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Abstract

This note focuses on the study of robust H∞ control design for a kind of
distributed parameter systems in which time-varying norm-bounded uncertainty
enters the state and input operators. Through a fixed Lyapunov function, we
present a state feedback control which stabilizes the plant and guarantees an
H∞ norm bound on disturbance attenuation for all admissible uncertainties.
In the process, we generalize some known results for finite dimensional linear
systems.

1. Introduction and definitions

In the last decade, we have witnessed a significant research thrust in H∞ control
theory, a frequency domain methodology which is closely related with deep complex-
function and operator techniques, see [3, 4, 8]. We also know that H∞ control is
greatly useful for robustness problem. To date, many papers have appeared on the
robust control of finite dimensional linear systems with norm-bounded time-varying
uncertainty. But only a few papers deal with the similar problem for distributed
parameter systems, see [1, 6]. In this paper, via the use of some operator method,
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we characterize quadratic stabilizability with an H∞ norm bound constraint for
uncertain distributed parameter systems satisfying the so-called matching condition.
In the process, we generalize the relevant results for finite dimensional systems to
infinite dimensional ones, see Section 3.

In this paper, we discuss uncertain distributed parameter systems described by
state-space models of the form:

Σ0




ẋ(t) =
[
A + ∆A(t)

]
x(t) + B1w(t) +

[
B2 + ∆B2(t)

]
u(t)

z(t) = C1x(t) + D1u(t)

x(0) = 0

where A is the generator of a C0-semigroup {Tt; t ≥ 0} of bounded operators in
a Hilbert space H, and x(t) ∈ H is the state, u(t) ∈ Hi is the control input,
w(t) ∈ Hd is the disturbance input which belongs to L2(0,∞;Hd), z(t) ∈ Ho is
the controlled output, here Hd,Hi,Ho are Hilbert spaces, while B1, B2, C1, D1 are
bounded operators on appropriate spaces. (A,B1, B2, C1, D1) describes the nominal
system and (∆A(·),∆B2(·)) are operator-valued functions representing time-varying
uncertainty to the state and input operators, respectively. (∆A(·),∆B2(·)) is in the
following form: (

∆A(·),∆B2(·)
)

= DF (t)
(
E1, E2

)
Here D,E1, E2 are known bounded operators, from H2 to H, from H to H1, and
from Hi to H1, respectively. Also an admissible function F (t) is any Lebesgue-
Bochner measurable function from [0, ∞) to L(H1,H2), with ‖F (t)‖ ≤ 1, t ∈ [0, ∞).
Similar to the finite dimensional case, we shall make the following assumption with-
out loss of generality.

Assumption 1 D∗
1 [C1, D1] = [0, I].

The closed loop system with static state feedback u(t) = Kx(t) is given by

Σg

{
ẋ = Ag(t) + B1w

z = Cgx

where
Ag(t) = A + B2K + ∆A(t) + ∆B2(t)K

= A + B2K + DF (t)
(
E1 + E2K

)
Cg = C1 + D1K .
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Definition 2 [8]. Let the constant r > 0 is given, the uncertain system Σ0 is said to
be quadratically stabilizable with an H∞ norm bound r if there exist a fixed static
state feedback u(t) = Kx(t) and a self-adjoint, nonnegative operator P ∈ L(H) such
that for any x ∈ D(A),

〈
Ag(t)x, Px

〉
+

〈
Px,Ag(t)x

〉
+ r−2

〈
PB1B

∗
1Px, x

〉
+ ‖Cgx‖2 ≤ −α

〈
x, x

〉
holds for any admissible F (·), where α is a positive constant independent of
x and F (·).

We can easily see the following fact from the definition.

Lemma 3

If the uncertain system Σ0 is quadratically stabilizable with H∞ an norm bound

r, then there exists a δ0 > 0 such that for any δ ∈ [0, δ0], the uncertain system

Σ(δ) :




ẋ(t) =
[
A + ∆A(t) + δI

]
x(t) + B1w(t) +

[
B2 + ∆B2(t)

]
u(t)

z(t) = C1x(t) + D1u(t)

x(0) = 0

is also quadratically stabilizable with the H∞ norm bound r.

Setting u(t) ≡ 0, we obtain the unforced system of Σ0 of the following form:

Σ1 :

{
ẋ(t) =

[
A + ∆A(t)

]
x(t) + B1w(t)

z(t) = C1x(t), x(0) = 0 .

In order to guarantee an H∞ performance for all admissible ∆A(·), and like Defi-
nition 2, we use a fixed Lyapunov function in the following notion of quadratic
stability with disturbance attenuation, providing a practical way of handling both
parameter uncertainty and disturbance input.

