Collect. Math. 48, 3 (1997), 253-264
(c) 1997 Universitat de Barcelona

Quadratic stabilization of distributed parameter systems with norm-bounded time-varying uncertainty

Wanyi Chen
Department of Mathematics, Nankai University, Tianjin 300071, P. R. China

Fengsheng Tu

Department of Computer and System Sciences, Nankai University, Tianjin 300071, P. R. China

Received April 4, 1995. Revised June 10, 1996

Abstract

This note focuses on the study of robust H_{∞} control design for a kind of distributed parameter systems in which time-varying norm-bounded uncertainty enters the state and input operators. Through a fixed Lyapunov function, we present a state feedback control which stabilizes the plant and guarantees an H_{∞} norm bound on disturbance attenuation for all admissible uncertainties. In the process, we generalize some known results for finite dimensional linear systems.

1. Introduction and definitions

In the last decade, we have witnessed a significant research thrust in H_{∞} control theory, a frequency domain methodology which is closely related with deep complexfunction and operator techniques, see $[3,4,8]$. We also know that H_{∞} control is greatly useful for robustness problem. To date, many papers have appeared on the robust control of finite dimensional linear systems with norm-bounded time-varying uncertainty. But only a few papers deal with the similar problem for distributed parameter systems, see $[1,6]$. In this paper, via the use of some operator method,
we characterize quadratic stabilizability with an H_{∞} norm bound constraint for uncertain distributed parameter systems satisfying the so-called matching condition. In the process, we generalize the relevant results for finite dimensional systems to infinite dimensional ones, see Section 3.

In this paper, we discuss uncertain distributed parameter systems described by state-space models of the form:

$$
\Sigma_{0}\left\{\begin{array}{l}
\dot{x}(t)=[A+\Delta A(t)] x(t)+B_{1} w(t)+\left[B_{2}+\Delta B_{2}(t)\right] u(t) \\
z(t)=C_{1} x(t)+D_{1} u(t) \\
x(0)=0
\end{array}\right.
$$

where A is the generator of a C_{0}-semigroup $\left\{T_{t} ; t \geq 0\right\}$ of bounded operators in a Hilbert space \mathcal{H}, and $x(t) \in \mathcal{H}$ is the state, $u(t) \in H_{i}$ is the control input, $w(t) \in \mathcal{H}_{d}$ is the disturbance input which belongs to $L_{2}\left(0, \infty ; \mathcal{H}_{d}\right), z(t) \in \mathcal{H}_{o}$ is the controlled output, here $\mathcal{H}_{d}, \mathcal{H}_{i}, \mathcal{H}_{o}$ are Hilbert spaces, while $B_{1}, B_{2}, C_{1}, D_{1}$ are bounded operators on appropriate spaces. ($A, B_{1}, B_{2}, C_{1}, D_{1}$) describes the nominal system and $\left(\Delta A(\cdot), \Delta B_{2}(\cdot)\right)$ are operator-valued functions representing time-varying uncertainty to the state and input operators, respectively. $\left(\Delta A(\cdot), \Delta B_{2}(\cdot)\right)$ is in the following form:

$$
\left(\Delta A(\cdot), \Delta B_{2}(\cdot)\right)=D F(t)\left(E_{1}, E_{2}\right)
$$

Here D, E_{1}, E_{2} are known bounded operators, from \mathcal{H}_{2} to \mathcal{H}, from \mathcal{H} to \mathcal{H}_{1}, and from \mathcal{H}_{i} to \mathcal{H}_{1}, respectively. Also an admissible function $F(t)$ is any LebesgueBochner measurable function from $[0, \infty)$ to $L\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, with $\|F(t)\| \leq 1, t \in[0, \infty)$. Similar to the finite dimensional case, we shall make the following assumption without loss of generality.

Assumption $1 \quad D_{1}^{*}\left[C_{1}, D_{1}\right]=[0, I]$.
The closed loop system with static state feedback $u(t)=K x(t)$ is given by

$$
\Sigma_{g}\left\{\begin{array}{l}
\dot{x}=A_{g}(t)+B_{1} w \\
z=C_{g} x
\end{array}\right.
$$

where

$$
\begin{aligned}
A_{g}(t) & =A+B_{2} K+\Delta A(t)+\Delta B_{2}(t) K \\
& =A+B_{2} K+D F(t)\left(E_{1}+E_{2} K\right) \\
C_{g} & =C_{1}+D_{1} K .
\end{aligned}
$$

Definition $2[8]$. Let the constant $r>0$ is given, the uncertain system Σ_{0} is said to be quadratically stabilizable with an H_{∞} norm bound r if there exist a fixed static state feedback $u(t)=K x(t)$ and a self-adjoint, nonnegative operator $P \in L(\mathcal{H})$ such that for any $x \in \mathcal{D}(A)$,

$$
\left\langle A_{g}(t) x, P x\right\rangle+\left\langle P x, A_{g}(t) x\right\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\left\|C_{g} x\right\|^{2} \leq-\alpha\langle x, x\rangle
$$

holds for any admissible $F(\cdot)$, where α is a positive constant independent of x and $F(\cdot)$.

