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ABSTRACT

Let Abea semisimple, commutative, finite /K -algebra, K a number field. In
this paper we study a family of height functions on A with special regard toward
the characterization of height preserving K -linear transformations. The height
functions that we examine are defined as a product over M ;. (the set of places
of K) of v-adic norms on the various completions A, = AR g K.

Introduction

Let A be a semisimple, commutative, finite K-algebra, K a number field. An M -

family of norms on A is a collection F = {]| - H”}veM ,
K

where || - ||, is a K,-norm

on A,. An M -family F is called admissible if ||al|, # 1 only for finitely many

veEM, for all non-zero acA. To any admissible F one associates a height function

Hr, defined by setting
d’l)
v

Hr(a)= [] lal

VEM p

where a — a, denotes the canonical injection of A into A, = ARk K, and d, =
[Ky : Qu]/[K : Q]. We will construct, for each 1 < ¢ < oo, a family F,, and hence
a height function H, := Hz, which depends only on ¢ and on the algebra structure
of A. Our definition agrees with the classical Northcott-Weil ¢9-height in the case
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A = K" (for the Northcott-Weil heights the most frequently used values of g are 1,2
and oo). Among our height functions there is a special one: H.,. The peculiarity
of H lies in the fact that it can be considered as the canonical height (in a sense
analogous to that of [3]) for H, and the homomorphism v : A — A, a — a*, see
the remark after proposition 2.1 for a more complete discussion. We also obtain a
description of the points of minimal height (proposition 2.6.), which for H., is the
analogue of corollary 1.1.1 of [3].

A useful tool in approaching the problem of characterizing the height preserving
linear transformations of A is the ¢7-operator height on GL ([A]), which is defined

as
HJP GLK([A]) — R

T+ HJP(T)= sup w
acA—{0} q(a)
The notion of operator height certainly deserves a deeper study which we began
in [7] and intend to pursue in a future paper. For the time being we will use it
merely as a tool. The decomposition of H;? as a product of local norms that we
obtain (theorem 3.2) reveals itself as the main ingredient to prove our first result
about height preserving transformations. Before stating it we need the following
definition: An element a€A is called K — periodic if the set {[a"]€P([A])} is finite,
P([A]) being the projective space associated to the K-vector space underlying A.

Theorem

Let A be an isotypical semisimple K-algebra. Given a€A let L, be the “mul-
tiplication by a”map. Let T be an invertible K-linear transformation of A. Then
T preserves H, if and only if there exists ac€A invertible and K-periodic such that
(LoT), is an isometry for the v-adic norm of F for all veEM .

The above result combined with some results about isometries for the local
norms yields.

Theorem

Let A be an isotypical semisimple K-algebra. Suppose that either A splits over
K orq=1orq= oco. Then TeGL K([A]) preserves H, if and only if there exists
a€ A invertible and K -periodic such that L,T is a K-algebra automorphism.
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The paper is organized as follows. In section 1 we give the definition of the local
norms that will be used to define our height functions. We also prove some results
about isometries for the archimedean case, that will be needed in section 3. Homo-
geneous heights are defined in section 2 where some of their properties, including
the appropriate version of Northcott’s finiteness theorem, are proved. Section 3 is
devoted to the proof of our results about height preserving transformations.

Conventions and Notations. By a k-algebra we will always mean a finite com-
mutative algebra with a unit, (where finite means that it is finite dimensional as a
k-vector space). If A is a k-algebra we denote by (X4, Ox,) the associated affine
k-scheme, and by a +— @ the canonical isomorphism A ~ I'(X4,Ox,). From the
structure theorem for semisimple k-algebras one sees immediately that Ay, the lo-
calization of A at any prime ideal p, is a field. Therefore the stalk of Ox, at xeX
coincides with k(z) the residue field at x and the structure theorem can be seen as
saying that A ~ ],y k(z).

If K is a number field, we denote by M, the set of equivalence classes of
absolute values of K. Moreover MY (respectively M5?) is the subset of M ;- formed
by the equivalence classes of non-archimedean (resp. archimedean) absolute values.
For ve M, |- |, is the representative of the class v, normalized by requiring that
| - |, restricted to Q is either the standard p-adic absolute value or the standard
archimedean absolute value. With K, we denote the completion of K with respect
to | - |,. With this normalization the product formula reads [, . M, |A|7 = 1, where
ny = [K, : Q). Finally we set d, = [K, : Q,]/[K : Q].

