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Abstract

In this paper we give criteria for the separation of the differential operator

L[u] = (−1)mD2mu(x) + q(x)u(x)

in the space Lp(R)�, �, m ∈ N and p ∈ (1,∞) where q(x), x ∈ R, is a
� × � positive hermitian matrix and prove the existence and uniqueness of the
solution for the differential equation

(L + βE)u(x) = f(x), f(x) ∈ Lp(R)�

where E is the identity operator and β ≥ 1.

1. Introduction

The term “separation” and the first results on the separation of differential
expressions are due to W.N. Everitt and M. Giertz [5–7]. They studied the following
question, under what conditions on q(x) does u(x) ∈ L2(I) and −u′′(x)+q(x)u(x) ∈
L2(I) imply that u′′(x) ∈ L2(I), I = (−∞,∞). K.KH. Boimatov [1–3], M.O. Otel-
baev [10], S.A. Eshakov [4], R.M. Kauffman [8], A.S. Mohamed [9–10] and others
have also worked on the problem of separativity.
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Now we introduce some definitions that will be used in the subsequent sections:
Lp(R)�, p ∈ (1,∞), � ∈ N denotes the space of vector functions u(x) = (ui(x)), i =
1, �, x ∈ R, with the norm:

‖u‖p,� =

(
�∑

i=1

∫ ∞

−∞

∣∣ui(x)
∣∣pdx

)1/p

.

Here, ‖ ‖p,� means the norm of the vector function in the space Lp(R)�. By
W 2m

p (R)� we mean the space of vector functions u(x), u ∈ R, that has genera-
lized derivatives Dαu(x), α < 2m in the sense of Sobolev. We say, that the
function u(x) ∈ W 2m

p,loc(R)� if for all function ϕ(x) ∈ C∞
o (R) the vector function

ϕ(x)u(x) ∈ W 2m
p (R)�. We shall consider the following differential expression:

L[u] = (−1)mD2mu(x) + q(x)u(x) (1.1)

where u ∈ Lp(R)� ∩ W 2m
p,loc(R)� and q is � × � hermitian matrix. The differential

expression (1.1) has been studied in [2] and [6] when m = 1, p = 2 the case when
� = 1, p ∈ (1,∞) in [3] and [4] in the case of m = 1, p ∈ (1,∞), � ∈ N is contained
in [9].

In this paper we study the separation of the differential expression (1.1) in the
Banach space Lp(R)� for any p ∈ (1,∞) and any arbitrary natural numbers m and �.

2. Main results

The differential expression (1.1) is said to be separated in the space Lp(R)� if for
all vector function u ∈ Lp(R)� ∩ W 2m

p,loc(R)� such that L[u] ∈ Lp(R)� implies that
D2mu ∈ Lp(R)� and q u ∈ Lp(R)�. The above definition equivalent to the coercive
estimate

‖D2mu‖p,� + ‖q u‖p,� ≤ δ1

[
‖L[u]‖p,� + ‖u‖p,�

]
. (2.1)

We say that the matrix q belongs to the class Sβ,�, β ≥ 1 if the following conditions
are satisfied:
(i) λ(x) ≥ 1 for all x ∈ R where λ(x) is the first eigenvalue of the matrix q(x).
(ii) ‖

(
q(x) − q(y)

)
q−1(y)‖ ≤ 1

β for all x, y ∈ R such that |x− y| ≤ βλ−1/2m(x).

For example, q(x) =

[
M2

(
1 + |x|

)2 0
0 M4

(
1 + |x|

)4

]
∈ Sβ,2,M = 24β2 .

Here ‖A‖ denotes the norm of A considered as a linear operator in C
�.

In the following theorems we formulate our main results.
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Theorem 2.1

For every p ∈ (1,∞) and m, � ∈ N there exists a number β = β(p, �) ≥ 1 such

that if the matrix q ∈ Sβ,� the differential expression (1.1) is separated in the space

Lp(R)�.

Theorem 2.2

Consider Theorem 2.1. Then the linear differential equation

(−1)mu(2m)(x) + q(x)u(x) + βu(x) = f(x) (2.2)

has a unique solution u ∈ Lp(R)� ∩W 2m
p,loc(R)� for all f(x) ∈ Lp(R)� x ∈ R, further-

more, we have the coercive estimate∥∥u2m(x)
∥∥
p,�

+
∥∥q(x)u(x)

∥∥
p,�

≤ δ2

[∥∥u(x)
∥∥
p,�

+
∥∥f(x)

∥∥
p,�

]
. (2.3)

Where δ1 and δ2 are constants not depend on u(x).