We can easily see the following fact from the definition.

Lemma 3

If the uncertain system Σ_{0} is quadratically stabilizable with H_{∞} an norm bound r, then there exists a $\delta_{0}>0$ such that for any $\delta \in\left[0, \delta_{0}\right]$, the uncertain system

$$
\Sigma(\delta):\left\{\begin{array}{l}
\dot{x}(t)=[A+\Delta A(t)+\delta I] x(t)+B_{1} w(t)+\left[B_{2}+\Delta B_{2}(t)\right] u(t) \\
z(t)=C_{1} x(t)+D_{1} u(t) \\
x(0)=0
\end{array}\right.
$$

is also quadratically stabilizable with the H_{∞} norm bound r.
Setting $u(t) \equiv 0$, we obtain the unforced system of Σ_{0} of the following form:

$$
\Sigma_{1}:\left\{\begin{array}{l}
\dot{x}(t)=[A+\Delta A(t)] x(t)+B_{1} w(t) \\
z(t)=C_{1} x(t), \quad x(0)=0 .
\end{array}\right.
$$

In order to guarantee an H_{∞} performance for all admissible $\Delta A(\cdot)$, and like Definition 2, we use a fixed Lyapunov function in the following notion of quadratic stability with disturbance attenuation, providing a practical way of handling both parameter uncertainty and disturbance input.

Definition 2, $[8]$. Given a real number $r>0$, the system Σ_{1} is said to be quadratically stable with disturbance attenuation r if there exist $P_{1} \in L(\mathcal{H}), P_{1} \geq 0$, and a positive number α_{1} such that for all $x \in \mathcal{D}(A)$ and all admissible $\Delta A(\cdot)$,

$$
\begin{aligned}
\left\langle[A+\Delta A(t)] x, P_{1} x\right\rangle+ & \left\langle P_{1} x,[A+\Delta A(t)] x\right\rangle \\
& +r^{-2}\left\langle P_{1} B_{1} B_{1}^{*} P_{1} x, x\right\rangle+\left\langle C_{1} x, C_{1} x\right\rangle \leq-\alpha_{1}\langle x, x\rangle .
\end{aligned}
$$

Remark. The notion of quadratic stability with disturbance attenuation is a direct extension of quadratic stability to give an H_{∞} performance description in the face of time-varying state parameter uncertainty, see $[1,5]$. Also for system Σ_{1}, under the above notion, $\|z\|_{2}<r\|w\|_{2}$ for all admissible uncertainty $\Delta A(\cdot)$ and all nonzero $w \in L_{2}(0, \infty ; \mathcal{H})$, see $[1,5]$.

Definition 4 [1]. Suppose that X, Y, Z are bounded self-adjoint operators on a Hilbert space \mathcal{H}. We say that the triple (X, Y, Z) has property P if there exists a $\omega>0$ such that for all $x \in \mathcal{H}$,

$$
\langle Y x, x\rangle^{2}-4|\langle X x, x\rangle\langle Z x, x\rangle| \geq \omega| | x \|^{4}
$$

Lemma 5 [1]

Assume that the triple (X, Y, Z) has the property P, and $X \geq 0, Y \leq 0$ and $Z \geq$ 0 , then there exists a $\lambda>0$ such that

$$
\lambda^{2} X+\lambda Y+Z
$$

is negative and invertible on \mathcal{H} (see [7]).
Like [1], we also make the following assumption on the semigroup $\left\{T_{t} ; t \geq 0\right\}$.
Assumption 6 For $\left\{T_{t} ; t \geq 0\right\}$, there are $\tau, m_{0}>0$ such that

$$
\int_{0}^{\tau}\left\|T_{t} x\right\|^{2} d t \geq m_{0}\|x\|^{2}
$$

for any $x \in \mathcal{H}$.

