Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 3 (1997), 243–252 © 1997 Universitat de Barcelona

Separation for ordinary differential equation with matrix coefficient

A.S. MOHAMED

Dept. of Math., Faculty of Science, Zagazig Univ., Zagazig 44519

B.A. EL-Gendi

Dept. of Math., Faculty of Science of Aswan, South Valley Univ., 81528 Egypt

Received February 8, 1995. Revised March 29, 1996

Abstract

In this paper we give criteria for the separation of the differential operator

$$L[u] = (-1)^m D^{2m} u(x) + q(x)u(x)$$

in the space $L_p(\mathbb{R})^{\ell}$, ℓ , $m \in \mathbb{N}$ and $p \in (1, \infty)$ where $q(x), x \in \mathbb{R}$, is a $\ell \times \ell$ positive hermitian matrix and prove the existence and uniqueness of the solution for the differential equation

$$(L + \beta E)u(x) = f(x), f(x) \in L_p(\mathbb{R})^{\ell}$$

where E is the identity operator and $\beta \geq 1$.

1. Introduction

The term "separation" and the first results on the separation of differential expressions are due to W.N. Everitt and M. Giertz [5–7]. They studied the following question, under what conditions on q(x) does $u(x) \in L_2(I)$ and $-u''(x) + q(x)u(x) \in L^2(I)$ imply that $u''(x) \in L_2(I), I = (-\infty, \infty)$. K.KH. Boimatov [1–3], M.O. Otelbaev [10], S.A. Eshakov [4], R.M. Kauffman [8], A.S. Mohamed [9–10] and others have also worked on the problem of separativity.

243

Now we introduce some definitions that will be used in the subsequent sections: $L_p(\mathbb{R})^{\ell}, \ p \in (1, \infty), \ \ell \in \mathbb{N}$ denotes the space of vector functions $u(x) = (u_i(x)), \ i = \overline{1, \ell}, \ x \in \mathbb{R}$, with the norm:

$$\|u\|_{p,\ell} = \left(\sum_{i=1}^{\ell} \int_{-\infty}^{\infty} \left|u_i(x)\right|^p dx\right)^{1/p}$$

Here, $\| \|_{p,\ell}$ means the norm of the vector function in the space $L_p(\mathbb{R})^{\ell}$. By $W_p^{2m}(\mathbb{R})^{\ell}$ we mean the space of vector functions $u(x), u \in \mathbb{R}$, that has generalized derivatives $D^{\alpha}u(x), \alpha < 2m$ in the sense of Sobolev. We say, that the function $u(x) \in W_{p,\text{loc}}^{2m}(\mathbb{R})^{\ell}$ if for all function $\varphi(x) \in C_o^{\infty}(\mathbb{R})$ the vector function $\varphi(x) \in W_p^{2m}(\mathbb{R})^{\ell}$. We shall consider the following differential expression:

$$L[u] = (-1)^m D^{2m} u(x) + q(x)u(x)$$
(1.1)

where $u \in L_p(\mathbb{R})^{\ell} \cap W_{p,\text{loc}}^{2m}(\mathbb{R})^{\ell}$ and q is $\ell \times \ell$ hermitian matrix. The differential expression (1.1) has been studied in [2] and [6] when m = 1, p = 2 the case when $\ell = 1, p \in (1, \infty)$ in [3] and [4] in the case of $m = 1, p \in (1, \infty), \ell \in \mathbb{N}$ is contained in [9].

In this paper we study the separation of the differential expression (1.1) in the Banach space $L_p(\mathbb{R})^{\ell}$ for any $p \in (1, \infty)$ and any arbitrary natural numbers m and ℓ .

2. Main results

The differential expression (1.1) is said to be separated in the space $L_p(\mathbb{R})^{\ell}$ if for all vector function $u \in L_p(\mathbb{R})^{\ell} \cap W_{p,\text{loc}}^{2m}(\mathbb{R})^{\ell}$ such that $L[u] \in L_p(\mathbb{R})^{\ell}$ implies that $D^{2m}u \in L_p(\mathbb{R})^{\ell}$ and $q u \in L_p(\mathbb{R})^{\ell}$. The above definition equivalent to the coercive estimate

$$\|D^{2m}u\|_{p,\ell} + \|q\,u\|_{p,\ell} \le \delta_1 \Big[\|L[u]\|_{p,\ell} + \|u\|_{p,\ell}\Big].$$
(2.1)

We say that the matrix q belongs to the class $S_{\beta,\ell}, \beta \ge 1$ if the following conditions are satisfied:

(i) $\lambda(x) \ge 1$ for all $x \in \mathbb{R}$ where $\lambda(x)$ is the first eigenvalue of the matrix q(x).