3. Proof of Theorem 2.1

The proof is somewhat lengthy but straightforward. We subdivide it into four lem-
mas. Firstly, let us define the real functions f0(x) and f1(x) as follows:

f0(x) =
∫ ∞

−∞
ξ
(
γmβ−1λ1/2m(y) (x− y)

)
dy ;

f1(x) = f−1
0 (x)

∫ ∞

−∞
ξ
(
γmβ−1λ1/2m(y) (x− y)

)
λ1/2m(y) dy ;

where γm = 32m − 1 and

ξ(t) =

{
cos4(π/2)t , |t| < 1

0 , |t| ≥ 1 .

Lemma 3.1

Let q(x) ∈ Sβ,�, β ≥ 1 then the following are valid

1
3
λ1/2m(x) ≤ f1(x) ≤ 3λ1/2m(x) (3.1)∣∣∣∣df1(x)

dx

∣∣∣∣ ≤ C β−1f2
1 (x) (3.2)

where C is a constant depends only on m.
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Proof. The proof is similar to the proof of the Lemma 3.2 in [8]. �

Concerning the next lemma, let us define the real valued function

f(x) = β1/4m + β−1/4mf1(x) .

For sufficiently large value of β and from Lemma 3.1 the function f(x) satisfies the
inequalities 1 ≤ f(x) and

∣∣df(x)
dx

∣∣ ≤ f2(x) for all x ∈ R and using [Lemma 2.1; 3]
there exists a partition of unity

∑∞
j=1 ϕj(x) ≡ 1, x ∈ R, of multiplicity less than a

constant Γ having the following properties:

(i) ϕj(x) ∈ C
∞
0 (R) , j = 1, 2, . . .

(ii) |Dα
xϕj(x)| ≤ Mαf

α(x) , for all x ∈ R and α ∈ N.
(iii) |x− y|f(x) ≤ 1, for all x, y ∈ supp ϕj .

Let φj be an operator multiplied by the function ϕj on the space Lp(R)� that is,
φju(x) = ϕj(x)u(x) and Rj is an integral operator on Lp(R)� with kernel Rj(x, y) =
(2π)−1

∫ ∞
−∞

eis(x−y)

|s|2mI+q(xj)+βI ds where xj ∈ supp ϕj is a fixed point and I is a unit
matrix of order �. Consider the operator F =

∑∞
j=1 φjRjφj in the space Lp(R)� it

is clear that F : C∞
0 (R)� −→ C∞

0 (R)�.

Lemma 3.2

For all u(x) ∈ C∞
0 (R)� and β ≥ 1 the following is valid

(
L + βE

)
F u(x) =

(
E + G

)
u(x)

where G = H0 + H and

H0 =
∞∑
j=1

φj

[
q(x) − q(xj)

]
Rjφj ;

H = (−1)m
∞∑
j=1

2m∑
k=1

(
2m
k

)
φ

(k)
j R

(2m−k)
j φj ;

where φ
(k)
j is the operator multiplied by the function dk

dxk ϕj and R
(2m−k)
j is the

operator D2m−kRj , where D = d
dx .
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Proof. Assuming that Lj = (−1)mD2m + q(xj). Since (Lj + βE)Rj = E, then
(L + βE)F u(x) = (E + G)u(x), where

G =
∞∑
j=1

φj(L− Lj)Rjφj +
∞∑
j=1

[
L + βE , φj

]
Rjφj (3.3)

In the second term on the right hand side the symbol [ , ] means the commutator that
is, [T1, T2] = T1T2 − T2T1 where T1 and T2 are two operators. From the definition
of L and Lj we have

∞∑
j=1

φj(L− Lj)Rjφj =
∞∑
j=1

φj

(
q(x) − q(xj)

)
Rjφj = H0 . (3.4)

It is easy to see that
[
L + βE , φj

]
=

[
L , φj ] .