Definition 2’ [8]. Given a real number r > 0, the system Σ1 is said to be quadra-
tically stable with disturbance attenuation r if there exist P1 ∈ L(H), P1 ≥ 0, and a
positive number α1 such that for all x ∈ D(A) and all admissible ∆A(·),

〈
[A + ∆A(t)]x, P1x

〉
+

〈
P1x, [A + ∆A(t)]x

〉
+ r−2

〈
P1B1B

∗
1P1x, x

〉
+

〈
C1x,C1x

〉
≤ −α1

〈
x, x

〉
.
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Remark. The notion of quadratic stability with disturbance attenuation is a direct
extension of quadratic stability to give an H∞ performance description in the face of
time-varying state parameter uncertainty, see [1, 5]. Also for system Σ1, under the
above notion, ||z||2 < r||w||2 for all admissible uncertainty ∆A(·) and all nonzero
w ∈ L2(0, ∞;H), see [1, 5].

Definition 4 [1]. Suppose that X,Y, Z are bounded self-adjoint operators on a
Hilbert space H. We say that the triple (X,Y, Z) has property P if there exists a
ω > 0 such that for all x ∈ H,

〈Y x, x〉2 − 4|〈Xx, x〉〈Zx, x〉| ≥ ω||x||4

Lemma 5 [1]

Assume that the triple (X,Y, Z) has the property P, and X ≥ 0, Y ≤ 0 and Z ≥
0, then there exists a λ > 0 such that

λ2X + λY + Z

is negative and invertible on H (see [7]).

Like [1], we also make the following assumption on the semigroup {Tt; t ≥ 0}.

Assumption 6 For {Tt; t ≥ 0}, there are τ,m0 > 0 such that

∫ τ

0

||Ttx||2 dt ≥ m0||x||2

for any x ∈ H.

Lemma 7

If A0 is a bounded operator on H, and {Tt} satisfies Assumption 6, then the

semigroup generated by (A + A0) still satisfies Assumption 6.

Proof. See Section 3. �
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2. Main results

Theorem 8
Under Assumption 1, 6, uncertain system Σ0 is quadratically stabilizable with

an H∞ norm bound r if and only if there exist constant ε, µ > 0 and P ∈ L(H), P ≥ 0
such that following Riccati inequality holds for all x ∈ D(A),

〈Ax,Px〉 + 〈Px,Ax〉 + r−2〈PB1B
∗
1Px, x〉 + ||C1x||2

−
〈
R−1

ε

(
B∗

2P +
1
ε
E∗

2E1

)
x,

(
B∗

2P +
1
ε
E∗

2E1

)
x
〉

+ ε〈PDD∗Px, x〉 +
1
ε
||E1x||2 ≤ −µ||x||2 (2.1)

where Rε = I + 1
εE

∗
2E2. Moreover, a suitable feedback control law is given by

u(t) = Kεx(t), and

Kε = −R−1
ε

(
B∗

2P +
1
ε
E∗

2E1

)
(2.2)

Corollary 9
Under the condition of Theorem 8, the following uncertain control system{

ẋ(t) = [A + ∆A(t)]x(t) + [B2 + ∆B2(t)]u(t)

x(0) = 0

is quadratically stabilizable, i.e., there exists a static feedback u(t) = Kx(t) such
that the closed loop system is quadratically stable, see [1, 5] for the definition of
quadratic stability.

Corollary 10 [1, 2]
Under Assumption 6, system Σ1 is quadratically stable with disturbance atten-

uation r if and only if one of following conditions holds:
(1) There exist P ∈ L(H), P ≥ 0 and µ, ε > 0 such that that for all x ∈ D(A),

〈Ax,Px〉 + 〈Px,Ax〉 + r−2〈PB1B
∗
1Px, x〉 + 〈C1x,C1x〉

+ ε〈PDD∗Px, x〉 +
1
ε
〈E1x,E1x〉 ≤ −µ〈x, x〉

(2) There exist P ∈ L(H), P ≥ 0 and ε > 0 such that (A + 1
r2B1B

∗
1P + εDD∗P )

generates an exponentially stable C0 -semigroup on H, and the following algebraic
Riccati equation holds:

〈Ax,Px〉 + 〈Px,Ax〉 + r−2〈PB1B
∗
1Px, x〉

+ ε〈PDD∗Px, x〉 +
1
ε
〈E∗

1E1x, x〉 + 〈C1x,C1x〉 = 0

for all x ∈ D(A).
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(3) {Tt} is exponentially stable and there exists an ε > 0 such that∥∥∥∥(1
ε
E∗

1E1 + C∗
1C1

)1/2

(sI −A)−1
( 1
r2

B1B
∗
1 + εDD∗

)1/2
∥∥∥∥
∞

< 1

or ∥∥∥∥[ C1
1√
ε
E1

]
(sI −A)−1

[1
r
B1

√
εD

]∥∥∥∥
∞

< 1 .

