condition by operator in the
theory of unbounded operator ∗-algebras, too. This subject we are going to study
in another article.

The notation for locally convex spaces is standard. If E is a locally convex
space, U(E) stands for a basis of absolutely convex closed 0-neighborhoods. If E is
a (DF)-space, then there exists a fundamental sequence (Mk)∞k=1 of bounded sets,
abbreviated fsb, such that each set Mk is absolutely convex and closed. B(E) stands
for the system of all absolutely convex bounded sets in E. If V is an absolutely
convex set, we denote by pV the Minkowski functional of V , by p−1

V (0) the kernel
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of pV and if V is in addition absorbent, we denote by EV the quotient E/p−1
V (0).

Further FIN(E) stands for the set of all finite-dimensional subspaces of E. If E and
F are locally convex spaces, then Lb(E,F ) denotes the space of all continuous linear
mappings from E into F endowed with the topology of uniform convergence on the
bounded sets of E. We write Lb(E) for Lb(E,E). If K ⊂ E, L ⊂ F and M is a linear
subspace of Lb(E,F ), then we write W (K,L) := {T ∈ M : T (K) ⊂ L}. An operator
T ∈ L(E,F ) is called bounded if there exists a 0-neighborhood U ∈ U(E) such that
T (U) is bounded. Let C2 denote the space of Johnson. C2 is the l2-direct sum of the
spaces Fk, F

′
k with k ∈ N, where (Fk)∞k=1 is a sequence of finite-dimensional Banach

spaces which is dense in the set of all finite-dimensional Banach spaces endowed with
the Banach-Mazur distance. If X is a Banach space, then UX denotes its closed unit
ball. The linear hull of a subset M ⊂ E is denoted by [M ].

1. The density condition and the strong dual density
condition by operator

S. Heinrich introduced the density condition in the context of ultrapowers of locally
convex spaces in [10]. K. D. Bierstedt and J. Bonet intensively studied the density
condition for Fréchet spaces in [1], [2], and [3].

Definition 1. Let F denote a metrizable space and (Uk)∞k=1 a countable basis of
closed absolutely convex 0-neighborhoods in F .

(1) F is said to satisfy the density condition (DC) if the following holds:
Given a positive sequence (λk)∞k=1 and an n ∈ N, there exist m ∈ N and B ∈

B(F ) such that
m⋂

k=1

λkUk ⊂ Un + B . (1)

(2) F is said to satisfy the density condition by operator (DCO) if the following
holds:

Given a positive sequence (λk)∞k=1 and an n ∈ N, there exist m ∈ N and
bounded P ∈ L(F ) such that

(I − P )(
m⋂

k=1

λkUk) ⊂ Un . (2)

Quasinormable Fréchet spaces and Fréchet-Montel spaces are examples of spaces
satisfying (DC), see [10]. The density condition for the Köthe echelon space was
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characterized in [1] and for Fréchet domains of unbounded operators ∗-algebras in
[11]. It follows by definition, that every Fréchet space with (DCO) satisfies (DC).
The purpose of Definition 1.(2) is to obtain good permanence properties by taking
injective tensor products. Examples of spaces with (DCO) follow later. The next
lemma will be very useful for the characterization of properties by operators. It is
due to A. Peris, see [6], Lemma 3.

Lemma 2

Let E be a locally convex space which is complemented in (E′
b)

′
e, H a space of

linear mappings from the Johnson space C2 to E which contains all linear operators

with finite-dimensional range and A,C,B1, . . . , Bn absolutely convex subsets of E

such that C is closed, Bk is bounded and closed for k = 1, . . . , n and the following

property is satisfied in H:

W (UC2 , A) ⊂ W (UC2 , C) +
n∑

k=1

W (UC2 , Bk) . (3)

Then there are linear operators (Pk)nk=1 in E such that

Pk(A) ⊂ 2Bk for k = 1, . . . , n and (IE −
n∑

k=1

Pk)(A) ⊂ 2C . (4)

The next theorem characterizes the density condition by operator for a large
class of Fréchet spaces.

Theorem 3

Let F be a Fréchet space with a basis (Uk)∞k=1 of 0 -neighborhoods comple-

mented in the strong bidual F ′′. The following assertions are equivalent:

1. F satisfies the density condition by operator (DCO).

2. There exists a bounded set B ⊂ F such that for all n ∈ N and all bounded sets

M ⊂ F , we can find λ > 0 and Q ∈ L(F ) such that

Q(M) ⊂ Un and (I −Q)(M) ⊂ λB

(this is the property (DCo) in [16]).