Lemma 7

If A_{0} is a bounded operator on \mathcal{H}, and $\left\{T_{t}\right\}$ satisfies Assumption 6, then the semigroup generated by $\left(A+A_{0}\right)$ still satisfies Assumption 6.

Proof. See Section 3.

2. Main results

Theorem 8

Under Assumption 1, 6, uncertain system Σ_{0} is quadratically stabilizable with an H_{∞} norm bound r if and only if there exist constant $\varepsilon, \mu>0$ and $P \in L(\mathcal{H}), P \geq 0$ such that following Riccati inequality holds for all $x \in \mathcal{D}(A)$,

$$
\begin{align*}
\langle A x, P x\rangle+ & \langle P x, A x\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\left\|C_{1} x\right\|^{2} \\
& -\left\langle R_{\varepsilon}^{-1}\left(B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right) x,\left(B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right) x\right\rangle \\
& +\varepsilon\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\varepsilon}\left\|E_{1} x\right\|^{2} \leq-\mu\|x\|^{2} \tag{2.1}
\end{align*}
$$

where $R_{\varepsilon}=I+\frac{1}{\varepsilon} E_{2}^{*} E_{2}$. Moreover, a suitable feedback control law is given by $u(t)=K_{\varepsilon} x(t)$, and

$$
\begin{equation*}
K_{\varepsilon}=-R_{\varepsilon}^{-1}\left(B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right) \tag{2.2}
\end{equation*}
$$

Corollary 9

Under the condition of Theorem 8, the following uncertain control system

$$
\left\{\begin{array}{l}
\dot{x}(t)=[A+\Delta A(t)] x(t)+\left[B_{2}+\Delta B_{2}(t)\right] u(t) \\
x(0)=0
\end{array}\right.
$$

is quadratically stabilizable, i.e., there exists a static feedback $u(t)=K x(t)$ such that the closed loop system is quadratically stable, see [1, 5] for the definition of quadratic stability.

Corollary 10 [1, 2]
Under Assumption 6, system Σ_{1} is quadratically stable with disturbance attenuation r if and only if one of following conditions holds:
(1) There exist $P \in L(\mathcal{H}), P \geq 0$ and $\mu, \varepsilon>0$ such that that for all $x \in \mathcal{D}(A)$,

$$
\begin{aligned}
\langle A x, P x\rangle+ & \langle P x, A x\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\left\langle C_{1} x, C_{1} x\right\rangle \\
& +\varepsilon\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\varepsilon}\left\langle E_{1} x, E_{1} x\right\rangle \leq-\mu\langle x, x\rangle
\end{aligned}
$$

(2) There exist $P \in L(\mathcal{H}), P \geq 0$ and $\varepsilon>0$ such that $\left(A+\frac{1}{r^{2}} B_{1} B_{1}^{*} P+\varepsilon D D^{*} P\right)$ generates an exponentially stable C_{0}-semigroup on \mathcal{H}, and the following algebraic Riccati equation holds:

$$
\begin{aligned}
\langle A x, P x\rangle+ & \langle P x, A x\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle \\
& +\varepsilon\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\varepsilon}\left\langle E_{1}^{*} E_{1} x, x\right\rangle+\left\langle C_{1} x, C_{1} x\right\rangle=0
\end{aligned}
$$

for all $x \in \mathcal{D}(A)$.
(3) $\left\{T_{t}\right\}$ is exponentially stable and there exists an $\varepsilon>0$ such that

$$
\left\|\left(\frac{1}{\varepsilon} E_{1}^{*} E_{1}+C_{1}^{*} C_{1}\right)^{1 / 2}(s I-A)^{-1}\left(\frac{1}{r^{2}} B_{1} B_{1}^{*}+\varepsilon D D^{*}\right)^{1 / 2}\right\|_{\infty}<1
$$

or

$$
\left\|\left[\begin{array}{c}
C_{1} \\
\frac{1}{\sqrt{\varepsilon}} E_{1}
\end{array}\right](s I-A)^{-1}\left[\begin{array}{cc}
\frac{1}{r} B_{1} & \sqrt{\varepsilon} D
\end{array}\right]\right\|_{\infty}<1
$$