Acknowledgments. Almost all the results of this paper, even though expressed
in a different language, were contained in my doctoral dissertation at Brandeis Uni-
versity. I would like to thank my thesis advisor Alan Mayer for his invaluable
guidance throughout my graduate studies and for the many hours spent discussing
mathematics; without his support this work could not have been done.

§1. Local norms

In this section we will employ the following notations

F a field complete with respect to the absolute value | - |
A a semisimple F-algebra
(X,0x) the affine F-scheme associated to A

|- |z the unique extension of | - | to F(x), for z€X.
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Let us start with the non-archimedean case since it is the shortest of the two. Thus
we assume that |- | is a non-archimedean absolute value. The ¢°°-norm on A is

I 4o :A—R

a — sup [a(x)],.
reX

A endowed with || ||4,0c becomes a non-archimedean Banach algebra.

Proposition 1.1
Let A and B be semisimple F-algebras.

(a) If ¢ : A—B is an isomorphism of F-algebras, then || a |
(b) [l a* ae = lal oo

(c) Suppose A = []i_, A; and let m : A — A; denote the projection onto the i'"
factor. Then

A00=16(a) || B,c0-

lallace = sup [m(a)]

1<4

A;,00-

Proof. (a) and (b) follow directly from the definition. To prove (c) let X; be the
affine scheme associated to A; and denote by 7; : X; — X the injection induced by
7;. Then

[mi(a)|ai,00 = sup  [a(z)]e
zen; (Xi)

and since X = [[1"_; 7:(X;), (c) follows. O
That is all we need in the non-archimedean case. From now on we assume that

| - | is an archimedean absolute value. Let 1 < ¢ < co. We define the £?-norm on A,
|- lla,q : A — R, by setting

1/q
(Z dimp F(x) |a(3:)|g> if 1<¢g<oo
lallaq= TEX

sup |a(z)|. if ¢=o0.
zeX

A endowed with any of the above norms becomes a real or complex Banach algebra
(depending on whether F' = R or C). Note that if A splits over F' then | - ||4,o is
nothing else than the standard ¢?-norm on R™ or C™.

Proposition 1.2
Let A and B be semisimple F-algebras.
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(a) If ¢ : A — B is an isomorphism of F-algebras, then ||a|laq = | ¢(a)|lB.q-

(b) || " [l 4,00 = llall
(c) Suppose A = []i_, A; and let m; : A — A; denote the projection onto the ith
factor. Then

r 1/q
(Xim@ls,) i 1sa<x
=1

lallaq=
max | 7i(a) || a; .4 if g=oo0.
1
(d) lim oo [|a® ||, = llall 4,00

Proof. (a), (b) and (c) are proved as in lemma 1.1. (d) follows either from a general
result about real and complex Banach algebras, see e.g. [2, 1.5.8 and 1.13.7], or by a
direct computation which is left to the reader. [

Let GLp([A]) be the group of invertible F-linear transformations of A. We
denote by Og4(A) the subgroup of GLg ([A]) formed by the isometries for the ¢7-
norm. Our next goal is to prove a characterization for the elements of O4(A4). If A
splits over F' this sort of results are well known:

Proposition 1.3
Suppose that A = F™. Let &, (U) C GL(n, F') be the subgroup of monomial

matrices with entries in U = {a€F | la| = 1}. Then
S,(U) if g#2
O,(F")=<O(n) if g=2and F=R
Umn) if ¢g=2and F=C

where O(n) ( respectively U(n)) denotes the subgroup of orthogonal (resp. unitary)
matrices.