3. X⊗εF (X⊗̃εF, XεF and Lb(X,F ), resp.) satisfies the density condition (DC)

for each Banach space X.
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Proof. (1) ⇒ (2): We define countable families

Ap :=
{ m⋂

k=1

λkUk : m,λ1, . . . , λm ∈ N and ∃P ∈ L(F ) with

C := P
( m⋂

k=1

λkUk

)
∈ B(F ) and (I − P )

( m⋂
k=1

λkUk

)
⊂ Up

}

for all p ∈ N. There exist countable families Bp := {Cp,i : i ∈ N} of bounded
subsets in F and countable families Pp := {Pp,i : i ∈ N} of operators in L(F ) for the
characterization of Ap and we find a positive double sequence (�p,i)∞p,i=1 such that
B := ∪∞

p,i=1�p,iCp,i is bounded.
Given a bounded set M ⊂ F and an n ∈ N, there exists a positive sequence

(λk)∞k=1 such that M ⊂ ∩∞
k=1λkUk. By assumption F satisfies (DCO). Thus there

exists an m ∈ N such that ∩m
k=1λkUk ∈ An. Now we choose a fit Cn,i ∈ Bn

and a fit P ∈ Pn. We define Q := I − P and λ := �−1
n,i. It follows Q(M) ⊂

(I − P )(∩m
k=1λkUk) ⊂ Un and (I −Q)(M) ⊂ P (∩m

k=1λkUk) = Cn,i ⊂ λB.
(2) ⇒ (3): This follows by [16], Proposition 11, but we include the proof for the sake
of completeness. We are going to prove the result for the injective tensor product
X⊗εF

(
⊂ Lb(X ′, F )

)
, the proof will be similar for X⊗̃εF, XεE and Lb(X,F ).

Given a Banach space X, a bounded set M ⊂ F and an n ∈ N, there exist
λ > 0 and Q ∈ L(F ) such that Q(M) ⊂ Un and (I − Q)(M) ⊂ λB. Define
B̃ := W (UX′ , B) and Q̃ := IX⊗Q ∈ L(X⊗εF ), i.e. Q̃(T ) = Q◦T ◦IX′ . We conclude
Q̃

(
W (UX′ ,M)

)
= W

(
UX′ , Q(M)

)
⊂ W (UX′ , Un) and (IX⊗F −Q̃)

(
W (UX′ ,M)

)
=

W
(
UX′ , (IF −Q)(M)

)
⊂ W (UX′ , λB) = λB̃. It follows that

∃B̃ ∈ B(X⊗εF ) ∀n ∈ N ∀M̃ ∈ B(X⊗εF ) ∃λ > 0 : M̃ ⊂ Ũn + λB̃.

This implies that bounded sets in (X⊗εF )′b are metrizable and X⊗εF has (DC),
see [1], Theorem 1.4.
(3) ⇒ (1): We are also going to prove the result for the injective tensor product.
Setting X := C2, by assumption X⊗εE

(
⊂ Lb(X ′, E)

)
satisfies (DC). We have:

∀(λk)∞k=1 positive sequence, ∀n ∈ N, ∃m ∈ N, ∃B ∈ B(F ) such that

2W
(
UX′ ,

m⋂
k=1

λkUk

)
⊂ 2

m⋂
k=1

λkW (UX′ , Uk) ⊂ W (UX′ , Un) + W (UX′ , B) .

We set A := ∩m
k=1λkUk, B1 := B and C := Un in Lemma 2. It follows that F

satisfies (DCO). �
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Example 4: (1) (DC) is equivalent to (DCO) for Köthe echelon spaces λp(A) of
order p, 1 ≤ p ≤ ∞. For a proof see Example 2.5. (1). We recall that λp(A) satisfies
(DC) if and only if the Köthe matrix A satisfies condition (D), see [1].

(2) (DC) is equivalent to (DCO) for Fréchet domains D of unbounded operator
∗-algebras. This equivalence was proved in [11], Theorem 3.2. by implicate (see the
last lines of the proof).

(3) A Fréchet space has (DCO) whenever it is quasinormable by operator (QNo)
in the sense of Peris, see [15]. For instance the space Cc(R) of all continuous functions
endowed with the compact-open topology is (QNo).