3. Proofs

Proof of Lemma 7. Since the semigroup $\left\{T_{t}\right\}$ has the property P, there exist $\tau, m_{0}>0$ such that

$$
\int_{0}^{\tau}\left\|T_{t} x\right\|^{2} d t \geq m_{0}\|x\|^{2}
$$

We assume that the semigroup generated by $\left(A+A_{0}\right)$ is $\left\{S_{t}\right\}$, then for all $x \in \mathcal{D}(A)$

$$
S_{t} x=T_{t} x+\int_{0}^{t} T_{t-s} A_{0} S_{s} x d s, \quad t>0
$$

Hence

$$
T_{t} x=S_{t} x-\int_{0}^{t} T_{t-s} A_{0} S_{s} x d s
$$

$\left(\int_{0}^{\tau}\left\|T_{t} x\right\|^{2} d t\right)^{1 / 2} \leq\left(\int_{0}^{\tau}\left\|S_{t} x\right\|^{2} d t\right)^{1 / 2}+\left(\int_{0}^{\tau}\left\|T_{t} A_{0}\right\| d t\right)\left(\int_{0}^{\tau}\left\|S_{t} x\right\|^{2} d t\right)^{1 / 2}$.
Let $m_{1}=\int_{0}^{\tau}\left\|T_{t} A_{0}\right\| d t$, then for $x \in \mathcal{D}(A)$,

$$
\begin{gathered}
\sqrt{m_{0}}\|x\| \leq\left(1+m_{1}\right)\left(\int_{0}^{\tau}\left\|S_{t} x\right\|^{2} d t\right)^{1 / 2} \\
\int_{0}^{\tau}\left\|S_{t} x\right\|^{2} d t \geq m_{0}\left(1+m_{1}\right)^{-2}\|x\|^{2}
\end{gathered}
$$

also, by the density of $\mathcal{D}(A)$ in \mathcal{H}, the last inequality holds for all $x \in \mathcal{H}$, i.e., $\left\{S_{t}\right\}$ still satisfies Assumption 6 .

Proof of Theorem 8. Sufficiency. Suppose that there exist constant $\varepsilon, \mu>0$, and $P \in L(\mathcal{H}), P \geq 0$ such that Riccati inequality (2.1) holds. Consider the feedback law (2.2) and define the closed-loop system state operator

$$
A_{c}(t):=A+D F(t) E_{1}-\left[B_{2}+D F(t) E_{2}\right] R_{\varepsilon}^{-1}\left[B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right]
$$

then for all $x \in \mathcal{D}(A)$,

$$
\begin{align*}
\left\langle P x, A_{c}(t) x\right\rangle+ & \left\langle A_{c}(t) x, P x\right\rangle=\langle A x, P x\rangle+\langle P x, A x\rangle \\
& -2\left\langle P B_{2} R_{\varepsilon}^{-1} B_{2}^{*} P x, x\right\rangle-\frac{1}{\varepsilon}\left\langle E_{1}^{*} E_{2} R_{\varepsilon}^{-1} B_{2}^{*} P x, x\right\rangle \\
& -\frac{1}{\varepsilon}\left\langle P B_{2} R_{\varepsilon}^{-1} E_{2}^{*} E_{1} x, x\right\rangle+\langle Y(t) x, x\rangle \tag{3.1}
\end{align*}
$$

here

$$
\begin{aligned}
X & :=E_{1}-\frac{1}{\varepsilon} E_{2} R_{\varepsilon}^{-1} E_{2}^{*} E_{1}-E_{2} R_{\varepsilon}^{-1} B_{2}^{*} P \\
Y(t) & :=P D F(t) X+X^{*} F^{*}(t) D^{*} P
\end{aligned}
$$

Note that $\|F(t)\| \leq 1$, it is easy to see that

$$
\begin{equation*}
Y(t) \leq \varepsilon P D D^{*} P+\frac{1}{\varepsilon} X^{*} X \tag{3.2}
\end{equation*}
$$

By combining (3.1) with (2.2) and the fact

$$
\frac{1}{\varepsilon} R_{\varepsilon}^{-1} E_{2}^{*} E_{2} R_{\varepsilon}^{-1}=R_{\varepsilon}^{-1}-R_{\varepsilon}^{-2}
$$

we have

$$
\begin{align*}
Y(t)+ & K_{\varepsilon}^{*} K_{\varepsilon} \leq \varepsilon P D D^{*} P+\frac{1}{\varepsilon} E_{1}^{*} E_{1} \\
& -\frac{1}{\varepsilon^{2}} E_{1}^{*} E_{2} R_{\varepsilon}^{-1} E_{2}^{*} E_{1}+P B_{2} R_{\varepsilon}^{-1} B_{2}^{*} P \tag{3.3}
\end{align*}
$$