(ii) $\|(q(x) - q(y))q^{-1}(y)\| \le \frac{1}{\beta}$ for all $x, y \in \mathbb{R}$ such that $|x - y| \le \beta \lambda^{-1/2m}(x)$. For example, $q(x) = \begin{bmatrix} M^2(1 + |x|)^2 & 0\\ 0 & M^4(1 + |x|)^4 \end{bmatrix} \in S_{\beta,2}, M = 24\beta^2$.

Here ||A|| denotes the norm of A considered as a linear operator in \mathbb{C}^{ℓ} . In the following theorems we formulate our main results.

Theorem 2.1

For every $p \in (1, \infty)$ and $m, \ell \in \mathbb{N}$ there exists a number $\beta = \beta(p, \ell) \geq 1$ such that if the matrix $q \in S_{\beta,\ell}$ the differential expression (1.1) is separated in the space $L_p(\mathbb{R})^{\ell}$.

Theorem 2.2

Consider Theorem 2.1. Then the linear differential equation

$$(-1)^m u^{(2m)}(x) + q(x)u(x) + \beta u(x) = f(x)$$
(2.2)

has a unique solution $u \in L_p(\mathbb{R})^{\ell} \cap W_{p,\text{loc}}^{2m}(\mathbb{R})^{\ell}$ for all $f(x) \in L_p(\mathbb{R})^{\ell}$ $x \in \mathbb{R}$, furthermore, we have the coercive estimate

$$\left\| u^{2m}(x) \right\|_{p,\ell} + \left\| q(x)u(x) \right\|_{p,\ell} \le \delta_2 \left[\left\| u(x) \right\|_{p,\ell} + \left\| f(x) \right\|_{p,\ell} \right].$$
(2.3)

Where δ_1 and δ_2 are constants not depend on u(x).

3. Proof of Theorem 2.1

The proof is somewhat lengthy but straightforward. We subdivide it into four lemmas. Firstly, let us define the real functions $f_0(x)$ and $f_1(x)$ as follows:

$$f_0(x) = \int_{-\infty}^{\infty} \xi (\gamma_m \beta^{-1} \lambda^{1/2m}(y) \quad (x-y)) \, dy;$$

$$f_1(x) = f_0^{-1}(x) \int_{-\infty}^{\infty} \xi (\gamma_m \beta^{-1} \lambda^{1/2m}(y) \quad (x-y)) \, \lambda^{1/2m}(y) \, dy;$$

where $\gamma_m = 3^{2m} - 1$ and

$$\xi(t) = \begin{cases} \cos^4(\pi/2)t & , \ |t| < 1\\ 0 & , \ |t| \ge 1 \, . \end{cases}$$

Lemma 3.1

Let $q(x) \in S_{\beta,\ell}, \beta \ge 1$ then the following are valid

$$\frac{1}{3}\lambda^{1/2m}(x) \le f_1(x) \le 3\lambda^{1/2m}(x) \tag{3.1}$$

$$\left|\frac{df_1(x)}{dx}\right| \le C \ \beta^{-1} f_1^2(x) \tag{3.2}$$

where C is a constant depends only on m.

Proof. The proof is similar to the proof of the Lemma 3.2 in [8]. \Box

Concerning the next lemma, let us define the real valued function

$$f(x) = \beta^{1/4m} + \beta^{-1/4m} f_1(x) \,.$$

For sufficiently large value of β and from Lemma 3.1 the function f(x) satisfies the inequalities $1 \leq f(x)$ and $\left|\frac{df(x)}{dx}\right| \leq f^2(x)$ for all $x \in \mathbb{R}$ and using [Lemma 2.1; 3] there exists a partition of unity $\sum_{j=1}^{\infty} \varphi_j(x) \equiv 1, x \in \mathbb{R}$, of multiplicity less than a constant Γ having the following properties:

- (i) $\varphi_j(x) \in \mathbb{C}_0^\infty(\mathbb{R}), \quad j = 1, 2, \dots$
- (ii) $|D_x^{\alpha}\varphi_j(x)| \leq M_{\alpha}f^{\alpha}(x)$, for all $x \in \mathbb{R}$ and $\alpha \in \mathbb{N}$.
- (iii) $|x y| f(x) \le 1$, for all $x, y \in \text{supp } \varphi_j$.

