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Abstract

In this paper, we prove that, for every ordered space (ordered set with its order
topology i.e. with the topology generated by the family of all intervals ]←, a[
and ]a,→ [) and more generally for every line (space homeomorphic to a sub-
space of an ordered space and called in (7) generalized ordered space), the small
inductive dimension (ind), the large inductive dimension (Ind), the covering di-
mension (dim) and the nonstandard definition or thickness (ep) coincide. More
precisely, we prove, that for every line X �= ∅, we have:

1) ep X = ind X = Ind X = dim X = 0 if and only if X is totally disconnected,
2) ep X = ind X = Ind X = dim X = 1 if and only if X is not totally disconnected.

Introduction

We will consider the following four definitions of the topological dimension of a
Hausdorff space: three classical - the small inductive dimension (ind), the large
inductive dimension (Ind) and the covering dimension (dim) - and a nonstandard
definition or thickness (2) (denoted by ep for épaisseur in French). We recall that, if
we except the case of separable metric spaces, these four definitions do not necessarily
coincide: thus, there exists (8) a non separable metric space X such that indX = 0
(and therefore (2) such that ep X = 0) and IndX = dimX = 1, and (2) a (non
metric) compact space X such that indX = Ind X < epX. We recall lastly that
every space X such that indX = 0 is totally disconnected (i.e. such that each
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connected component is a one-point set) but there exists (9) a totally disconnected
space (which is not compact Hausdorff of course) such that indX > 0.

About ordered spaces, if we except a statement of H. Herrlich (see Remark
5.1.4), it seems there is no general result. Here, we prove that, for every non empty
ordered space and more generally for every non empty line X, we have:

1) epX = indX = IndX = dimX = 0 if and only if X is totally disconnected,
2) epX = indX = IndX = dimX = 1 if and only if X is not totally discon-

nected.

Terminology: Let X be an ordered set.

We will call on the one hand interval of X any non empty subset I of X such
that:

∀x ∈ I ∀y ∈ I ∀z ∈ X, x ≤ z ≤ y =⇒ z ∈ I.

We will say on the other hand that an interval I of X is unlimited on the left
(resp. on the right) if and only if:

∀x ∈ I ∀y ∈ X, y ≤ x (resp. y ≥ x) =⇒ y ∈ I.

1. Notion of line

We recall that:

– an ordered space is a hereditarily normal space (see for example (10)) but is not
necessarily a paracompact space and therefore not necessarily a Lindelöf space
as shown by the example of the ordinal space Ω = [0, ω1[.

– If A is a subset of an ordered space X, the induced topology on A is finer than
the order topology on A.

Let us note that, if A is not an interval, it might happen that these two topolo-
gies are different as shown by the example where X = R and A = [0, 1[∪{2} : A is
compact Hausdorff for the order topology (because it is homeomorphic to [0, 1]) but
A is not a compact Hausdorff subspace of R, whence the following definition.

Definition 1.1. We will say that a topology on an ordered set X is linear if it is
finer than the order topology on X and moreover generated by a set of left or right
unlimited intervals, and we will call line every ordered set with a linear topology.

It follows from this definition that every ordered space and every subspace of
an ordered space are lines. Conversely, one can prove (see (3) or (7)) that every line
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is homeomorphic to a subspace of an ordered space. Let us note this result implies
that every line is a normal space.

Definition 1.2. We will say that an interval of a line X is open (resp. closed) if it
is an open (resp. closed) subset of X.

Proposition 1.3

Every connected subset of a line is an interval.

Proof. Let C be a subset of a line X and let us suppose C is not an interval. There
exists then (x, y, z) such that x < z < y, (x, y) ∈ C × C and z /∈ C. Since C is the
union of the two non empty disjoint open subsets C∩ ] ←, z[ and C∩ ]z,→ [, C is
not a connected subset of X. �

2. Constituents of a subset

Let A be a subset of an ordered set X. Let us denote by I(A) the non empty
set (φ ∈ I(A)) consisting of all intervals of X contained in A. Thus, I(A) is a
partially ordered set such that every chain in I(A) has an upper bound, whence the
definition: We will call constituents (or convex components) of A the maximal non
empty elements of I(A).