(4) Let X, Y be Banach spaces such that Y is a topological subspace of X, let
q : X −→ X/Y be the quotient map and let λ be a normal Banach sequence space.
The standard quojection of Moscatelli type is defined as:

λ(X,X/Y ) :=
{
(xn)∞n=1 ⊂ X : (‖q(xn)‖)∞n=1 ∈ λ

}

and a basis of 0-neighborhoods is given by ( 1
kWk)∞k=1, where

Wk :=
{
(xn)∞n=1 ⊂ X :

∥∥(
(‖xn‖)n<k, ( ‖q(xn)‖ )n≥k)

∥∥
λ
≤ 1

}
.

By A. Peris, see [15], Proposition 3.16, the standard quojection of Moscatelli type
F := λ(X,X/Y ) is quasinormable by operator if and only if Y is complemented in
X. The same method works for (DCO), too. It follows that F satisfies (DCO) if
and only if Y is complemented in X. Setting X := l∞ and Y := c0, then F does
not satisfy (DCO).

Now, we introduce the strong dual density condition by operator.

Definition 5. Let E denote a locally convex space with an increasing fsb (Mk)∞k=1.
(1) E is said to satisfy the strong dual density condition (SDDC), resp. dual

density condition (DDC), if the following holds:
Given any positive sequence (λk)∞k=1 and an n ∈ N, there always exist m ∈ N and
U ∈ U(E) such that

Mn ∩ U ⊂ Γ
m⋃

k=1

λkMk , resp. Mn ∩ U ⊂ Γ
m⋃

k=1

λkMk . (5)

(2) E is said to satisfy the strong dual density condition by operator (SDDCO)
if the following holds:
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Given any positive sequence (λk)∞k=1 and an n ∈ N, there always exist m ∈ N, U ∈
U(E) and linear operators (Qk)mk=1 in E such that

m∑
k=1

Qk = IE and Qk(Mn ∩ U) ⊂ λkMk , k = 1, . . . ,m . (6)

It is not hard to see, that (SDDCO) implies (SDDC). By taking polars, it follows that
the Fréchet space E satisfies the (DC) if and only if the strong dual E′

b satisfies the
(DDC). Since polars of 0-neighborhoods are σ(E′, E)-compact, (DDC) and (SDDC)
are equivalent for E′

b. A (DF)-space has (DDC) if and only if its bounded sets are
metrizable. We refer to [2] and [3] for details and examples. Clearly, for (DCO) and
(SDDCO) there is no simple duality by taking polars and adjoint operators.

Theorem 6

Let E be a (DF)-space complemented in the strong bidual E′′. The following

assertions are equivalent:

1. E satisfies the strong dual density condition by operator (SDDCO).

2. X⊗εE (X⊗̃εE, XεE and Lb(X,E), resp.) satisfies the strong dual density

condition (SDDC) for each Banach space X.

Proof. We are going to prove the result for the injective tensor product X⊗εE

(⊂ Lb(X ′, E)), the proof will be similar for X⊗̃εE, XεE and Lb(X,E).
(1) ⇒ (2): Let X be a Banach space, let (λk)∞k=1 be a positive sequence and let

n ∈ N. By assumption there exist m ∈ N, U ∈ U(E) and linear operators (Qi)mi=1 in
E such that

m∑
i=1

Qi = IE and Qi(Mn ∩ U) ⊂ λiMi , i = 1, . . . ,m .

If we define Q̃i := IX ⊗Qi ∈ Lb(X⊗εE) for i = 1, . . . ,m, then we can conclude that∑m
i=1 Q̃i = IX ⊗ ∑m

i=1 Qi = IX⊗E and

Q̃i

(
W (UX′ ,Mn) ∩W (UX′ , U)

)
= Q̃i

(
W (UX′ ,Mn ∩ U)

)

= W
(
UX′ , Qi(Mn ∩ U)

)

⊂ λiW (UX′ ,Mi) ,

for all i = 1, . . . ,m. Thus X⊗εE satisfies (SDDCO) and (SDDC).
(2) ⇒ (1): E is a complemented subspace of X⊗εE, this implies that E has

(SDDC). Then by [2] E is quasibarrelled and the strong bidual E′′ is (E′
b)

′
e. Let
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X := C2, by assumption X⊗εE
(
⊂ Lb(X ′, E)

)
satisfies (SDDC). We have: ∀(λk)∞k=1

positive sequence, ∀n ∈ N, ∃m ∈ N, ∃U ∈ U(E) such that

W (UX′ ,Mn ∩ U) ⊂ Γ
m⋃
i=1

2−1λiW (UX′ ,Mi) ,

W (UX′ ,Mn ∩ U) ⊂
m∑
i=1

W (UX′ , 2−1λiMi) .