Hence
∞∑
j=1

[
L + βE , φj

]
Rjφj =

∞∑
j=1

[
L , φj

]
Rjφj

=
∞∑
j=1

(
LφjRjφj − φjLRjφj

)

= (−1)m
∞∑
j=1

(
D2mφjRjφj − φjD

2mRjφj

)
.

By using Leibniz formula for differentiation we get
∞∑
j=1

[
L + βE , φj

]
Rjφj

= (−1)m
∞∑
j=1

[(
2m∑
k=0

(
2m
k

)
φ

(k)
j R

(2m−k)
j φj

)
− φjR

(2m)
j φj

]

= (−1)m
∞∑
j=1

2m∑
k=1

(
2m
k

)
φ

(k)
j R2m−k

j φj = H . (3.5)

From (3.3), (3.4) and (3.5) we get the proof of Lemma 3.2. �

Lemma 3.3
There exist numbers µ1(p) and µ2(p) such that if q(x) ∈ Sβ,�, β ≥ 1 the following

inequalities are valid
‖q(xj)Rj‖ ≤ µ1(p) (3.6)

‖R(2m−k)
j ‖ ≤ µ2(p)

(
λ(xj) + β

)−k/2m
, k = 0, 2m (3.7)

where ‖ ‖ means the norm of operator in the space Lp(R)�.
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Proof. The operator q(xj)Rj is an integral operator with the kernel

(2π)−1q(xj)
∫ ∞

−∞

eis(x−y)

|s|2mI + q(xj) + βI
ds .

Since q(x) is a hermitian matrix then the operator q(xj)Rj is unitary equivalent to

diag
{

λ1(xj)
|s|2m + λ2m

1 (xj) + β
, . . . ,

λ�(xj)
|s|2m + λ2m

� (xj) + β

}

using [Lemma 2.3; 3] we get

‖q(xj)Rj‖ = C1(p) max
1≤r≤�

sup
s∈R

λr(xj)
|s|2m + λr(xj) + β

hence (3.6) follows. The integral operator R
(2m−k)
j is unitarily equivalent to

diag
{
R

(2m−k)
1,j , R

(2m−k)
2,j , . . . , R

(2m−k)
�,j

}

where Rr,j , r = 1, � are operators in the space Lp(R) with kernel

(2π)−1

∫ ∞

−∞

eis(x−y)

|s|2m + λr(xj) + β
ds

by using [Lemma 2.3; 3] we get

‖R(2m−k)
j ‖ = C2(p) max

1≤r≤�
‖R(2m−k)

r,j ‖

≤ C2(p) max
1≤r≤�

sup
s∈R

|is|2m−k

|s|2m + λr(xj) + β
.

For any two positive numbers A and B the following is true A2αB2(1−α) ≤ A2 +
B2, α ∈ [0, 1] therefore, by taking A = |s|m,

B =
(
λr(xj) + β

)1/2 and α = 1 − k

2m
we get (3.7). �

From the properties of ϕj(x), x ∈ suppϕj we have |x − xj |f(xj) ≤ 1, for all
x, xj ∈ supp ϕj . By using Lemma 3.1 we get

f(xj) = β1/4m + β−1/4mf1(xj) ≥ β1/4m +
1
3
β−1/4mλ1/2m(xj) .
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Hence

|x− xj | ≤
1

β1/4m + 1
3β

−1/4mλ1/2m(xj)
≤ 3β1/4mλ−1/2m(xj) .

Since q ∈ Sβ,� then
‖
(
q(x) − q(xj)

)
q−1(xj)‖ ≤ β−1/4m . (3.8)

Now we estimate the norm of the operator H0 :

‖H0‖ ≤ σ1(p) sup
j

‖φj

(
q(x) − q(xj)

)
Rjφj‖

≤ σ1(p) sup
j

‖φj‖ ‖
(
q(x) − q(xj)

)
q−1(xj)‖ ‖q(xj)Rj‖ ‖φj‖ .

By using Lemma 3.3 and (3.8) where ‖φj‖ ≤ 1 we have

‖H0‖ ≤ µ3(p)β−1/4m (3.9)

by using the property (ii) of the partition and Lemma 3.1 we get

‖φ(k)
j ‖ ≤ µ4β

−k/4m
(
β + λ(xj)

)k/2m
, k = 0, 1, 2, . . . 2m (3.10)

using Lemma 3.3 and (3.10) to estimate the norm of operator H

‖H‖ ≤ σ2(p) sup
j

max
1≤k≤2m

(2m)!2m
k!(2m− k)!