3. Proofs

Proof of Lemma 7. Since the semigroup {Tt} has the property P , there exist
τ,m0 > 0 such that ∫ τ

0

||Ttx||2dt ≥ m0||x||2 .

We assume that the semigroup generated by (A+A0) is {St}, then for all x ∈ D(A)

Stx = Ttx +
∫ t

0

Tt−sA0Ssx ds, t > 0 .

Hence

Ttx = Stx−
∫ t

0

Tt−sA0Ssx ds

(∫ τ

0

||Ttx||2 dt
)1/2

≤
(∫ τ

0

||Stx||2 dt
)1/2

+
(∫ τ

0

||TtA0|| dt
) (∫ τ

0

||Stx||2 dt
)1/2

.

Let m1 =
∫ τ

0
||TtA0|| dt, then for x ∈ D(A),

√
m0||x|| ≤ (1 + m1)

(∫ τ

0

||Stx||2 dt
)1/2

∫ τ

0

||Stx||2 dt ≥ m0(1 + m1)−2||x||2

also, by the density of D(A) in H, the last inequality holds for all x ∈ H, i.e., {St}
still satisfies Assumption 6. �

Proof of Theorem 8. Sufficiency. Suppose that there exist constant ε, µ > 0, and
P ∈ L(H), P ≥ 0 such that Riccati inequality (2.1) holds. Consider the feedback
law (2.2) and define the closed-loop system state operator

Ac(t) := A + DF (t)E1 −
[
B2 + DF (t)E2

]
R−1

ε

[
B∗

2P +
1
ε
E∗

2E1

]
then for all x ∈ D(A),
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〈Px,Ac(t)x〉 + 〈Ac(t)x, Px〉 = 〈Ax,Px〉 + 〈Px,Ax〉

− 2〈PB2R
−1
ε B∗

2Px, x〉 − 1
ε
〈E∗

1E2R
−1
ε B∗

2Px, x〉

− 1
ε
〈PB2R

−1
ε E∗

2E1x, x〉 + 〈Y (t)x, x〉 (3.1)

here
X := E1 −

1
ε
E2R

−1
ε E∗

2E1 − E2R
−1
ε B∗

2P

Y (t) := PDF (t)X + X∗F ∗(t)D∗P .

Note that ||F (t)|| ≤ 1, it is easy to see that

Y (t) ≤ εPDD∗P +
1
ε
X∗X . (3.2)

By combining (3.1) with (2.2) and the fact

1
ε
R−1

ε E∗
2E2R

−1
ε = R−1

ε − R−2
ε

we have

Y (t) + K∗
εKε ≤ εPDD∗P +

1
ε
E∗

1E1

− 1
ε2
E∗

1E2R
−1
ε E∗

2E1 + PB2R
−1
ε B∗

2P . (3.3)

Now, via the application of (3.3) to (3.1) and Assumption 1, we have

〈
Ac(t)x, Px

〉
+

〈
Px,Ac(t)x

〉
+ r−2

〈
PB1B

∗
1Px, x

〉
+

〈
(C1 + D1Kε)x, (C1 + D1Kε)x

〉
≤

〈
Ax,Px

〉
+

〈
Px,Ax

〉
+ r−2

〈
PB1B

∗
1Px, x

〉
+

1
ε

〈
E1x,E1x

〉
+ ε

〈
PDD∗Px, x

〉
+ ||C1x||2 −

〈
R−1

ε

(
B∗

2P +
1
ε
E∗

2E1

)
x,

(
B∗

2P +
1
ε
E∗

2E1

)
x
〉

≤ −µ
〈
x, x

〉
.