Now we set A := Mn∩U , Bi := 2−1λiMi for i = 1, . . . ,m and C := {0} in Lemma 2.
Then we obtain linear operators (Q̃i)mi=1 in E such that

Q̃i(Mn ∩ U) ⊂ λiMi, i = 1, . . . ,m and
m∑
i=1

Q̃i|[Mn∩U ] = I[Mn∩U ] .

We define Qi := Q̃i for i = 1, . . . ,m− 1 and Qm := IE −∑m−1
i=1 Q̃i. For x ∈ Mn ∩U

immediately follows that Qm(x) = Q̃m(x). This implies

Qi(Mn ∩ U) ⊂ λiMi, i = 1, . . . ,m and
m∑
i=1

Qi = IE

and E satisfies (SDDCO). �
Remark. By Corollary 1.6. in [2] a (DF)-space E with fsb (Mk)∞k=1 has (SDDC) if
and only if for each positive sequence (λk)∞k=1, there exists U ∈ U(E) such that for
every n ∈ N we can find m ∈ N with

Mn ∩ U ⊂ Γ
m⋃

k=1

λkMk . (7)

If X⊗εE is a (DF)-space satisfying (SDDC) for each Banach space X, then we can
use (7) in the implication (2) ⇒ (1). In this case it follows that E has (SDDCO) if
and only if E satisfies the property:

∀(λk)∞k=1 pos. ∃U ∈ U(E) ∀n ∈ N ∃m ∈ N ∃(Qk)mk=1 lin. op. :
m∑

k=1

Qk = IE and Qk(Mn ∩ U) ⊂ λkMk , k = 1, . . . ,m . (8)

Example 7: (1) A (DF)-space E with fsb (Mk)∞k=1 is said to satisfy the strict
Mackey condition (s.M.c.) if

∀n ∈ N ∃m ∈ N ∀ε > 0 ∃U ∈ U(E) : U ∩Mn ⊂ εMm
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and this is equivalent to

∀(λk)∞k=1 pos. ∀n ∈ N ∃m ∈ N ∃U ∈ U(E) : U ∩Mn ⊂ λmMm .

We define linear operators by Qi := 0 for i = 1, . . . ,m − 1 and Qm := IE . This
demonstrates that E has (SDDCO) if E satisfies (s.M.c.). For instance lp+ :=
∩∞
k=1lp+ 1

k
is a quasinormable Fréchet space for 1 ≤ p < ∞, see [15], and the strong

dual lq− with 1
p + 1

q = 1 has (s.M.c.) and (SDDCO).
(2) Let X, Y be Banach spaces such that Y is a topological subspace of X

and Y has the approximation property. Further let λ be a normal Banach sequence
space with λ′ = λX . J. C. Dı́az and G. Metafune proved in [9], Theorem 2.8. the
following equivalent assertions:

(a) Y ′′ is complemented in X ′′.
(b) The quojection λ(X,X/Y ) is an (FBa)-space (for the definition see Sec-
tion 2).
(c) The strong dual λ(X,X/Y )′b is a countable direct sum of Banach spaces.
We set X := l∞ and Y := c0. By Example 4.(4) the quojection λ(X,X/Y ) does

not satisfy (DCO), but the strong dual λ(X,X/Y )′b is a countable direct sum of Ba-
nach spaces and it is not difficult to check that it has (SDDCO). See Proposition 2.2,
too.

More examples will follow in the next section.

2. Relations to the (DF)-property by operator

In this section we will study the permanence of the (DF)-property in injective tensor
products. Similarly to the method in the first section, it is possible to define (DF)-
properties by operator. Further, we describe the relations of the (DF)-properties by
operator with (DCO) and (SDDCO).

Definition 1. A locally convex space E with an increasing fsb (Mk)∞k=1 is said
to be a (DFO)-space if for every positive sequence (εk)∞k=1 and for every sequence
(Un)∞n=1 of 0-neighborhoods in E, there are U ∈ U(E) and (Sk)∞k=1 ⊂ L(E) such
that

Sk(U) ⊂ εkMk , (IE −
n∑

k=1

Sk)(U) ⊂ Un k, n ∈ N . (9)

Remark. From the characterization of (DF)-spaces given by Bierstedt and Bonet in
[3], Lemma 5.A., we deduce that a (DFO)-space is always a (DF)-space:
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A locally convex space is a (DF)-space if and only if it has an increasing
fsb (Mk)∞k=1 such that for every positive sequence (εk)∞k=1 and for every sequence
(Un)∞n=1 of 0-neighborhoods in E, there is U ∈ U(E) such that

U =
∞⋂

n=1

( n∑
k=1

εkMk + Un

)
. (10)

We get the following simple hereditary properties for (DFO)-spaces and spaces satis-
fying (SDDCO). Recall that a subspace F of a locally convex space E is called large
if for every bounded set B in E there is a bounded set M in F such that B ⊂ M̄ .