Let us note it follows from this definition that the set of all constituents of A
is a partition of A and that every non empty interval contained in A is contained in
one and only one constituent of A.

Proposition 2.1

Let A be a subset of a line X. Then:

a) A is an open subset of X if and only if each constituent of A is an open subset

of X.

b) If A is a closed subset of X, each constituent of A is also a closed subset of A.

Proof. a) The condition is obviously sufficient since every union of open subsets is
an open subset. Let us prove now it is also necessary. Let I be a constituent of A
and x be an element of I. Since A is open, there exists an open interval J such that
x ∈ J and J ⊂ A. Since I ∪ J is an interval such that I ⊂ I ∪ J ⊂ A and since I is
maximal, we have I ∪ J = I and therefore J ⊂ I. Consequently, I is an open subset
of X.
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b) Let I be a constituent of A and let x ∈ I. Since A is a closed subset, x
belongs to A. Consequently I ∪{x} is an interval of X contained in A and therefore
such that I ∪ {x} = I, which implies I is a closed subset of X.

Let us note that it might happen that all constituents of A are closed but A is
not closed as shown by the following example where X = R and A = Q : Q is not
a closed subset of R but all constituents of Q are closed since these are one-point
sets. �

Proposition 2.2
Let C be a non empty connected subset of a line X.
If C is contained in an open subset O of X, then C is contained in one and only

one constituent of O.

It is an immediate consequence of the definition of constituents and of 1.3.

Corollary 2.3
Every connected subset of a line X has a neighborhood base consisting of open

intervals.

3. Borders of an interval

Definition 3.1. Let I be an interval of a line X. We will call borders of I the
elements of I \ I, when they exist.

Let us note that an interval is without border if and only if it is closed.

Proposition 3.2
Every interval I of a line X has at most two borders, one on the left, the other

on the right.

Proof. Let us suppose x < y < I. Then ]←, y[ ∩ I = ∅ and therefore x is not a left
border of I. In the same way, if I < y < x, x is not a right border of I. �
Examples. Let us suppose that X = Q , I =]0, 2[, J = {r ∈ Q : r2 < 2}.

Then I has two borders 0 and 2, J has no border, while I ∩ J has a left border
but no right border.

Proposition 3.3 (“Shortening” of an interval.)
Let X be a line, I be an interval of X, y be a left (resp. right) border of I, and

J be an open-closed neighborhood of y. Then I \ J is an interval without left (resp.
right) border.
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Proof. Let us note it follows from the hypothesis that I \ J is indeed an interval.
Let us suppose that I \ J has a left border z. Then z ∈ (I \ J) \ (I \ J). Since I is
open, we have I \ J ⊂ I \J, which implies that z ∈ (I \J)\ (I \J) and consequently
z ∈ (I \ I) \ J. It follows then from 3.2 that necessarily y = z, which is impossible
because y ∈ J. �

4. Meatus of a line

Definition 4.1. We will call meatus of an ordered set X any pair (I, J) of comple-
mentary intervals such that I < J (i.e. such that : ∀x ∈ I ∀y ∈ J, x < y).

Among the meatus, we will distinguish:
– the improper meatus: these are the meatus (φ,X) and (X,φ),
– the proper meatus and among these:

a) the gaps: these are the meatus (I, J) where I and J are not empty, I having
no last element and J no first element.

b) the holes: these are the meatus (I, J) where I has a last element and J a
first element.

c) the left faults: these are the meatus (I, J) where I is not empty but without
last element and J has a first element.

d) the right faults: these are the meatus (I, J) where I has a last element and
J is not empty but without first element.

Let us note it follows from these definitions that:
– In an ordered set, every element x defines a left fault (] ←, x[, [x,→ [) and a

right fault (]↔, x], ]x,→ [).
– In R, there are no holes and no gaps.

Definition 4.2. We will say that a meatus (I, J) of a line X is open if I and J are
both open (and therefore both closed) for the linear topology on X.