Proof. These results can be viewed as special cases of their infinite dimensional
version, see [1]. O

It remains to deal with the case of a non-split real algebra. Thus from now on
we assume that A is a real semisimple algebra. The characterization that we will
be able to obtain is a corollary of the following generalization of the Banach-Stone
theorem due to M. Grzesiak.
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Theorem 1.4

Let Z be a compact Hausdorff space and T : Z — Z be an involution. Set
cZ,r) = {fEC'(Z, C) | f(r(2)) = f(z) VZEZ}. We always consider C(Z,T) en-
dowed with the sup-norm (which makes C(Z,T) a real Banach algebra). A map
T:C(Z 1) — C(Z,7) is a surjective linear isometry if and only if there exists

a homeomorphism « : Z — Z satisfying Toac = aor and an invertible function
geC(Z, 1) satistying |g(z)| = 1 Vz€Z such that

(Tf)(2) = g(2)f(a(2))
for every feC(Z, 1) and z€Z.

Proof. See [5]. O

We have to reformulate this general result in our setting. The set X (C) of C-
valued points of X is a compact hausdorff space. Recall that X (C) can be interpreted
as the set of R-linear homomorphisms of A to C. We define an involution 7 on X (C)
by setting ¥7(a) = 1(a). Note that the assignment a — a?€, where a9(¢)) = ¢(a)
defines an injection y : A — C(X(C),7) which is isometric if we endowed A with
the ¢*°-norm. It is straightforward to check that dimgC(X(C),7) = dimgA and so
7 is an isometric isomorphism.

Corollary 1.5

Suppose A is a semisimple R-algebra and let T belong to GLR([A]). Then
T€04(A) if and only if the following two conditions are satisfied

(1) T(1) = b belongs to A; = {aEA ‘ la(z)| =1 VxGX}.
(2) L, 'T is an algebra automorphism.
The same characterization holds for the ¢'-norm of A as we shall now show.

Recall that on any semisimple real algebra there is a unique involution * which is
positive with respect to the trace i.e. tr(aa*) > 0 for all non-zero a€ A. Then

<,> :AxA—R
(a, b) — tr(ab™)
is a positive definite bilinear form on A. Let us identify A with its dual (as real

vector spaces) by means of <, > . Under this identification the dual norm of ||- || 4 4,
denoted by || - Hz’q, becomes a norm on A

| <b,a>|

\2
[allay= sup
’q be A—{0} 161 4,4
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As in the split case, one checks immediately that || - HZ‘,q = |- ||a,q, where ¢ is the
conjugate exponent of q. By means of <, > we can define an involution, that by
an abuse of notation we denote by * on GLR([A]), by requiring that

<T(a),b>=<a,T"(b) > (1)

for all a,bcA. Let Autp_q (A) C GLR([A]) denote the group of automorphism of
A as an F-algebra. Note that TEGLR([A]) is in Autp_q4 (A) if and only if T* is.

Corollary 1.6

The characterization of the isometries for the norm ||-|| 4o obtained in corollary
1.5 holds also for || - || a.1.

Proof. Suppose T€0;(A), then also T~! belongs to O;(A). It follows at once
from (1) that (T~1)* belongs to On(A). Let ¢ = (T~1)*(1) then, by corollary 1.5,

LY (T~1)* is an algebra automorphism. But then

T*Le = (Le—1(T" ") " €Autp_qy(A)

and so LiTcAutp_qy (A) Therefore ¢* = T(1)~! and since in general LY = Lg-

and L;l = Lg-1 we have L;(ll)TEAutF_alg (A) Finally, it is immediate to verify

that T'(1) = (c*)~! satisfies (1) of corollary 1.5 since ¢ does. [J

§ 2. Homogeneous heights

In this section we will employ the following notations:

K a number field

A a semisimple K-algebra

(X,0x) the affine K-scheme associated to A

(X,,0x,) the affine K,-scheme associated to A, = AQx K,
iy : A— Ay, a— ay the canonical injection

Tyt Xy =& X the surjection induced by 4,

|1y the unique extension of | - |, to K,(y), y€X,.

As pointed out in the introduction in order to define a height function on A we need
only to exhibit an admissible M g -family. Given 1 < g < oo consider the M -
family 7, = {||- HAU’OO}’UEML}( U{Il- ||Av,q}U€M? where the local norms are the ones

defined in the previous section. First of all we have to check that F, is admissible.