Proposition 2

1. Suppose E is a (DFO)-space (resp., has (SDDCO)) and F is a complemented

subspace of E. Then F is a (DFO)-space (resp., has (SDDCO)).

2. Every normed space is a (DFO)-space satisfying (SDDCO).

3. The countable direct sum of (DFO)-spaces (resp., of spaces satisfying (SD-

DCO)) is a (DFO)-space (resp., has (SDDCO)).

4. Let F be a (DFO)-space (resp., has (SDDCO)) and a large subspace of a com-

plete locally convex space E. Then E is a (DFO)-space (resp., has (SDDCO)).

Proof. We are going to prove (3) for the (DFO) property. Let E = ⊕∞
i=1Ei. Given

a positive sequence (εk)∞k=1 and a sequence (Vk)∞k=1 = (⊕∞
i=1Ui,k)∞k=1 ⊂ U(E), we

obtain an increasing fsb for E by Mk := ⊕k
i=1Mi,k−i+1, where (Mi,k)∞k=1 is an

increasing fsb for Ei. We define λi,k := εk+i−1 and we choose Ui ∈ U(Ei), Ui ⊂ Ui,i

and Si,k ∈ L(Ei) with

Si,k(Ui) ⊂ λi,kMi,k−i+1 for i ≤ k and
(
IEi

−
n∑

k=i

Si,k

)
(Ui) ⊂ Ui,n .

Setting V := ⊕∞
i=1Ui and Sk := ⊕k

i=1Si,k, it is easy to check that Sk ∈ L(E) are the
desired mappings. �

Theorem 3

Let E be a (DF)-space with an increasing fsb (Mk)∞k=1 complemented in (E′
b)

′
e.

The following assertions are equivalent:

1. E is a (DFO)-space.

2. E satisfies the following condition:
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Given any positive sequence (εk)∞k=1 and any sequence (Uk)∞k=1 ⊂ U(E), there
always exists U ∈ U(E) such that for all n ∈ N there exists (Sn

k )nk=1 ⊂ L(E)
such that

Sn
k (U) ⊂ εkMk ,

(
IE −

n∑
k=1

Sn
k

)
(U) ⊂ Un n ∈ N, k = 1, . . . , n

(this is the property (DFop) in [6]).
3. X⊗εE (X⊗̃εE, XεE and Lb(X,E), resp.) is a (DF)-space for each Banach

space X.

Remark. The equivalence (2) ⇔ (3) was proved in [6] for the case Lb(X,E). It is a
consequence of the characterization of (DF)-spaces by (10) and of Lemma 1.2. The
direction (1) ⇒ (3) was proved in [16], Proposition 7 and Theorem 13.

Proof. (2) ⇒ (1): Given a positive sequence (εk)∞k=1 and a sequence (Uk)∞k=1 ⊂
U(E), we choose a new sequence (λk)∞k=1 with 0 < λk ≤ εk for all k ∈ N and∑m

k=n λkMk ⊂ Un for all m,n ∈ N with n < m. By assumption there exist U ∈ U(E)
and (Sn

k )nk=1 ⊂ L(E) such that

Sn
k (U) ⊂ λkMk ,

(
IE −

n∑
k=1

Sn
k

)
(U) ⊂ Un n ∈ N, k = 1, . . . , n . (11)

We define Sn
k := 0 for k > n. Let D be any free ultrafilter on N, i.e. it contains all

sets {n ∈ N : n0 ≤ n} for each n0 ∈ N. We define S̃k ∈ L
(
E, (E′

b)
′
e

)
by setting

S̃k(x) := σ(E′′, E)- lim
D

Sn
k (x) x ∈ E, n ∈ N .