Remark 4.3. It follows from these definitions that improper meatus, gaps and holes
are always open meatus but left and right faults are not necessarily open: thus, no
fault is open for the order topology. Moreover, let us note that, if (I, J) is a left
fault (resp. a right fault) of a line X, the interval I (resp. J) is always open.

Lemma 4.4.1

Let X = [a, b] be a line with a first element a and a last element b. If X is not

a connected space, there exists a partition of X in two closed subsets A and B such

that a ∈ A and b ∈ B.
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Proof. Since X is not connected, there exists a partition of X in two closed subsets
F and G. Let us suppose a ∈ F.
First case: b ∈ G. We set then A = F and B = G.

Second case: b ∈ F. Let then c be an element of G (such an element exists since
G �= ∅.) We have a < c < b and we set A = F ∩ [a, c] and B = G ∪ [a, b]. A and B

are then two non empty disjoint closed subsets of X such that A ∪ B = X, a ∈ A

and b ∈ B. �

Lemma 4.4.2

Let X = [a, b] be a line with a first element a and a last element b. If X is not

a connected space, there exists a partition of X in two complementary open-closed

intervals I < J, i.e. an open proper meatus (I, J) of X.

Proof. It follows from 4.4.1 there exists a partition of X in two closed subsets A
and B such that a ∈ A and b ∈ B. Let us consider then the following intervals
I =

⋃
x∈A[a, x] and J = X \ I. These two intervals are complementary and such

that I < J, A ⊂ I and J ⊂ B. Let us prove they are open-closed subsets of X. This
result is obvious if the meatus (I, J) is a gap or an hole. Let us suppose now (I, J)
is a fault.

i) If (I, J) is a right fault, I has a last element s and therefore I = [a, s].
Consequently s ∈ A and therefore I is closed. Since s /∈ B, we have J = B ∩ [s, b],
which implies that J is also closed.

ii) If (I, J) is a left fault, I is, from 4.3, an open subset of X. Let us prove J

is also an open subset of X. Let t be the first element of J. Since t /∈ A (because
J ⊂ B) and since A is a closed subset of X, there exists an open neighborhood V of
t such that V ∩A = ∅. Consequently, we have V ⊂ J and therefore J is open. �

Definition 4.4.3. We will say that a line X is disconnected between two subsets A
and B if there exists an interval [x, y] which is not connected and has an extremity
in A and the other in B.

Lemma 4.4.4

If a line X is disconnected between to subsets A and B, there exists an open

meatus (U, V ) of X such that one of the two intervals U and V meets A, and the

other meets B.
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Proof. Since X is disconnected between A and B, there exists (exchanging if neces-
sary A and B) an interval [x, y] which is not connected and such x ∈ A and y ∈ B. It
follows from 4.4.2, there exist two complementary intervals I and J of [x, y] such that
I < J, x ∈ I and y ∈ J. Let us put then U =]→, x] ∪ I and V = J ∪ [y,→ [. These
two intervals are closed and complementary in X and such that U < V, U ∩ A �= ∅
and V ∩B �= ∅. �

Proposition 4.4

A line X is a connected space if and only if its only open meatus are its improper

meatus.

Proof. The condition is obviously necessary. It is also sufficient. Indeed, if X is not
a connected space, X is disconnected between two points x and y. Consequently,
from 4.4.4, there exists an open meatus (U, V ) such that x ∈ U and y ∈ V and
therefore a proper meatus. �

Proposition 4.5

A non empty ordered space X is compact Hausdorff if and only if X has a first

and a last element and has no gaps.