Lemma 2.1
The M g -family F, is admissible.
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Proof. By propositions 1.1 and 1.2 we can reduce to the case of a simple K-algebra.
Thus A = E is a field extension of K. Then given a€E we have ||a, |5, .00 =
SUPy ey |alu Where M = {ueMy | |- ‘“‘K =|]»}. So the lemma follows from
the standard fact that given a€E there are only finitely many ue€M, such that
lal, #1. O

When no confusion arises we will write || - ||, for || - || a,.q- The absolute homo-
geneous (9-height on A, H, :— R, is the height associated to F,. More explicitly
let n, = dimg, K, (y), and let o(a,) = {y € X,|a,(y) # 0}, then

I sw Wl if ¢ =00
'UGMK yGa(dv)
Hq(a) = v
[T sw @i 1T | X mlawi] if 1<g<oo.
vemo, YEo(@,) veMS \yeo(a,)

We collect the first properties of H, in the next proposition.

Proposition 2.2
Let A and B be semisimple K-algebras. Then

(a) Hy(ha) = H, for ac A and A\e K*. (scalar invariance)
(b) Hy(aa') < Hy(a) - Hy(a'). (submultiplicativity)
(c) Hyo(a) = (Hoo(a))k. (power-multiplicativity)
1
(d) limp_oo(Hg(a®))* = Hoo(a). (Gelfand-Beurling formula)

(e) Ifp:A— B is K-isomorphism, then Hy(a) = Hy(¢(a)) for all acA.

Proof. (a) follows from the product formula. The remaining ones follow directly
from the corresponding properties of the local norms of 7. [J

Remark. Note that (d) can also be proved (in its logarithmic version) by Tate’s
averaging procedure. In fact denote by ¢, the homomorphism a — a" and set
hg = log H,. Since M% is finite we have that nhy, — hgo¢, is a bounded function
on A. Then Tate’s lemma, as described in [6, Lemma 3.1], yields the existence of
a unique function h such that ho¢p, = nh and h is in the same class of h; modulo
bounded functions. But h., has both these properties and so h = he.



Height preserving linear transformations on semisimple K -algebras 225

ExamMpLE 1: If A = K™ then H, coincides with the (absolute) Northcott-Weil
{1-height, i.e.

H sup |a;|% if g =00
vEM Isisn
Hy(a) = n dv/q
H sup |a; do H ( \al\z> if1<g<oo
vemg, 1SIET veMe \i=1
where a = (ay,...,a,)EK™.
2. Let A = F be a field extension of K. Then
H sup |a|d if g =00
VEM,, ueM?y,
Hq(a) = 1 dv/q
H sup |a|d H - Z Ny lald if 1 < g < oc.
veMY, ueMp vEMP v ueEMY,

Let L be a finite extension of K. We denote by ¢, : A — Ay the canonical
injection of A into A = ARk L. We say that L is a splitting field for A if L is a
Galois extension of K and Ay, is isomorphic, as L-algebra to L™ (n = dimgA).
The next proposition gives a useful method for computing H,.

Proposition 2.3

Let A be a semisimple K-algebra and 1 < ¢ < co. Suppose that L is a splitting
field of A. Then Hy(t,(a)) = Hy(a) for all a€A.

Proof. Since H, is invariant under isomorphisms it is enough to show that
Hy((Yor,)(a)) = Hgyla), where ¢ : A, — L™ is any L-isomorphism. Note
that the invariance of H, under K-isomorphisms does not prove the proposi-
tion since A and A are considered as algebras over different fields. Let G, =
{ll Hw:oo}we/\/l% U{|l H“”‘l}ve/\/tzo be the M, -family defining H, on L™. Since

M, = HUEMKM.% and EweMg d,, = d, it suffices to prove that for all ac A

| (Yo12)(@) |lw.g = || @|lv,q for all vEMS and all vE MY (but only ¢ = 00). (%)

By propositions 1.1 and 1.2 we need to prove (x) only for simple algebras. Thus we
assume that A = F is a field extension of K. Since L is Galois over K there exist
n = [E : K] distinct embeddings of E into L over K, say ¢1,..., ¢,. The map

¢: EQxL — L"
a®@X— M¢i(a),..., ¢n(a))
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is an isomorphism of L-algebras and we shall prove that (%) holds for ¢oc,. Since L
is Galois over K, the sets {| - ’“}ue/\/lg and {|- |w°¢i}?:1 contain the same distinct
absolute values, yielding (%) for ¢ = oco. Moreover the only difference between the
two sets is that in { |- |wo¢z} the same absolute value can appear more than once.