Hence, system Σ0 is quadratically stabilizable with the H∞ norm bound r.
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Necessity. From Definition 2, there exist a fixed static state feedback u(t) =
Kx(t) and P ∈ L(H), P ≥ 0 such that for any x ∈ D(A),

〈Ag(t)x, Px〉 + 〈Px,Ag(t)x〉 + r−2〈PB1B
∗
1Px, x〉 + 〈Cgx,Cgx〉 ≤ −α〈x, x〉 (3.4)

where α is a positive constant, Ag(t) := A + B2K + DF (t)(E1 + E2K), Cg :=
C1 + D1K. Choose F (t) ≡ 0. Then〈

(A + B2K)x, Px
〉

+
〈
Px, (A + B2K)x

〉
≤ −α〈x, x〉 . (3.5)

For any x ∈ D(A), from [2, Lemma 1.4], the semigroup {St} generated by
(A + B2K) is exponentially stable. Also from (3.5),

〈Px, x〉 ≥ α

∫ +∞

0

||St||2 dt ≥
αm0

(1 + m1)2)
||x||2 (I)

for all x ∈ D(A), where the right-hand inequality is deduced from Assumption 6 and
Lemma 7 with A0 := B2K. Hence P is invertible in H by the density of D(A) in H.

Without loss of generality, we assume that E1 + E2K �= 0. Otherwise, we
can make a sufficiently small perturbation K ′ to K such that E1 + E2K �= 0 and
inequality (3.4) is still valid with some modification on the positive constant α. In
the following, we shall work under the condition that E1 + E2K �= 0.

From (3.4), for any x ∈ D(A) with x �= 0,〈
(A + B2K)x, Px

〉
+

〈
Px, (A + B2K)x

〉
+

〈
C∗

1C1x, x
〉

+ r−2
〈
PB1B

∗
1Px, x

〉
+ ||Kx||2

< −2Re
〈
F (t)(E1 + E2K)x,D∗Px

〉
for any admissible F (t) ∈ L(H1,H2) with ||F (t)|| ≤ 1. So〈

(A + B2K)x, Px
〉

+
〈
Px, (A + B2K)x

〉
+ r−2

〈
PB1B

∗
1x, x

〉
+

〈
C∗

1C1x, x
〉

+
〈
K∗Kx, x

〉
≤−2Sup

{
Re

〈
F (t)(E1 + E2K)x,D∗Px

〉
: ||F (t)|| ≤ 1

}
(3.6)

Choose l0 > 0 such that R(l0) := (l0I −A−B2K)−1 ∈ L(H), i.e., l0 ∈ ρ(A+B2K),
and let A1 = l0(A+B2K)R(l0). Then A1 ∈ L(H). Now, let y = 1

l0
(l0I−A−B2K)x,

then A1y = (A + B2K)x and x = l0R(l0)y. From (3.6),〈
A1y, l0PR(l0)y

〉
+

〈
l0PR(l0)y,A1y

〉
+ r−2

〈
PB1B

∗
1Pl0R(l0)y, l0R(l0)y

〉
+ l20

〈
C∗

1C1R(l0)y,R(l0)y
〉

+ l20
〈
K∗KR(l0)y,R(l0)y

〉
<− 2l20Sup

{
Re

〈
F (t)(E1+E2K)R(l0)y,D∗PR(l0)y

〉
; ||F (t)|| ≤1

}
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Assume

Ỹ = l0R
∗(l0)PA1 + l0A

∗
1PR(l0) + r−2l20R

∗(l0)PB1B
∗
1PR(l0)

+ l20R
∗(l0)C∗

1C1R(l0) + l20R
∗(l0)K∗KR(l0)

X̃ = l20R
∗(l0)PDD∗PR(l0)

Z̃ = l20R
∗(l0)(E1 + E2K)∗(E1 + E2K)R(l0)

then X̃ ≥ 0, Z̃ ≥ 0, Ỹ ≤ 0, and

〈Ỹ y, y〉2 − 4〈X̃y, y〉〈Z̃y, y〉 > 0

for any y ∈ H with y �= 0. Hence, for any ε > 0, the triple (X̃, Ỹ − εI, Z̃) has
property P. So, from Lemma 5, there is a µ(ε) > 0 such that

µ(ε)2X̃ + µ(ε)(Ỹ − εI) + Z̃ ≤ 0, i.e.,

µ(ε)2X̃ + µ(ε)Ỹ + Z̃ ≤ µ(ε)εI . (3.7)

Alternatively, let x = l0R(l0)y, where y ∈ H, and Sε := µ(ε)P . we have x ∈ D(A)
and

〈(A + B2K)x, Sεx〉 + 〈Sεx, (A + B2K)x〉 + µ(ε)
(
||C1x||2 + ||Kx||2

)
+ r−2µ−1(ε)〈SεB1B

∗
1Sεx, x〉 + 〈SεDD∗Sεx, x〉

+ ||(E1 + E2K)x||2

≤ µ(ε)ε
1
l20
||(l0I −A−B2K)x||2 . (3.8)

Now, we obtain bounds for µ(ε). From (3.7),

0 < µ(ε) ≤ −〈Ỹ y, y〉 + ε

〈X̃y, y〉
≤ ||Ỹ || + ε

〈X̃y, y〉

for any y ∈ H such that X̃y �= 0, and ||y|| = 1. Hence

0 < µ(ε) ≤ ||Ỹ || + ε

||X̃||
. (3.9)

We claim that
inf

1≥ε>0
µ(ε) > 0 .