Now, via the application of (3.3) to (3.1) and Assumption 1, we have

$$
\begin{aligned}
\left\langle A_{c}(t) x, P x\right\rangle+ & \left\langle P x, A_{c}(t) x\right\rangle \\
& +r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\left\langle\left(C_{1}+D_{1} K_{\varepsilon}\right) x,\left(C_{1}+D_{1} K_{\varepsilon}\right) x\right\rangle \\
\leq & \langle A x, P x\rangle+\langle P x, A x\rangle \\
& +r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\frac{1}{\varepsilon}\left\langle E_{1} x, E_{1} x\right\rangle+\varepsilon\left\langle P D D^{*} P x, x\right\rangle \\
& +\left\|C_{1} x\right\|^{2}-\left\langle R_{\varepsilon}^{-1}\left(B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right) x,\left(B_{2}^{*} P+\frac{1}{\varepsilon} E_{2}^{*} E_{1}\right) x\right\rangle \\
\leq & -\mu\langle x, x\rangle .
\end{aligned}
$$

Hence, system Σ_{0} is quadratically stabilizable with the H_{∞} norm bound r.

Necessity. From Definition 2, there exist a fixed static state feedback $u(t)=$ $K x(t)$ and $P \in L(\mathcal{H}), P \geq 0$ such that for any $x \in \mathcal{D}(A)$,

$$
\begin{equation*}
\left\langle A_{g}(t) x, P x\right\rangle+\left\langle P x, A_{g}(t) x\right\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\left\langle C_{g} x, C_{g} x\right\rangle \leq-\alpha\langle x, x\rangle \tag{3.4}
\end{equation*}
$$

where α is a positive constant, $A_{g}(t):=A+B_{2} K+D F(t)\left(E_{1}+E_{2} K\right), C_{g}:=$ $C_{1}+D_{1} K$. Choose $F(t) \equiv 0$. Then

$$
\begin{equation*}
\left\langle\left(A+B_{2} K\right) x, P x\right\rangle+\left\langle P x,\left(A+B_{2} K\right) x\right\rangle \leq-\alpha\langle x, x\rangle \tag{3.5}
\end{equation*}
$$

For any $x \in \mathcal{D}(A)$, from [2, Lemma 1.4], the semigroup $\left\{S_{t}\right\}$ generated by $\left(A+B_{2} K\right)$ is exponentially stable. Also from (3.5),

$$
\begin{equation*}
\langle P x, x\rangle \geq \alpha \int_{0}^{+\infty}\left\|S_{t}\right\|^{2} d t \geq \frac{\alpha m_{0}}{\left.\left(1+m_{1}\right)^{2}\right)}\|x\|^{2} \tag{I}
\end{equation*}
$$

for all $x \in \mathcal{D}(A)$, where the right-hand inequality is deduced from Assumption 6 and Lemma 7 with $A_{0}:=B_{2} K$. Hence P is invertible in \mathcal{H} by the density of $\mathcal{D}(A)$ in \mathcal{H}.

Without loss of generality, we assume that $E_{1}+E_{2} K \neq 0$. Otherwise, we can make a sufficiently small perturbation K^{\prime} to K such that $E_{1}+E_{2} K \neq 0$ and inequality (3.4) is still valid with some modification on the positive constant α. In the following, we shall work under the condition that $E_{1}+E_{2} K \neq 0$.

From (3.4), for any $x \in \mathcal{D}(A)$ with $x \neq 0$,

$$
\begin{aligned}
\left\langle\left(A+B_{2} K\right) x, P x\right\rangle+ & \left\langle P x,\left(A+B_{2} K\right) x\right\rangle+\left\langle C_{1}^{*} C_{1} x, x\right\rangle \\
& +r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle+\|K x\|^{2} \\
< & -2 \operatorname{Re}\left\langle F(t)\left(E_{1}+E_{2} K\right) x, D^{*} P x\right\rangle
\end{aligned}
$$

for any admissible $F(t) \in L\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ with $\|F(t)\| \leq 1$. So

$$
\begin{align*}
\left\langle\left(A+B_{2} K\right) x, P x\right\rangle+ & \left\langle P x,\left(A+B_{2} K\right) x\right\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} x, x\right\rangle \\
& +\left\langle C_{1}^{*} C_{1} x, x\right\rangle+\left\langle K^{*} K x, x\right\rangle \\
\leq & -2 \operatorname{Sup}\left\{\operatorname{Re}\left\langle F(t)\left(E_{1}+E_{2} K\right) x, D^{*} P x\right\rangle:\|F(t)\| \leq 1\right\} \tag{3.6}
\end{align*}
$$