The number of times that | - |u appears in {| - |wo; } is 7 (cf. [4, HL.1.20]).

=1 n
Therefore
1/q /4
Ty
[ 9(a) lw,q = (Z‘@ ) = Z e alf =llallq- O
ueMy, v
Corollary 2.4
Let A and B be semisimple K-algebras. Then
(a) Hg(a) >1 for a # 0. (positivity)
(b) Hy(a®b) = Hy(a)H,(b). (Segre invariance)

(c) Let L be any extension of K. Then Hy(a) = Hy(t,(a)) for all acA.

Proposition 2.2 enables us to prove Northcott’s Finiteness Theorem for H, on

P([A]).

Corollary 2.5 (Northcott’s Finiteness Theorem)
Let A be a semisimple K-algebra. Then for any constant C' the set

N, (P([4]), C) = {PeP([4]) | H,(P) < C}
is finite.

Proof. Let L be a splitting field of A and denote by ¢ : A — L™ the composition
of ¢, with an isomorphism of Ay, into L™. By Northcott’s Finiteness Theorem for
projective spaces we know that N, (P”fl(L), B) is finite. Thus the corollary follows
from proposition 2.2 and the fact that the map ¢ : P([4]) — P"~*(L) induced by ¢
is injective. [J

Given feF(X, Ox), the set o (f) = {xEX ‘ flx) # O} is called the support of
f. An element a of A is called K-periodic if there exist Ae K* and a positive integer
r such that @"(z) = A for all z€o (a), (or equivalently if the set {[a"]€P([A])} is
finite). Note that if A is simple, then a€ A is K-periodic if and only if a is a root of
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a polynomial in K[X] of the form X" — A. The set of K-periodic elements of A is
denoted by Perg (A). Finally for a€A we set §(a) = > reo(a) img K ().

Proposition 2.6
Let A be a semisimple K-algebra and a€A be non-zero. Then
(a) Hy(a) =1 if and only if a is a K-root.
(b) If 1 < ¢ < oo, then
Hoy(a) > 8(a)"/"

and the equality holds if and only if a is K-periodic.

Proof. (a) Suppose first that a€Perg(A). Then there exists AeK* such that
Xa"(xz) =1 for all zeo(a). Thus He(a)” = Hxo(a”) = 1, which yields Hy(a) = 1.
Suppose instead that H(a) = 1. Then, by proposition 2.1.(d), Hx(a") = 1 for all
integers r > 1. Thus {[a"]€P([A]),n > 1} C Ny (P([4]), 1), but the latter set is
finite by Northcott’s Finiteness Theorem, hence a is K-periodic.

(b) Let ac A be non-zero. Since H, is invariant under multiplication by scalars

we can assume || a H > 1 for all ve MY, so
Aa)= T llalf.>1.
veMY,

For zeX set d, = dimgK(z) and d, = dimg, K,(y), for yeX,. Then
> yensi(z) dy = do which yields 6(ay) = 6(a) for all vE M. Moreover with our
notation the product formula (for the number field K (z)) reads

I weps I I -1

VEMG yemy ! (x) VEMP yer ()

Hence

I I g = (+)

VEME yeny ' (x)

for every x€X. Finally, given ve M% from the inequality between the arithmetic
and the geometric mean we get

1/6(a)
> dyla)l = 6(a) | [T lav()le® : ()

yea(av) yEO‘(&v)
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Now we have all we need to obtain the lower bound for H:

dy
Hy(a)" = Ma)* ] > dylas(y)l
vEMPE \yE€o(ay)
dy/6(a)
> A [ stao) | TT lau)lg® (by ()
vEMP y€o(ay)
dy /6(a)

=a@o@ I I1 | Il

vEMP zeo(a) yers L)
q/6(a)

qdg ~
5@ II A@ IT [ II lawli®
z€o(a) VEME \yem, ' (z)
> 6(a). (by (%))
It remains to show that H,(a) = §(a)% if and only if a belongs to Perg (A). Suppose

a is K-periodic. Then there exists Ae K> such that |a,(y)|, = \)\\5 for all yeX,.
Thus

dv/q
du d
T

H@=T] W T1 [ X @i | = I A [ 6@%=é)7.