Since Mk is σ(E′′, E)-relatively compact in E′′, the linear operator S̃k is well-defined.
The first relation in (11) implies S̃k(U) ⊂ λkM

◦◦
k ⊂ εkM

◦◦
k for all k ∈ N. Let x be

an element in U . It follows
(
IE −

m∑
k=1

S̃k

)
(x) = σ- lim

D

(
IE −

m∑
k=1

Sn
k

)
(x)

= σ- lim
D

(
IE −

n∑
k=1

Sn
k

)
(x) + σ- lim

D

( n∑
k=m+1

Sn
k

)
(x)

where the limit is taken over n and we can assume n > m. Since (IE −∑n
k=1 S

n
k )(x) ∈ Un ⊂ Um for all n > m and (

∑n
k=m+1 S

n
k )(x) ∈ ∑n

k=m+1 λkMk ⊂
Um for all n > m we get (IE − ∑m

k=1 S̃k)(U) ⊂ 2U◦◦
m for all m ∈ N. By assumption

E is a complemented subspace of (E′
b)

′
e and let P be the projection onto E. We set

Sk := PS̃k for all k ∈ N. Then E is a (DFO)-space. �
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Following Taskinen we say that a pair of Fréchet spaces (F1, F2) satisfies pro-
perty (BB) if any bounded subset M of the complete projective tensor product
F1⊗̃πF2 is localizable, i.e. there are bounded subsets Bi ⊂ Fi, i = 1, 2 such
that M ⊂ Γ(B1 ⊗ B2). It is well-known that, as a consequence of property (BB),
(F1⊗̃πF2)′b ∼= Lb

(
F1, (F2)′b

)
topological. We say that a Fréchet space F is an (FBa)-

space if (X,F ) satisfies property (BB) for all Banach spaces X. The next theorem
uncovers the relations between the properties (FBa), (DCO), (SDDCO) and (DFO).
It is remarkable that in the context of the strong dual density condition the (DFO)
property is characterizable by a finite sum of operators and we obtain the charac-
terization by exchanging quantors in the definition of (SDDCO).

Theorem 4

Let F be a Fréchet space and let E := F ′
b be the strong dual of F . Then the

following are equivalent:

1. F is an (FBa)-space satisfying the density condition (DC).

2. F is an (FBa)-space and F ′′ satisfies the density condition by operator (DCO).

3. E is a (DFO)-space satisfying the strong dual density condition (SDDC).

4. E is a (DFO)-space satisfying the strong dual density condition by operator

(SDDCO).

5. Lb(X,E) is a bornological (DF)-space for each Banach space X.

6. E satisfies the following condition:

Given a positive sequence (λk)∞k=1, there always exists U ∈ U(E) such that for

all n ∈ N, there exist m ∈ N and linear operators (Qk)mk=1 in E such that

m∑
k=1

Qk = IE and Qk(Mn ∩ U) ⊂ λkMk , k = 1, . . . ,m

(this is property (DFo1,2) in [15]).

Proof. (3) ⇒ (4), (5): By Theorem 3 we know that Lb(X,E) is a (DF)-space for
each Banach space X. Since E = F ′

b satisfies (SDDC), it follows that F satisfies
(DC) and (X,F ) has the property (BB) by Proposition 4.2.(i) in [5]. This implies
(X⊗̃πF )′b ∼= Lb(X,F ′

b) holds topologically and Lb(X,E) is the strong dual of a
Fréchet space. Since the bounded sets of F ′

b are metrizable, it follows that Lb(X,F ′
b)

has a fundamental sequence of bounded subsets which are metrizable. That gives
that Lb(X,E) satisfies (DDC). Since Lb(X,E) is the strong dual of a Fréchet space,
it follows that Lb(X,E) satisfies (SDDC) and is bornological for each Banach space
X. By Theorem 1.6 the space E satisfies (SDDCO).
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(5) ⇒ (1): Since Lb(X,E) is bornological for each Banach space X, it follows
that Lb(l1, E) ∼= l∞(E) is bornological and Theorem 1.4. in [1] gives that E satisfies
(SDDC). Hence F satisfies (DC). Proposition 4.2.(i) in [5] gives again that the pair
(X,F ) has the property (BB) for an arbitrary Banach space X and F is an (FBa)-
space.

(1) ⇒ (3): Clearly, E satisfies the strong dual density condition (SDDC). If
(X,F ) has the property (BB), then we have (X⊗̃πF )′b ∼= Lb(X,F ′

b) holds topo-
logically and Lb(X,E) is a (DF)-space for each Banach space X. Hence E is a
(DFO)-space.

Since the direction (4) ⇒ (3) is trivial, we get the equivalences (1) ⇔ (3) ⇔
(4) ⇔ (5).