Proof. i) Let us suppose X is compact Hausdorff. Then
⋂

x∈X ] ←, x] and
⋂

x∈X [x,→ [ are one-point sets, so that X has a first and a last element. Let
now s = (I, J) be a proper open meatus of X. Then I and J are compact Hausdorff
subsets of X which implies, in particular, that I has a last element and J has a first
element, so that s in a hole.

ii) Conversely, let us suppose X has a first element a and a last element b, but
is not compact. There exists then a set E consisting of open intervals covering X

and such that no finite subset of E covers X. Let then A be the set of all points
of X which are connected to a by a finite chain of intervals U1, . . . , Un belonging
to E and such that a ∈ U1 , Ui ∪ Ui+1 is an interval for every i ∈ {1, . . . , n − 1},
and x ∈ Un. By construction a ∈ A, b /∈ A and A is an open-closed interval.
Consequently, s = (A,X \A) is a proper open meatus of X. It is not a hole because,
if not, X \A would have a first element c and this element c could be connected to
a. Consequently, s is a gap. �

Remark 4.6. It follows from the definition of a linear topology that every compact
Hausdorff line is necessarily a compact Hausdorff ordered space.
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5. Characterization of zero-dimensional lines

Let X be a non empty topological space. We recall that:

(1) IndX = 0 if and only if every closed subset of X has a neighborhood base
consisting of open-closed subsets of X,

(2) indX = 0 if and only if every point of X has a neighborhood base consisting of
open-closed subsets of X,

(3) X is totally disconnected if and only if all connected components of X are one-
pointsets,

(4) X is punctiform if and only if X does not contain any continuum (a connected
and compact Hausdorff subset) of cardinality larger than one.

We recall also it follows from classical results in dimension theory (see for ex-
ample (5)) that if:

a) X is a Hausdorff space, we have (1) =⇒ (2) =⇒ (3) =⇒ (4)
b) X is a locally compact Hausdorff space, we have (2)⇐⇒ (3)⇐⇒ (4),
c) X is a Lindelöf Hausdorff space, we have (1)⇐⇒ (2),
d) X is a compact Hausdorff space, we have (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (4).

Theorem 5.1

For every non empty line X, the following assertions are equivalent:

(1) IndX = 0, (2) indX = 0,

(3) X is totally disconnected, (4) X is punctiform.

Proof. Since every line is a Hausdorff space, it suffices to prove (4) =⇒ (3) =⇒
(2) =⇒ (1).

Let us note that, since a line is neither necessarily a locally compact space, nor
necessarily a Lindelöf space, we cannot use the previous results.

5.1.1 Every non empty punctiform line is totally disconnected.

Proof. Let C be a connected component of X and x ≤ y two points of C. It follows
from 4.4 and 4.5 that [x, y] is a continuum. Consequently, since X is punctiform,
we have x = y and therefore C is a one-point set.

5.1.2 If X is a non empty totally disconnected line, then indX = 0.
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This assertion is an obvious consequence of the following lemma:

Lemma

In a line X, every connected component has a neighborhood base consisting of

open-closed intervals.

Proof of the lemma: Let C be a connected component of X and O be an open
neighborhood of C. It follows from 2.3 there exists an open interval I such that
C ⊂ I ⊂ O.

If I is without border, I is closed and all is said.
If not, let us suppose I has a border y, on the left for example.
Since y /∈ I and therefore y /∈ C , C ∪ {y} is not a connected subset of X so

that X is disconnected between y and C. Consequently, from 4.4, there exist two
open-closed complementary intervals U and V of X such that U < V, y ∈ U and
V ∩C �= ∅. Since C is connected, we deduce from this that U ∩C = ∅ and therefore
C ⊂ V. Consequently, V ∩I is an open interval containing C and contained in O and
without border. We shorten also, if necessary, V ∩ I on the right. We obtain, in this
way, an open-closed (because without border) interval containing C and contained
in O. �

5.1.3 If X is a non empty line such that indX = 0, then IndX = 0.

Proof. Let F be a closed subset of X and U be an open neighborhood of F. It follows
from 2.1 that U is the union of all its constituents (which are open intervals). Let
then I be a constituent of U such that I ∩ F �= ∅.

i) If I is without border, I is closed and we keep it without further modification.
ii) If not, let us suppose I has a border y, on the left for example. Since y /∈ U

and therefore y /∈ F , and since indX = 0, there exists an open-closed interval Jy
containing y and such that Jy ∩ F = ∅. We consider then the 〈〈 shortened 〉〉interval
I \ Jy. It follows from 3.3 that I \ Jy is without left border. We shorten also, if
necessary, on the right. In this way, we replace I by an open interval L, without
border and therefore also closed, such that L ⊂ I and F ∩ L = F ∩ I.