Choose $l_{0}>0$ such that $R\left(l_{0}\right):=\left(l_{0} I-A-B_{2} K\right)^{-1} \in L(\mathcal{H})$, i.e., $l_{0} \in \rho\left(A+B_{2} K\right)$, and let $A_{1}=l_{0}\left(A+B_{2} K\right) R\left(l_{0}\right)$. Then $A_{1} \in L(\mathcal{H})$. Now, let $y=\frac{1}{l_{0}}\left(l_{0} I-A-B_{2} K\right) x$, then $A_{1} y=\left(A+B_{2} K\right) x$ and $x=l_{0} R\left(l_{0}\right) y$. From (3.6),

$$
\begin{aligned}
\left\langle A_{1} y, l_{0} P R\left(l_{0}\right) y\right\rangle+ & \left\langle l_{0} P R\left(l_{0}\right) y, A_{1} y\right\rangle \\
& +r^{-2}\left\langle P B_{1} B_{1}^{*} P l_{0} R\left(l_{0}\right) y, l_{0} R\left(l_{0}\right) y\right\rangle \\
& +l_{0}^{2}\left\langle C_{1}^{*} C_{1} R\left(l_{0}\right) y, R\left(l_{0}\right) y\right\rangle+l_{0}^{2}\left\langle K^{*} K R\left(l_{0}\right) y, R\left(l_{0}\right) y\right\rangle \\
< & -2 l_{0}^{2} \operatorname{Sup}\left\{R e\left\langle F(t)\left(E_{1}+E_{2} K\right) R\left(l_{0}\right) y, D^{*} P R\left(l_{0}\right) y\right\rangle ;\|F(t)\| \leq 1\right\}
\end{aligned}
$$

Assume

$$
\begin{aligned}
\tilde{Y}= & l_{0} R^{*}\left(l_{0}\right) P A_{1}+l_{0} A_{1}^{*} P R\left(l_{0}\right)+r^{-2} l_{0}^{2} R^{*}\left(l_{0}\right) P B_{1} B_{1}^{*} P R\left(l_{0}\right) \\
& +l_{0}^{2} R^{*}\left(l_{0}\right) C_{1}^{*} C_{1} R\left(l_{0}\right)+l_{0}^{2} R^{*}\left(l_{0}\right) K^{*} K R\left(l_{0}\right) \\
\tilde{X}= & l_{0}^{2} R^{*}\left(l_{0}\right) P D D^{*} P R\left(l_{0}\right) \\
\tilde{Z}= & l_{0}^{2} R^{*}\left(l_{0}\right)\left(E_{1}+E_{2} K\right)^{*}\left(E_{1}+E_{2} K\right) R\left(l_{0}\right)
\end{aligned}
$$

then $\tilde{X} \geq 0, \tilde{Z} \geq 0, \tilde{Y} \leq 0$, and

$$
\langle\tilde{Y} y, y\rangle^{2}-4\langle\tilde{X} y, y\rangle\langle\tilde{Z} y, y\rangle>0
$$

for any $y \in \mathcal{H}$ with $y \neq 0$. Hence, for any $\varepsilon>0$, the triple $(\tilde{X}, \tilde{Y}-\varepsilon I, \tilde{Z})$ has property P. So, from Lemma 5 , there is a $\mu(\varepsilon)>0$ such that

$$
\begin{align*}
& \mu(\varepsilon)^{2} \tilde{X}+\mu(\varepsilon)(\tilde{Y}-\varepsilon I)+\tilde{Z} \leq 0, \quad \text { i.e. } \\
& \mu(\varepsilon)^{2} \tilde{X}+\mu(\varepsilon) \tilde{Y}+\tilde{Z} \leq \mu(\varepsilon) \varepsilon I \tag{3.7}
\end{align*}
$$

Alternatively, let $x=l_{0} R\left(l_{0}\right) y$, where $y \in \mathcal{H}$, and $S_{\varepsilon}:=\mu(\varepsilon) P$. we have $x \in \mathcal{D}(A)$ and

$$
\begin{align*}
\left\langle\left(A+B_{2} K\right) x, S_{\varepsilon} x\right\rangle+ & \left\langle S_{\varepsilon} x,\left(A+B_{2} K\right) x\right\rangle+\mu(\varepsilon)\left(\left\|C_{1} x\right\|^{2}+\|K x\|^{2}\right) \\
& +r^{-2} \mu^{-1}(\varepsilon)\left\langle S_{\varepsilon} B_{1} B_{1}^{*} S_{\varepsilon} x, x\right\rangle+\left\langle S_{\varepsilon} D D^{*} S_{\varepsilon} x, x\right\rangle \\
& +\left\|\left(E_{1}+E_{2} K\right) x\right\|^{2} \\
\leq & \mu(\varepsilon) \varepsilon \frac{1}{l_{0}^{2}}\left\|\left(l_{0} I-A-B_{2} K\right) x\right\|^{2} . \tag{3.8}
\end{align*}
$$