Let ϕ_j be an operator multiplied by the function φ_j on the space $L_p(\mathbb{R})^\ell$ that is, $\phi_j u(x) = \varphi_j(x)u(x)$ and R_j is an integral operator on $L_p(\mathbb{R})^\ell$ with kernel $R_j(x,y) = (2\pi)^{-1} \int_{-\infty}^{\infty} \frac{e^{is(x-y)}}{|s|^{2m}I + q(x_j) + \beta I} ds$ where $x_j \in \text{supp } \varphi_j$ is a fixed point and I is a unit matrix of order ℓ . Consider the operator $F = \sum_{j=1}^{\infty} \phi_j R_j \phi_j$ in the space $L_p(\mathbb{R})^\ell$ it is clear that $F : C_0^\infty(\mathbb{R})^\ell \longrightarrow C_0^\infty(\mathbb{R})^\ell$.

Lemma 3.2

For all $u(x) \in C_0^{\infty}(\mathbb{R})^{\ell}$ and $\beta \geq 1$ the following is valid

$$(L + \beta E)Fu(x) = (E + G)u(x)$$

where $G = H_0 + H$ and

$$\begin{split} H_0 &= \sum_{j=1}^{\infty} \phi_j \big[q(x) - q(x_j) \big] R_j \phi_j \,; \\ H &= (-1)^m \sum_{j=1}^{\infty} \sum_{k=1}^{2m} \binom{2m}{k} \phi_j^{(k)} R_j^{(2m-k)} \phi_j \,; \end{split}$$

where $\phi_j^{(k)}$ is the operator multiplied by the function $\frac{d^k}{dx^k}\varphi_j$ and $R_j^{(2m-k)}$ is the operator $D^{2m-k}R_j$, where $D = \frac{d}{dx}$.

246

Proof. Assuming that $L_j = (-1)^m D^{2m} + q(x_j)$. Since $(L_j + \beta E)R_j = E$, then $(L + \beta E)F u(x) = (E + G)u(x)$, where

$$G = \sum_{j=1}^{\infty} \phi_j (L - L_j) R_j \phi_j + \sum_{j=1}^{\infty} \left[L + \beta E, \, \phi_j \right] R_j \phi_j$$
(3.3)

In the second term on the right hand side the symbol [,] means the commutator that is, $[T_1, T_2] = T_1T_2 - T_2T_1$ where T_1 and T_2 are two operators. From the definition of L and L_j we have

$$\sum_{j=1}^{\infty} \phi_j (L - L_j) R_j \phi_j = \sum_{j=1}^{\infty} \phi_j (q(x) - q(x_j)) R_j \phi_j = H_0.$$
(3.4)

It is easy to see that $[L + \beta E, \phi_j] = [L, \phi_j].$

Hence

$$\sum_{j=1}^{\infty} \left[L + \beta E, \phi_j \right] R_j \phi_j = \sum_{j=1}^{\infty} \left[L, \phi_j \right] R_j \phi_j$$
$$= \sum_{j=1}^{\infty} \left(L \phi_j R_j \phi_j - \phi_j L R_j \phi_j \right)$$
$$= (-1)^m \sum_{j=1}^{\infty} \left(D^{2m} \phi_j R_j \phi_j - \phi_j D^{2m} R_j \phi_j \right).$$

By using Leibniz formula for differentiation we get

$$\sum_{j=1}^{\infty} \left[L + \beta E, \phi_j \right] R_j \phi_j$$

= $(-1)^m \sum_{j=1}^{\infty} \left[\left(\sum_{k=0}^{2m} \binom{2m}{k} \phi_j^{(k)} R_j^{(2m-k)} \phi_j \right) - \phi_j R_j^{(2m)} \phi_j \right]$
= $(-1)^m \sum_{j=1}^{\infty} \sum_{k=1}^{2m} \binom{2m}{k} \phi_j^{(k)} R_j^{2m-k} \phi_j = H.$ (3.5)