ve./\/l(l)( vEMP \yE€o(ay) vEM vEMP

Suppose now that H,(a) = 6(@)%. Then in both (x) and (*x*) the equality holds.
For (*) this implies that the equality holds also for a™ (for all n > 1). In (%) the
equality holds if and only if |a,(y)| is independent of y for every ve M. Thus also
in (%) the equality holds for all a™’s . Hence

Hy(a") = 6(a")7 = 6(a)?
and so Northcott’s Finiteness Theorem yields the K-periodicity of a. [

Corollary 2.7
Let A be a semisimple K-algebra and 1 < g < oo. If a€ A is non-zero, then

- 1/q
H,(a) > (al}él)r(ldlmKK(a:)) .

and the equality holds iff a is K-periodic, o (a)={z¢} and dimgxK(xg) =
min, e xdimg K(z) .
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§3. Height preserving linear transformations

Let GLg ([A]) denote the group of invertible linear transformations of [A]. Our first
necessity is a way to measure how far a linear transformation is from being height
preserving. This role can be interpreted by

H : GLk ([A]) — R
op _ su Hq (T(a))
T iD= s (W)

which we call the operator ¢9-height on GL K([A]) The following properties of Hg?
are immediate from the definition.

Proposition 3.1
Let A be a semisimple K-algebra, T, SEGLK([A]), T,5 #0 and Aée K*. Then
(a) HP(T) > 1.
(b) HP(\T') = HJP(T).
(c) HP(ST) < HP(S) HP(T).

For ve M, we denote by T + T, the canonical injection of GLk ([A]) into
GLk, ([Ay]). Our next goal is to have a decomposition of H, 7 as product of local
norms. The local norms that we intend to use are, in view of the definition of the
operator ¢9-height, the operator norms on GLg, ([Av]) associated to the norms of
Fy. By an abuse of notation we denote by || - ||, the operator norm on GL, ([A,])
associated to || - ||y,q-

Theorem 3.2
Let A be a semisimple K-algebra. Then

HPT) = 1 1705 TT 17015

veM, vEMPE
for all TEGL ([A]).

Before proving theorem 3.2 we need some preparatory work. The subgroup of
GLk, ([Ay]) formed by the isometries for the norm || - ||, (¢ = oo only if v is non
archimedean) is denoted by Oy (A4,).

Lemma 3.3
Let A be a semisimple K-algebra. If T€GLk ([A]), then the set

Sr = {veMY T, ¢ O(4))}

Is finite.
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Proof. Let L be a splitting field of A, and ¢ : A, — L™ be an isomorphism.
Let S be the L-linear transformation of L™ defined by S = (¢ LoTLogbZl), where T,
is obtained by extending 7" by L-linearity to Ar. Suppose that S, €0 (L],) and
let ve MY be such that w belongs to M%. From the proof of proposition 2.3 (in
particular from (x)) it follows that v€Sy if and only if MY CSs. Thus it suffices to
prove the proposition in the case A = K™. Then we can identify GL K([K "]) with
GLy(K), the group of invertible n X n matrices with entries in K, and GLg, ([K7])
with GL, (K,). Under these identifications O (K}') N GLk ([K™]) corresponds to
GL,(0,), where O, = {/\EK | A, < 1}, and so the lemma follows. OJ

Given a finite subset S of M we set As = [],.s Av and we consider A as
embedded diagonally into As. Set S = SN MY and S =S N MP. We define a
metric on A by setting

dq:A3XA3—>]R

(@, B) — d, (@, B) = max{ sup || @y — Bo ||v,00s Sel}o}; | — Bo ”v,q}

veS?
where o = {av}vesy and B = {/611}1168'

Proposition 3.4

Let A be a semisimple K-algebra, S a finite subset of M and 1 < g < oo.
Then A is dense in As with respect to the metric d,,.