Now, we obtain bounds for $\mu(\varepsilon)$. From (3.7),

$$
0<\mu(\varepsilon) \leq \frac{-\langle\tilde{Y} y, y\rangle+\varepsilon}{\langle\tilde{X} y, y\rangle} \leq \frac{\|\tilde{Y}\|+\varepsilon}{\langle\tilde{X} y, y\rangle}
$$

for any $y \in \mathcal{H}$ such that $\tilde{X} y \neq 0$, and $\|y\|=1$. Hence

$$
\begin{equation*}
0<\mu(\varepsilon) \leq \frac{\|\tilde{Y}\|+\varepsilon}{\|\tilde{X}\|} \tag{3.9}
\end{equation*}
$$

We claim that

$$
\inf _{1 \geq \varepsilon>0} \mu(\varepsilon)>0
$$

Otherwise there is a sequence of numbers $\varepsilon_{n} \in(0,1](n=1,2, \cdots)$ such that

$$
\lim _{n \rightarrow \infty} \mu\left(\varepsilon_{n}\right)=0
$$

and then (3.8) with (3.9) would imply that $E_{1}+E_{2} K=0$, contradicting our assumption that $E_{1}+E_{2} K \neq 0$. Hence we can choose $\varepsilon_{n} \in(0,1](n=1,2, \cdots)$ such that

$$
\lim _{n \rightarrow \infty} \varepsilon_{n}=0 \text { and } \lim _{n \rightarrow \infty} \mu\left(\varepsilon_{n}\right)=\beta>0
$$

Again via the use of $(3.7)-(3.8)$ and let $Q_{\beta}:=\beta P$, it follows

$$
\begin{aligned}
\left\langle\left(A+B_{2} K\right) x, Q_{\beta} x\right\rangle+ & \left\langle Q_{\beta} x,\left(A+B_{2} K\right) x\right\rangle+\beta\left(\left\|C_{1} x\right\|^{2}+\|K x\|^{2}\right) \\
& +r^{-2} \beta^{-1}\left\langle Q_{\beta} B_{1} B_{1}^{*} Q_{\beta} x, x\right\rangle+\left\langle Q_{\beta} D D^{*} Q_{\beta} x, x\right\rangle \\
& +\left\|\left(E_{1}+E_{2} K\right) x\right\|^{2} \leq 0
\end{aligned}
$$

Divided by β, we have

$$
\begin{aligned}
\left\langle\left(A+B_{2} K\right) x, P x\right\rangle+ & \left\langle P x,\left(A+B_{2} K\right) x\right\rangle \\
& +\left\langle C_{1}^{*} C_{1} x, x\right\rangle+\left\langle K^{*} K x, x\right\rangle+r^{-2}\left\langle P B_{1} B_{1}^{*} P x, x\right\rangle \\
& +\beta\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\beta}\left\|\left(E_{1}+E_{2} K\right) x\right\|^{2} \leq 0
\end{aligned}
$$

or yet

$$
\langle A x, P x\rangle+\langle P x, A x\rangle+\beta\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\beta}\left\|E_{1} X\right\|^{2}+\left\|C_{1} x\right\|^{2}+\langle J(\beta) x, x\rangle \leq 0
$$

where

$$
J(\beta)=K^{*}\left(I+\frac{1}{\beta} E_{2}^{*} E_{2}\right) K+K^{*}\left(B_{2}^{*} P+\frac{1}{\beta} E_{2}^{*} E_{1}\right)+\left(P B_{2}+\frac{1}{\beta} E_{1}^{*} E_{2}\right) K
$$

It is easy to see that

$$
J(\beta) \geq-\left(P B_{2}+\frac{1}{\beta} E_{1}^{*} E_{2}\right)\left(I+\frac{1}{\beta} E_{2}^{*} E_{2}\right)^{-1}\left(B_{2}^{*} P+\frac{1}{\beta} E_{2}^{*} E_{1}\right)
$$