From (3.3), (3.4) and (3.5) we get the proof of Lemma 3.2. \Box

Lemma 3.3

There exist numbers $\mu_1(p)$ and $\mu_2(p)$ such that if $q(x) \in S_{\beta,\ell}, \beta \ge 1$ the following inequalities are valid

$$\|q(x_j)R_j\| \le \mu_1(p) \tag{3.6}$$

$$\|R_{j}^{(2m-k)}\| \le \mu_{2}(p) \left(\lambda(x_{j}) + \beta\right)^{-k/2m}, \ k = \overline{0, 2m}$$
(3.7)

where $\| \|$ means the norm of operator in the space $L_p(\mathbb{R})^{\ell}$.

Proof. The operator $q(x_j)R_j$ is an integral operator with the kernel

$$(2\pi)^{-1}q(x_j)\int_{-\infty}^{\infty}\frac{e^{is(x-y)}}{|s|^{2m}I+q(x_j)+\beta I}ds$$

Since q(x) is a hermitian matrix then the operator $q(x_i)R_i$ is unitary equivalent to

diag
$$\left\{ \frac{\lambda_1(x_j)}{|s|^{2m} + \lambda_1^{2m}(x_j) + \beta}, \dots, \frac{\lambda_\ell(x_j)}{|s|^{2m} + \lambda_\ell^{2m}(x_j) + \beta} \right\}$$

using [Lemma 2.3; 3] we get

$$\|q(x_j)R_j\| = C_1(p) \max_{1 \le r \le \ell} \sup_{s \in \mathbb{R}} \frac{\lambda_r(x_j)}{|s|^{2m} + \lambda_r(x_j) + \beta}$$

hence (3.6) follows. The integral operator $R_j^{(2m-k)}$ is unitarily equivalent to

diag
$$\left\{ R_{1,j}^{(2m-k)}, R_{2,j}^{(2m-k)}, \dots, R_{\ell,j}^{(2m-k)} \right\}$$

where $R_{r,j}, r = \overline{1, \ell}$ are operators in the space $L_p(\mathbb{R})$ with kernel

$$(2\pi)^{-1} \int_{-\infty}^{\infty} \frac{e^{is(x-y)}}{|s|^{2m} + \lambda_r(x_j) + \beta} \, ds$$

by using [Lemma 2.3; 3] we get

$$\begin{aligned} \|R_{j}^{(2m-k)}\| &= C_{2}(p) \max_{1 \le r \le \ell} \|R_{r,j}^{(2m-k)}\| \\ &\le C_{2}(p) \max_{1 \le r \le \ell} \sup_{s \in \mathbb{R}} \frac{|is|^{2m-k}}{|s|^{2m} + \lambda_{r}(x_{j}) + \beta} \,. \end{aligned}$$

For any two positive numbers A and B the following is true $A^{2\alpha}B^{2(1-\alpha)} \leq A^2 + B^2, \alpha \in [0,1]$ therefore, by taking $A = |s|^m$,

$$B = (\lambda_r(x_j) + \beta)^{1/2}$$
 and $\alpha = 1 - \frac{k}{2m}$ we get (3.7). \Box

From the properties of $\varphi_j(x), x \in \operatorname{supp} \varphi_j$ we have $|x - x_j| f(x_j) \leq 1$, for all $x, x_j \in \operatorname{supp} \varphi_j$. By using Lemma 3.1 we get

$$f(x_j) = \beta^{1/4m} + \beta^{-1/4m} f_1(x_j) \ge \beta^{1/4m} + \frac{1}{3} \beta^{-1/4m} \lambda^{1/2m}(x_j) \,.$$

Hence

$$|x - x_j| \le \frac{1}{\beta^{1/4m} + \frac{1}{3}\beta^{-1/4m}\lambda^{1/2m}(x_j)} \le 3\beta^{1/4m}\lambda^{-1/2m}(x_j)$$

Since $q \in S_{\beta,\ell}$ then

$$|(q(x) - q(x_j))q^{-1}(x_j)|| \le \beta^{-1/4m}.$$
(3.8)