Proof. If A is simple the proposition follows from the weak approximation theorem.
The general case is reduced to the case of A simple by means of propositions 1.1
and 1.2. O

Corollary 3.5

Let A be a semisimple K-algebra, S a finite subset of M., TEGLk ([A]) and
1 < q < oo. Then for every € > 0 there exists ac A such that

1T(a) [v.q 1T(a) llv,00

+e VoeSY.
|9y At

| Ty ||v,q < +e VoeS™ and ||Ty|lv,00 <

We can now proceed to the proof of theorem 3.2.
Proof of theorem 3.2. The inequality

P(T) < T[] 1T 0 TT 170115y

vEM?{ vEMP
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is clear. Thus it suffices to show that for every € > 0 there exists a€ A such that

I1 170 I 17 H,y(T(a)

veSO VES® Hq(a)

where § = S°(J8>, 8% = {veM | T ¢ O (4,)} and 8 = {veMF | T ¢
Oq(Av)}. Fix € > 0. By lemma 3.3 § is finite and so we can find § > 0 such that

<H 17 1% T 1T ||zfq> —e < [T Ul =) TT (170115, —9)-

veSO vES® veSO VES®

dU
v?q <

By corollary 3.5 there exists a€ A such that

dy
I T ||ng0 -6 < M YoeS°
’ | @ vt
and p
| Ty |9, — 6 < % YvesS™.
[R7a ke

Taking the product over v€S we have

veSo vES®® veSO VES®
1 T(a) 19 1T(a) o,
<11
lale: la &
veESO V,00  peSee v,q
_H(TW)
Hy(a)

As we said in the introduction our main interest is to give an explicit description
of the linear transformations that preserve the £4-height on a semisimple K-algebra.
Set

Hy(A) = {TEGLK([A]) | Hy(T(a)) = Hy(a) \meA}.

Thus H4(A) C GLk ([A]) is the subgroup of linear transformations that preserve the
¢9-height on A. Note that Autg 44 (A) C Hqy(A). If ac Ais invertible L,eGL g ([A])
denotes the invertible linear transformation given by “multiplication by a”.

Lemma 3.6

Let A be a semisimple K-algebra. If a€A is invertible, then L,€H,(A) if and
only if a is K-periodic.
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Proof. If L,eH,(A), then

1 if ¢ =00

Hy(a) = Hy(La(1)) = {

(dimgA)7 if 1< ¢ < .

Thus, by proposition 2.5 a€Perg (A) Viceversa suppose a is K-periodic and inver-
1
tible. Then there exists Ae K'* such that |a,(y)|, = |A|s for all yeX,. Hence

dy
Hy(La®) = [ sup l@o@bu@le ] > nylas )b,
veMY yea(by) VEMRE \ yeo (b, )
dy
dy N ™ q
= I M II sw el 1 > mylbu(w)l,
VEM vEM‘I)( yEa(bv) veEMPE \y€o(ay)

= H,(b).
The analogous computation holds for ¢ = co. [J

Let Perj (A) C Perg (A) be formed by the K-periodic elements of A that
are invertible. Note that Perj (A) is a subgroup of A*. A K-algebra A is called
isotypical if all its simple components are isomorphic or equivalently if K (z) ~ K(y)
for all x,yeX.

Theorem 3.7

Suppose A is an isotypical K-algebra and 1 < q < oo. If TEGLK([A]), then T
belongs to Hy(A) if and only if there exists acPer (A), such that (L,T), €O (Ay)
for all ve MY and (L,T),€0,(A,) for all vE M.

Proof. The “if ”part follows directly from lemma 3.6. Suppose now that T" belongs to
H,(A). Choose ze€ X such that dimg K (z) = minge x dimg K (x) and let b€ A be such
that b(y) = 0 if y # « and b(z) = 1. Then H,(b) =1 and since T'€H,(A) corollary
2.7 yields that T'(b) is K-periodic. Since A is isotypical there exists a€Perj (A),
such that -

a(x)T(b)(z) =1 for all €0 (a). (%)
Then || (LoT)y |lo.co = 1 YoeM% and || (LaT)y |log > 1 Y0EMSE. By lemma 3.6.
L, belongs to H,(A) and so does L,T". Then, by theorem 3.4, we have

L=HP(LT) = ] 1Dl ] 1HEaD) Il

veM, vEMP
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which combined with (x) yields
| (LaT)y [Jv,00 =1 voe MY and | (LaT )y [Jv,qg =1 YoeME.  (¥x)