Let V be the union of all those intervals L thus obtained. Then V is an open
subset of X such that F ⊂ V ⊂ U. Let us prove V is also a closed subset of X. Let
x ∈ X\V. Since x /∈ F, there exists an open interval J such that x ∈ J and J∩F = ∅.
This interval J meets at most two intervals L (indeed, if not, it would contain one
of these and consequently would meet F.) Since the union A of these two intervals
L is a closed subset which does not contain x, there exists then a neighborhood W
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of x such that W ⊂ J and W ∩ A = ∅ and therefore such that W ∩ V = ∅, which
implies W ⊂ X \ V. Consequently, X \ V is an open subset of X and therefore V is
a closed subset of X. �

Remark 5.1.4. In (6), H. Herrlich gives a similar result for ordered space but his
proof is not very convincing. Indeed, he claims, without any justification, that, if
an open interval I contains a closed subset F , there exists an open-closed interval
J such that F ∩ I ⊂ J ⊂ I. Now, the existence of such an interval J is not quite
obvious. Indeed, his J is our L.

6. The coincidence theorem for lines

Lemma 6.1

In a line, every connected subset of cardinality larger that one has a non empty

interior.

Proof. Let a < b be two points of a connected subset C of a line X. Since [a, b] is
connected Hausdorff, there exists a point c of X such that c ∈]a, b[. Consequently
the interior of C is not empty. �

Lemma 6.2

For every open subset U of a line X, we have Ind(FrU) = 0 (where FrU

denotes the boundary of U in X).

Proof. Since the interior of F = FrU is empty, it follows from 6.1, that every
connected subset of F is of cardinality at most one. Consequently, F is totally
disconnected, which implies IndF = 0 from 5.1. �

Proposition 6.3

For every line X, we have ep X ≤ 1 and IndX ≤ 1 and therefore indX ≤ 1 and

dimX ≤ 1.

Proof. i) Let B be the base of X consisting of all open intervals. Since ep B ≤ 1, we
have ep X ≤ 1 (see (2)).

ii) It follows immediately from 6.2 that IndX ≤ 1, which implies indX ≤ 1.
Moreover, since X is a normal space, we have (see for example (5)) dimX ≤ IndX

and therefore dimX ≤ 1. �
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Theorem 6.4 The coincidence theorem

For every line X, we have ep X = indX = IndX = dimX ∈ {−1, 0, 1}. More

precisely, if t(X) denotes the common value of these four dimensions, we have:

1) t(X) = −1 if and only if X is empty,
2) t(X) = 0 if and only if X is totally disconnected,
3) t(X) = 1 if and only if X is not totally disconnected.

Proof. 1) because each for these four dimensions is equal to −1 if and only if X is
empty.

2) On one hand, it follows from 5.1 that the assertions 〈〈 X is totally discon-
nected 〉〉, 〈〈 indX = 0 〉〉 , and 〈〈 IndX = 0 〉〉 are equivalent. On the other hand,
we know that, for every topological space Y , the assertions 〈〈 indY = 0 〉〉 and 〈〈

ep Y = 0 〉〉 are equivalent (see (2)) and that, for every normal space Z, the asser-
tions 〈〈 IndZ = 0 〉〉 and 〈〈 dimZ = 0 〉〉 are equivalent (see for example(5)), whence
the result.

3) This assertion is an obvious consequence of 2) and 6.3. �

Remark 6.5. In another paper (3), we have proved, that for every normal space X,
if we denote by U the uniform structure on X induced by the only uniform structure
on the Stone-Čech compactification β(X) of X and by µdim(X,U) the Alexandroff
dimension of the uniform space (X,U),we have µdim(X,U) = dimX. Consequently,
since every line X is a normal space, we have also, with the previous notations
t(X) = µdim(X,U).
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