[
‖φ(k)

j ‖ ‖R(2m−k)
j ‖ ‖φj‖

]
≤ µ5(p,m)β−1/4m . (3.11)

From (3.9) and (3.11) and since β ≥ 1 then ‖G‖ ≤ µ6(p)β−1/4m and for a suitable
large value of β we can write ‖G‖ ≤ 1/2 and from the operator theory, see [12]
page 140, the operator (E + G)−1 exists and bounded; furthermore (E + G)−1 =∑∞

n=0 G
n and ‖(E + G)−1‖ ≤ 2.

Now from Lemma 3.2 we get

(
L + βE

)−1 = F (E + G)−1 = F (E − G̃) = F

∞∑
n=0

Gn (3.12)

where G̃ = E − (E + G)−1 and ‖G̃‖ ≤ 3.
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Lemma 3.4

There exist numbers µ7(p) and µ8(p,m), p ∈ (1,∞) such that if q ∈ Sβ,�, β

sufficiently large the following are valid

‖qF‖ ≤ µ7(p) ;

‖D2mF‖ ≤ µ8(p,m)

Proof. From (3.8) we have

‖q(x)q−1(xj)‖ ≤ β−1 + 1 = σ3 . (3.13)

Then one gets

‖qF‖ ≤ σ4(p) sup
j

‖q(x)φjRjφj‖

≤ σ4(p) sup
j

sup
x∈ suppϕj

‖q(x)q−1(xj)‖ ‖q(xj)Rj‖ ‖φj‖ .

Using [Lemma 2.2; 3], Lemma 3.3 and (3.13) the first inequality is proved. And
similarly we can prove the second part of the lemma. �

Now we can estimate ‖q(L + βE)−1‖ by using (3.12) and Lemma 3.3

‖q(L + βE)−1‖ = ‖qF (E − G̃)‖ ≤ ‖qF‖ ‖(E − G̃) = 2µ7(p) = µ9(p) .

By using the above estimate we have the following

‖q(L + βE)−1v‖p,� ≤ ‖q(L + βE)−1‖ ‖v‖p,� ≤ µ9(p)‖v‖p,�

where v ∈ Lp(R)� ∩W 2m
p,loc(R)�. Put (L + βE)−1v = u to get

‖q u‖p,� ≤ µ9(p)‖(L + βE)u‖p,�
≤ µ10(p)

[
‖L[u]‖p,� + ‖u‖p,�

]
< ∞ (3.14)

that is q u ∈ Lp(R)� and similarly we can obtain

‖D2mu‖p,� ≤ µ11(p,m)
[
‖L[u]‖p,� + ‖u‖p,�

]
< ∞ (3.15)

that is D2mu ∈ Lp(R)�.
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Finally we conclude that the differentiable expression (1.1) is separated in the
space Lp(R)� and the coercive estimate (2.1) is obtained from (3.14) and (3.15)
which complete the proof of Theorem (2.1). �

4. Proof of Theorem 2.2

For a given f0(x) ∈ Lp(R)� the differential equation (2.2) takes the form

(L + βE)u(x) = f0(x) (4.1)

where L is the differential expression (1.1).
Hence from (3.12) the solution of the differential equation (2.2) exists. From

(3.7), β is sufficiently large, we have ‖Rj‖ ≤ µ12(p).
Using [Lemma 2.2; 3] and (3.12) to obtain

‖(L + βE)−1‖ ≤ ‖F‖ ‖(E + G)−1‖ ≤ 2σ5(p) sup
j

‖φjRjφj‖

≤ 2σ5(p)µ12(p) = µ13(p) .

Hence for all f0(x) ∈ Lp(R)� we have

‖(L + βE)−1f0(x)‖p,� ≤ µ13(p)‖f0(x)‖p,� . (4.2)

For a given f0(x) ∈ Lp(R)� suppose u1 is another solution of the differential equa-
tion (4.1) then

(L + βE) (u− u1) = 0 .

From (4.2) if f0 = 0 then
(L + βE)−1f0(x) = 0 .

Therefore, u1 = u and the uniqueness is proved.
By substituting from (2.2) into (2.1) we get the coercive estimate (2.3) which

complete the proof. �
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