Suppose there exists u€ MY such that (L,T), ¢ O (A,). Hence we can find a€ A
such that || LoT'(a) ||lu,00 7 || @ |lu,00- By (%x) we must have || LoT(a) [Ju,00 < || @ ||u,00-
But then

Hy(a)= [] I1ZaT(@) 3 ] 1 ZaT(a) S,

veMY, veEME

d'u d'u _H
< II lWald TI el = He(a)
veMY, vEMPE

which is a contradiction since L,T'€H,(a). The same computation shows the im-
possibility of the existence of ue M% such that (L,T"),¢04(4,). O

We would like to have a more explicit characterization of the height preserving
transformations. As we already remarked H,(a) contains both Autg_qi4(A) and
{La ’ a€Per (A)} and thus the subgroup that they generate, which is isomorphic
to the semidirect product of the two subgroups. The next theorem shows that for a
large class of algebras that is all.

Theorem 3.8
Let A be an isotypical semisimple K-algebra and 1 < q < co. Suppose that one

of the following conditions is satisfied:

(1) either g =1 or ¢ = o0

(2) A splits over K,

then T' belongs to Hy(a) if and only if there exists acPerj; (A) such that L,T is a
K-algebra automorphism.

Proof. Suppose first that either ¢ = 1 or ¢ = oo. By theorem 3.7 there ex-
ists c€Perj; (A), such that S = (LoT),€04(Ay). Since S,€04(A,) theorem 1.6,
implies that (Lj-1),S, is an algebra automorphism, with & = S(1). But then
Lyt = (L;'S)S71eH,4(A), so by lemma 3.6 bePer (A). Set a = b~ !¢, then L,T is
a K-algebra automorphism of A.

Suppose now that A splits over K so that we can assume A = K". Let us
identify GLg ([K™]) with GL(n,K) the group of invertible n X n matrices with
coefficient in K. Let &,,(I") € GL(n, K) denote the subgroup of monomial matrices
with entries in I, where I' C K* is a subgroup. Since a = (ay,...,a,)EK™ is
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invertible and K-periodic if and only if there exists A6 K* such that Aa;€uy for all

1 =1,...,n, theorem 3.7 implies that it is enough to show that
ﬂ Oy,00(K™) ﬂ Ou,q(K™) = Gn(pk)-
UEM?{ veEME

where O, 4(K™) = O4(K") N GL(n, K). Let O, = {AeK | [\, < 1}. If ve MY,
then Oy oo (K™) = GL(n, O,), so that

[ Ove(KE™) = (] GL(n,0,) = GL(n,Ok).

0 0
veEMS, veEMS,

where Of is the ring of integers of K. Thus all that is left to prove is the following
assertion: if S = (s;;)€GL(n, Ok) is such that S€O, ((K™) for all ve M then
SeB,, (ug). If ¢ # 2, then, by proposition 1.5, O, 4(K™) = &, (U,) where U, =
{)\GK ‘ A, = 1}. By Kronecker’s theorem every non-zero entry of S must be a
root of unity. If ¢ = 2, let {eq,...e,} denote the canonical basis of K™. Then

1/2

n
L=leifloe =118 loa = | D Isiilo | - (%)
j=0

It follows that |s;;|, < 1 for all ve M%, and since we already know that the s;;’s
are algebraic integers, Kronecker’s theorem implies again that all the non-zero s;;’s
are roots of unity. Then, looking back at (), we see that the only possibility is that
S GGn(/Lk) . O

References

—_

. S. Banach, Théorie des opérations linéaires, Warszawa, 1932.

2. FF Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973.

3. G. Call and J.H. Silverman, Canonical Heights on Varieties with Morphisms, Compositio Math.
89 (1993), 163-206.

4. A. Frohlich and M.J. Taylor, Algebraic Number Theory, Cambridge University Press, 1991.

5. M. Grzesiak, Isometries of a space of continuous functions determined by an involution, Math.
Nachr. 145 (1941), 217-221.

6. J.P. Serre, Lectures on the Mordell-Weil Theorem, Vieweg, 1989.

7. V. Talamanca, Height preserving transformations on linear spaces, Ph.D. thesis, Brandeis Uni-

versity, 1995.