(1) ⇔ (2): Since the (DC) of F ′′ implies the (DC) of F , we have only to prove
the direction ⇒. Let F be an (FBa)-space satisfying (DC). By (1) ⇒ (3) E is a
(DFO)-space, i.e.

∀(εk)∞k=1 pos. ∀(Un)∞n=1 ⊂ U(E) ∃U ∈ U(E) ∃(Sk)∞k=1 ⊂ L(E) :

Sk(U) ⊂ εkMk and
(
IE −

m∑
k=1

Sk

)
(U) ⊂ Um k,m ∈ N . (12)

By assumption E has (SDDC), it follows that E is quasibarrelled. We get for
F ′′ = E′

b by dualization of (12):

∀(εk)∞k=1 pos. ∀(Bn)∞n=1 ⊂ B(F ′′) ∃B ∈ B(F ′′) ∃(Qk)∞k=1 ⊂ L(F ′′) :

Qk(Vk) ⊂ εkB and
(
IF ′′ −

m∑
k=1

Qk

)
(Bm) ⊂ B k,m ∈ N (13)

where (Vk)∞k=1 = (M◦
k )∞k=1 is a basis of 0-neighborhoods in F ′′ and Qk := S′

k are the
adjoint operators.

Now, let (λk)∞k=1 be a positive sequence and let n0 ∈ N. Since F ′′ also has (DC)
and the bounded set in the Definition 1.1.(1) can be chosen not depending on n, see
[10], 1.4., we obtain

∃B0 ∈ B(F ′′) ∀n ∈ N ∃m ∈ N :
m⋂

k=1

λkVk ⊂ Vn +B0 . (14)

We set Bk := kB0. By (13) we find B ∈ B(F ′′) and (Qk)∞k=1 ⊂ L(F ′′) such that

Qk(Vk) ⊂ 2−kλ−1
k B ,

(
IF ′′ −

m′∑
k=1

Qk

)
(B0) ⊂

1
m′ B k,m′ ∈ N . (15)
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We choose m′ with 1
m′B ⊂ 1

2Vn0 .There exists an n′∈N with (IF ′′−∑m′

k=1 Qk)(Vn′) ⊂
1
2Vn0 . Now, we find an m′′ ≥ m′ such that (14) is satisfied for n′, i.e.

m′′⋂
k=1

λkVk ⊂ Vn′ +B0 . (16)

We set P :=
∑m′

k=1 Qk ∈ L(F ′′). By (15) it follows that

P
( m′′⋂

k=1

λkVk

)
⊂

( m′∑
k=1

Qk

)( m′⋂
k=1

λkVk

)
⊂

m′∑
k=1

λkQk(Vk) ⊂ B

and P is a bounded operator. Further, (15) and (16) imply

(I − P )
( m′′⋂

k=1

λkVk

)
⊂ (I − P )(Vn′) + (I − P )(B0) ⊂

1
2
Vn0 +

1
m′ B ⊂ Vn0

and as desired F ′′ has (DCO).
(4) ⇒ (6): By assumption X⊗εE is a (DF)-space satisfying (SDDC). The

assertion follows by the remark after the Theorem 1.6.
(6) ⇒ (3): An idea for the proof of this can be found in [15], Theorem 4.2. There

is another argument. Let us be given (λk)∞k=1 positive sequence and (Uk)∞k=1 ⊂ U(E).
Define a new sequence (εk)∞k=1 with 0 < εk < λk such that

∑q
k=p εkMk ⊂ Up for

all p, q ∈ N with p < q, where (Mk)∞k=1 is an increasing fsb of E such that each set
Mk is absolutely convex and closed. By assumption

∃U ∈ U(E) ∀n ∈ N ∃m(n) ∈ N ∃(Qn
k )m(n)

k=1 lin. op. :
m(n)∑
k=1

Qn
k = IE and Qn

k (Mn ∩ U) ⊂ εkMk , k = 1, . . . ,m(n) .

We set Qn
k := 0 for k > m(n). Let D be a free ultrafilter on N. Now we define a

linear continuous operator by Qk(x) := σ(E,F )- limD Qn
k (x) and it follows Qk(U) ⊂

εkMk ⊂ λkMk for all k ∈ N, remark that Mk is σ(E,F )-compact. Fix x ∈ U . Then

(
IE −

p∑
k=1

Qk

)
(x) = σ- lim

D

(
IE −

p∑
k=1

Qn
k

)
(x) = σ- lim

D

( ∑
k=p+1

Qn
k

)
(x)

⊂
∑

k=p+1

εkMk ⊂ Up

and this shows the required condition for E to be a (DFO)-space. �
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Remarks. (1) The equivalences (1) ⇔ (3) (with (DFop)) ⇔ (5) can be found in [6],
too.