Now we estimate the norm of the operator H_0 :

$$\begin{aligned} \|H_0\| &\leq \sigma_1(p) \sup_j \|\phi_j(q(x) - q(x_j))R_j\phi_j\| \\ &\leq \sigma_1(p) \sup_j \|\phi_j\| \|(q(x) - q(x_j))q^{-1}(x_j)\| \|q(x_j)R_j\| \|\phi_j\|. \end{aligned}$$

By using Lemma 3.3 and (3.8) where $\|\phi_j\| \leq 1$ we have

$$||H_0|| \le \mu_3(p)\beta^{-1/4m} \tag{3.9}$$

by using the property (ii) of the partition and Lemma 3.1 we get

$$\|\phi_j^{(k)}\| \le \mu_4 \beta^{-k/4m} \left(\beta + \lambda(x_j)\right)^{k/2m}, \quad k = 0, 1, 2, \dots 2m$$
(3.10)

using Lemma 3.3 and (3.10) to estimate the norm of operator H

$$\|H\| \le \sigma_2(p) \sup_{j} \max_{1 \le k \le 2m} \frac{(2m)! 2m}{k! (2m-k)!} \Big[\|\phi_j^{(k)}\| \|R_j^{(2m-k)}\| \|\phi_j\| \Big] \le \mu_5(p,m) \beta^{-1/4m}.$$
(3.11)

From (3.9) and (3.11) and since $\beta \geq 1$ then $||G|| \leq \mu_6(p)\beta^{-1/4m}$ and for a suitable large value of β we can write $||G|| \leq 1/2$ and from the operator theory, see [12] page 140, the operator $(E+G)^{-1}$ exists and bounded; furthermore $(E+G)^{-1} = \sum_{n=0}^{\infty} G^n$ and $||(E+G)^{-1}|| \leq 2$.

Now from Lemma 3.2 we get

$$(L+\beta E)^{-1} = F(E+G)^{-1} = F(E-\tilde{G}) = F\sum_{n=0}^{\infty} G^n$$
 (3.12)

where $\tilde{G} = E - (E+G)^{-1}$ and $\|\tilde{G}\| \leq 3$.

Lemma 3.4

There exist numbers $\mu_7(p)$ and $\mu_8(p,m)$, $p \in (1,\infty)$ such that if $q \in S_{\beta,\ell}, \beta$ sufficiently large the following are valid

$$||qF|| \le \mu_7(p);$$

 $||D^{2m}F|| \le \mu_8(p,m)$

Proof. From (3.8) we have

$$\|q(x)q^{-1}(x_j)\| \le \beta^{-1} + 1 = \sigma_3.$$
(3.13)

Then one gets

$$\begin{aligned} \|qF\| &\leq \sigma_4(p) \sup_j \|q(x)\phi_j R_j\phi_j\| \\ &\leq \sigma_4(p) \sup_j \sup_{x \in \operatorname{supp} \varphi_j} \|q(x)q^{-1}(x_j)\| \|q(x_j)R_j\| \|\phi_j\|. \end{aligned}$$

Using [Lemma 2.2; 3], Lemma 3.3 and (3.13) the first inequality is proved. And similarly we can prove the second part of the lemma. \Box

Now we can estimate $||q(L + \beta E)^{-1}||$ by using (3.12) and Lemma 3.3

$$\|q(L+\beta E)^{-1}\| = \|qF(E-\tilde{G})\| \le \|qF\| \ \|(E-\tilde{G}) = 2\mu_7(p) = \mu_9(p)$$

By using the above estimate we have the following

$$||q(L+\beta E)^{-1}v||_{p,\ell} \le ||q(L+\beta E)^{-1}|| ||v||_{p,\ell} \le \mu_9(p)||v||_{p,\ell}$$

where $v \in L_p(\mathbb{R})^{\ell} \cap W_{p,\text{loc}}^{2m}(\mathbb{R})^{\ell}$. Put $(L + \beta E)^{-1}v = u$ to get

$$\|q u\|_{p,\ell} \le \mu_9(p) \| (L + \beta E) u\|_{p,\ell} \le \mu_{10}(p) \Big[\|L[u]\|_{p,\ell} + \|u\|_{p,\ell} \Big] < \infty$$
(3.14)

that is $q u \in L_p(\mathbb{R})^{\ell}$ and similarly we can obtain

$$\|D^{2m}u\|_{p,\ell} \le \mu_{11}(p,m) \Big[\|L[u]\|_{p,\ell} + \|u\|_{p,\ell} \Big] < \infty$$
(3.15)

that is $D^{2m}u \in L_p(\mathbb{R})^{\ell}$.