262 Chen and Tu

Otherwise there is a sequence of numbers εn ∈ (0, 1](n = 1, 2, · · ·) such that

lim
n→∞

µ(εn) = 0

and then (3.8) with (3.9) would imply that E1 + E2K = 0, contradicting our as-
sumption that E1 + E2K �= 0. Hence we can choose εn ∈ (0, 1](n = 1, 2, · · ·) such
that

lim
n→∞

εn = 0 and lim
n→∞

µ(εn) = β > 0 .

Again via the use of (3.7) − (3.8) and let Qβ := βP , it follows

〈(A + B2K)x,Qβx〉 + 〈Qβx, (A + B2K)x〉 + β(||C1x||2 + ||Kx||2)
+ r−2 β−1〈QβB1B

∗
1Qβx, x〉 + 〈QβDD∗Qβx, x〉

+ ||(E1 + E2K)x||2 ≤ 0 .

Divided by β, we have

〈(A + B2K)x, Px〉 + 〈Px, (A + B2K)x〉
+ 〈C∗

1C1x, x〉 + 〈K∗Kx, x〉 + r−2〈PB1B
∗
1Px, x〉

+ β〈PDD∗Px, x〉 +
1
β
||(E1 + E2K)x||2 ≤ 0

or yet

〈Ax,Px〉 + 〈Px,Ax〉 + β〈PDD∗Px, x〉 +
1
β
||E1X||2 + ||C1x||2 + 〈J(β)x, x〉 ≤ 0

where

J(β) = K∗
(
I +

1
β
E∗

2E2

)
K + K∗

(
B∗

2P +
1
β
E∗

2E1

)
+

(
PB2 +

1
β
E∗

1E2

)
K .

It is easy to see that

J(β) ≥ −
(
PB2 +

1
β
E∗

1E2

)(
I +

1
β
E∗

2E2

)−1(
B∗

2P +
1
β
E∗

2E1

)
.

Hence, for all x ∈ D(A)

〈Ax,Px〉 + 〈Px,Ax〉 + β〈PDD∗Px, x〉

+
1
β
||E1x||2 + ||C1x||2

−
〈
R−1

β

(
B∗

2P +
1
β
E∗

2E1

)
x,

(
B∗

2P +
1
β
E∗

2E1

)
x
〉
≤ 0 .
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On the other hand, from Lemma 3, there exists a δ0 > 0 such that Σ(δ0) is still
quadratically stabilizable with H∞ norm bound r > 0. Note that the difference of
Σ(δ0) with Σ0 is just in the state operator. For Σ(δ0) we also have a ε̄ > 0 such
that following inequality holds for all x ∈ D(A)

〈(A + δ0I)x, Px〉 + 〈Px, (A + δ0I)〉 + ε̄〈PDD∗Px, x〉

+
1
ε̄
||E1x||2 + ||C1x||2

−
〈
R−1

ε̄

(
B∗

2P +
1
ε̄
E∗

2E1

)
x,

(
B∗

2P +
1
ε̄
E∗

2E1

)
x
〉
≤ 0

i.e.,

〈Ax,Px〉 + 〈Px,Ax〉 + ε̄〈PDD∗Px, x〉 +
1
ε̄
||E1x||2

+ ||C1x||2 −
〈
R−1

ε̄

(
B∗

2P +
1
ε̄
E∗

2E1

)
x,

(
B∗

2P +
1
ε̄
E∗

2E1

)
x
〉

≤ −2δ0〈Px, x〉 ≤ −2
δ0αm0

(1 + m1)2
〈x, x〉

where the last inequality is deduced from previous inequality (I). �

Corollary 9 is a natural implication of Theorem 8, while the proof of Corollary
10 can be finished by combining Theorem 8 with some similar argument from [1, 2].

4. Conclusions

This paper has presented a state feedback law for uncertain distributed parameter
systems with time-varying norm-bounded perturbations. Based on the solvability
of some Riccati inequalities, a necessary and sufficient condition is given for these
uncertain plants to be quadratically stabilizable with an H∞ norm constraint. More-
over, we also point out some other interesting results.
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