(2) In the above proof we have shown, that an (FBa)-space satisfying (13) has
always (DCO). A. Peris and M. J. Rivera proved that an (FG)-space satisfying (DC)
has (DCo), see [16], Proposition 9. If the space is complemented in its strong bidual,
then (DCo) is equivalent to (DCO) by Proposition 1.3. Moreover, it is unknown if
the property (13) is equivalent to the (FG) property.

Example 5: (1) Let F := λp(A) be a Köthe echelon space of order p with 1 ≤ p ≤
∞. By [9], Theorem 3.1 F is an (FBa)-space. Using Theorem 4 F satisfies (DCO)
if and only if F has (DC). Recall that λ1(A) is a complemented subspace of λ1(A)′′

if λ1(A) has (DC) and that λ∞(A) is the strong bidual of the (FBa)-space λ0(A).
Let E := λp(A)′b. Then E is a (DFO)-space and we conclude that (SDDC) and
(SDDCO) are equivalent conditions for E.

(2) A locally convex space E is called a (gH)-space if its topology can be defined
by a family of Hilbertian seminorms. Then we can choose an fsb (Mk)∞k=1 such that
each Mk is a Hilbert disc, see [13], Corollary 3.8. Now, let E be a reflexive (gH)-
(DF)-space. By R. Hollstein [12], Proposition 3.3 we have for a Banach space X

X⊗εE = indk(X⊗εEMk
) ,

where EMk
is the normed space associated to the Hilbert disc Mk. It follows that

X⊗εE is a bornological (DF)-space for each Banach space X and by Theorem 4 E

is a (DFO)-space.
(3) Let F := lp+ = ∩∞

k=1lp+ 1
k

with 1 ≤ p < ∞. By A. Peris F is not an
(FBa)-space but E := F ′

b satisfies (SDDCO), see Example 1.7.(1). Using Theorem 4
it turns out that we cannot exchange the quantors “∀n” and “∃U” in the definition
of (SDDCO) contrary to the situation for (SDDC).

(4) Let F be the standard quojection of Moscatelli type as in Example 1.7.(2).
We set again X := l∞ and Y := c0. Then F is an (FBa)-space satisfying (DC).
By Example 1.4.(4) F does not satisfy (DCO), but F ′′ is a countable product of
Banach spaces and F ′′ satisfies (DCO). This is contrary to the situation for (DC).
For a Fréchet space G we have always the implication: G′′ satisfies (DC) ⇒ G

satisfies (DC).
(5) Let E := Lb(λ1(A), lq−) where λ1(A) is not quasinormable and 1 < q < ∞.

Since lq− = (lp+)′b with 1
p + 1

q = 1 and (λ1(A), lp+) has property (BB), see [2], it

follows E ∼=
(
λ1(A)⊗̃πlp+

)′
b
. Thus E is a dual of a Fréchet space, but not (DFO)

and not satisfying (s.M.c.). Problem: Is (SDDC) equivalent to (SDDCO) for E?



336 Heinrichs

Proposition 6

Let E be a complete (DF)-space complemented in the strong bidual E′′ with

a fsb (Mk)∞k=1 such that Ek := EMk
are Banach spaces for all k ∈ N. Then are

equivalent:

1. E is (DFO)-space satisfying the strong dual density condition (SDDC).

2. The canonical mapping Lb(X,
⊕∞

k=1 Ek) −→ Lb(X,E) is a topological surjec-

tion for each Banach space X.

Proof. (1) ⇒ (2): Since E is a (DFO)-space satisfying (SDDC), it follows that
X⊗εE is a (DF)-space satisfying (SDDC) for all Banach spaces X. By the remark
after Theorem 1.6 the property (8) is valid. The rest is due to [15], the proof of
Theorem 4.2.

(2) ⇒ (1): By assumption Lb(X,E) is a quotient of the bornological (DF)-space
Lb(X,

⊕∞
k=1 Ek) =

⊕∞
k=1 Lb(X,Ek). Then Lb(X,E) is a bornological (DF)-space,

too. By Theorem 3 it follows that E is a (DFO)-space. Since l∞(E) = Lb(l1, E) is
bornological, Theorem 1.5. in [1] gives that E satisfies (SDDC). �
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