Hence, for all $x \in \mathcal{D}(A)$

$$
\begin{aligned}
\langle A x, P x\rangle+ & \langle P x, A x\rangle+\beta\left\langle P D D^{*} P x, x\right\rangle \\
& +\frac{1}{\beta}\left\|E_{1} x\right\|^{2}+\left\|C_{1} x\right\|^{2} \\
& -\left\langle R_{\beta}^{-1}\left(B_{2}^{*} P+\frac{1}{\beta} E_{2}^{*} E_{1}\right) x,\left(B_{2}^{*} P+\frac{1}{\beta} E_{2}^{*} E_{1}\right) x\right\rangle \leq 0
\end{aligned}
$$

On the other hand, from Lemma 3, there exists a $\delta_{0}>0$ such that $\Sigma\left(\delta_{0}\right)$ is still quadratically stabilizable with H_{∞} norm bound $r>0$. Note that the difference of $\Sigma\left(\delta_{0}\right)$ with Σ_{0} is just in the state operator. For $\Sigma\left(\delta_{0}\right)$ we also have a $\bar{\varepsilon}>0$ such that following inequality holds for all $x \in \mathcal{D}(A)$

$$
\begin{aligned}
\left\langle\left(A+\delta_{0} I\right) x, P x\right\rangle+ & \left\langle P x,\left(A+\delta_{0} I\right)\right\rangle+\bar{\varepsilon}\left\langle P D D^{*} P x, x\right\rangle \\
& +\frac{1}{\bar{\varepsilon}}\left\|E_{1} x\right\|^{2}+\left\|C_{1} x\right\|^{2} \\
& -\left\langle R_{\bar{\varepsilon}}^{-1}\left(B_{2}^{*} P+\frac{1}{\bar{\varepsilon}} E_{2}^{*} E_{1}\right) x,\left(B_{2}^{*} P+\frac{1}{\bar{\varepsilon}} E_{2}^{*} E_{1}\right) x\right\rangle \leq 0
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\langle A x, P x\rangle+ & \langle P x, A x\rangle+\bar{\varepsilon}\left\langle P D D^{*} P x, x\right\rangle+\frac{1}{\bar{\varepsilon}}\left\|E_{1} x\right\|^{2} \\
& +\left\|C_{1} x\right\|^{2}-\left\langle R_{\bar{\varepsilon}}^{-1}\left(B_{2}^{*} P+\frac{1}{\bar{\varepsilon}} E_{2}^{*} E_{1}\right) x,\left(B_{2}^{*} P+\frac{1}{\bar{\varepsilon}} E_{2}^{*} E_{1}\right) x\right\rangle \\
\leq & -2 \delta_{0}\langle P x, x\rangle \leq-2 \frac{\delta_{0} \alpha m_{0}}{\left(1+m_{1}\right)^{2}}\langle x, x\rangle
\end{aligned}
$$

where the last inequality is deduced from previous inequality (I).
Corollary 9 is a natural implication of Theorem 8 , while the proof of Corollary 10 can be finished by combining Theorem 8 with some similar argument from [1, 2].

4. Conclusions

This paper has presented a state feedback law for uncertain distributed parameter systems with time-varying norm-bounded perturbations. Based on the solvability of some Riccati inequalities, a necessary and sufficient condition is given for these uncertain plants to be quadratically stabilizable with an H_{∞} norm constraint. Moreover, we also point out some other interesting results.

References

1. Wanyi Chen and Fengsheng Tu, Quadratic stability of uncertain distributed parameter systems, IMA J. Math. Control Inform. 11 (1994), 201-207.
2. R. F. Curtain, The strict bounded real lemma in infinite dimensions, Systems Control Lett. 20 (1993), 113-116.
3. J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, State-space solutions to standard H_{2} and H_{∞} control problems, IEEE Trans. Automat. Control 34 (1989), 831-847.
4. B. A. Francis, A Course in H_{∞} Control Theory, Springer-Verlag, 1987.
5. I. R. Petersen, A stabilization algorithm for a class of uncertain systems, Systems Control Lett. 8 (1987), 351-357.
6. S. E. Rebiai and A. S. I. Zinober, Stabilization of uncertain distributed parameter systems, Internat. J. Control 57 (1993), 1167-1175.
7. W. Rudin, Functional Analysis, McGraw-Hill, 1973.
8. Lihua Xie and Carl E. De Souza, Robust H_{∞} control for linear systems with norm-bounded time-varying uncertainty, IEEE Trans. Automat. Control 37 (1992), 1188-1191.