250

Finally we conclude that the differentiable expression (1.1) is separated in the space $L_p(\mathbb{R})^{\ell}$ and the coercive estimate (2.1) is obtained from (3.14) and (3.15) which complete the proof of Theorem (2.1). \Box

4. Proof of Theorem 2.2

For a given $f_0(x) \in L_p(\mathbb{R})^{\ell}$ the differential equation (2.2) takes the form

$$(L+\beta E)u(x) = f_0(x) \tag{4.1}$$

where L is the differential expression (1.1).

Hence from (3.12) the solution of the differential equation (2.2) exists. From (3.7), β is sufficiently large, we have $||R_j|| \leq \mu_{12}(p)$.

Using [Lemma 2.2; 3] and (3.12) to obtain

$$\|(L+\beta E)^{-1}\| \le \|F\| \|(E+G)^{-1}\| \le 2\sigma_5(p) \sup_j \|\phi_j R_j \phi_j\| \le 2\sigma_5(p)\mu_{12}(p) = \mu_{13}(p).$$

Hence for all $f_0(x) \in L_p(\mathbb{R})^{\ell}$ we have

$$\|(L+\beta E)^{-1}f_0(x)\|_{p,\ell} \le \mu_{13}(p)\|f_0(x)\|_{p,\ell}.$$
(4.2)

For a given $f_0(x) \in L_p(\mathbb{R})^{\ell}$ suppose u_1 is another solution of the differential equation (4.1) then

$$(L+\beta E) \ (u-u_1) = 0$$

From (4.2) if $f_0 = 0$ then

$$(L + \beta E)^{-1} f_0(x) = 0.$$

Therefore, $u_1 = u$ and the uniqueness is proved.

By substituting from (2.2) into (2.1) we get the coercive estimate (2.3) which complete the proof. \Box

Mohamed and EL-Gendi

References

- 1. K.KH. Boimatov, Separation theorems, *Dokl. Acad. Nauk. SSSR.* **213** (1973), 1009–1011. (Russian)
- 2. K.KH. Boimatov, Separation properties for sturm-Liouville operators, *Mat. Zametki* **14** (1973), 349–359. (Russian)
- K.KH. Boimatov, Separation theorems, weighted spaces and their applications, *Trudy Math. Inst. Soviet Math. Dokl.* 170 (1984), 37–76. English transl. in Proc. Steklov Inst. Math. 1 (170), 1987.
- 4. S.A. Eshakov, Separation of ordinary differential equations, Functional analysis and its applications in mechanics and theory of probability, *Moscow University* (1984), 130–131. (Russian)
- 5. W.N. Everitt and M. Giertz, Inequalities and separation for Schrödinger type operators in $L_2(\mathbb{R}^n)$, *Proc. Roy. Soc. Edinburgh* Sect. A **79** (1977), 257–265.
- 6. W.N. Everitt and M. Giertz, Inequalities and separation for certain ordinary differential operators, *Proc. London Math. Soc.* **28** (3) (1974), 352–372.
- 7. W.N. Everitt and M. Giertz, On some properties of the powers of a formally self-adjoint differential expression, *Proc. London Math. Soc.* **24** (3) (1972), 149–170.
- 8. R.M. Kauffman, On the limit-*n* classification of ordinary differential operators with positive coefficients, *Proc. London Math. Soc.* **3** (35) (1977), 496–526.
- 9. A.S. Mohamed, Coercive estimates and separation for system of elliptic differential equations, Ph. D., thesis, University of Tajkctan, SSSR 1992, (Russian).
- 10. A.S. Mohamed, Separation for Schrodinger operator with matrix potential, *Dokl. Acad. Nauk Tajkctan* **35** (3) (1992). (Russian).
- 11. M.O. Otelbaev, On separation of elliptic operators, *Dokl. Acad. Nauk SSSR* 234 (3) (1977), 540–543. (Russian)
- 12. B.A. Trenogen, Functional analysis, M. Nauk (1980). (Russian)