Collect. Math. 48, 1-2 (1997), 209-216
(c) 1997 Universitat de Barcelona

Modular automorphisms of the Drinfeld modular curves $X_{0}(\mathfrak{n})$

Andreas Schweizer

FB 9 Mathematik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
E-mail address: schweizer@math.uni-sb.de

Abstract

For $\mathfrak{n} \in \mathbb{F}_{q}[T]$, we determine the group of modular automorphisms of the Drinfeld modular curve $X_{0}(\mathfrak{n})$ or equivalently, the normalizer of the Hecke congruence subgroup $\Gamma_{0}(\mathfrak{n})$ in $G L_{2}\left(\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)\right)$. Some applications to the strong Weil uniformization of elliptic curves over $\mathbb{F}_{q}(T)$ are given.

Let \mathbb{F}_{q} be the finite field with q elements, $A=\mathbb{F}_{q}[T]$ the polynomial ring, $K=\mathbb{F}_{q}(T)$ the rational function field, and K_{∞} the completion of K at the place $\infty=\frac{1}{T}$. These are the characteristic p analogues of \mathbb{Z}, \mathbb{Q}, and \mathbb{R}. As an analogue of the complex numbers \mathbb{C} we take C, the completion of the algebraic closure of K_{∞}. Throughout this paper, \mathfrak{n} will denote a monic element of A and \mathfrak{p} and \mathfrak{p}_{i} will be primes (i.e., monic irreducible elements of A).

The group $G L_{2}\left(K_{\infty}\right)$ acts by fractional linear transformations on the Drinfeld upper halfplane $\Omega:=C-K_{\infty}$. The quotient space $\Gamma_{0}(\mathfrak{n}) \backslash \Omega$ by the Hecke congruence subgroup

$$
\Gamma_{0}(\mathfrak{n}):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(A): \mathfrak{n} \mid c\right\}
$$

is a rigid analytic space that can be compactified by adding the finite set of cusps $\Gamma_{0}(\mathfrak{n}) \backslash \mathbb{P}^{1}(K)$. As in the classical situation, we thus obtain the Drinfeld modular curve

$$
X_{0}(\mathfrak{n})=\Gamma_{0}(\mathfrak{n}) \backslash \Omega \dot{\cup} \Gamma_{0}(\mathfrak{n}) \backslash \mathbb{P}^{1}(K),
$$

which as a curve is defined over K. Without further explanation we mention that $X_{0}(\mathfrak{n})$ is a coarse moduli scheme for rank 2 Drinfeld A-modules with a fixed cyclic \mathfrak{n}-isogeny. For all this and more information on $X_{0}(\mathfrak{n})$, see [2].

We also need the Bruhat-Tits tree \mathcal{T} of $G L_{2}\left(K_{\infty}\right)$. This is a $(q+1)$-valent tree, whose vertices are the cosets $G L_{2}\left(K_{\infty}\right) / K_{\infty}^{\times} \cdot G L_{2}\left(\mathcal{O}_{\infty}\right)$, where \mathcal{O}_{∞} is the valuation ring of K_{∞}. Its oriented edges are the cosets $G L_{2}\left(K_{\infty}\right) / K_{\infty}^{\times} \cdot \mathcal{J}$, where \mathcal{J} is the group $\left.\left\{\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}\left(\mathcal{O}_{\infty}\right): v_{\infty}(c)>0\right\}$, and the canonical reduction maps an oriented edge to its terminal vertex. Inversion of an edge is given by multiplication from the right with $\left(\begin{array}{cc}0 & 1 \\ T^{-1} & 0\end{array}\right)$. Thus $G L_{2}\left(K_{\infty}\right)$ acts in an obvious way on \mathcal{T}.

There is a $G L_{2}\left(K_{\infty}\right)$-invariant mapping from Ω to \mathcal{T} (see [4] or [3] for an exact treatment), which makes it possible to reduce some questions concerning Drinfeld modular curves to graph-theoretic problems.

The quotient graph $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$ may be considered as a rough picture of $X_{0}(\mathfrak{n})$. It is a finite graph with a finite number of half-lines (i.e., graphs of the form $\bullet \bullet \bullet \ldots$) attached to it. These are in one-to-one correspondence with the cusps of $X_{0}(\mathfrak{n})$ and hence are also called cusps.

Denote by $\mathcal{N}_{G L_{2}\left(K_{\infty}\right)}\left(\Gamma_{0}(\mathfrak{n})\right)$ the normalizer of $\Gamma_{0}(\mathfrak{n})$ in $G L_{2}\left(K_{\infty}\right)$. It is not too difficult to show that the operation of $G L_{2}\left(K_{\infty}\right)$ on Ω resp. \mathcal{T} induces an injective mapping from

$$
\mathcal{M}(\mathfrak{n}):=\mathcal{N}_{G L_{2}\left(K_{\infty}\right)}\left(\Gamma_{0}(\mathfrak{n})\right) /\left(K_{\infty}^{\times} \cdot \Gamma_{0}(\mathfrak{n})\right)
$$

into $\operatorname{Aut}\left(X_{0}(\mathfrak{n})\right)$ resp. $\operatorname{Aut}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}\right)$. Its image is called the subgroup of modular automorphisms of $X_{0}(\mathfrak{n})$ resp. $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$.

For example, fix a monic $\mathfrak{m} \in A$ with $\mathfrak{m} \mid \mathfrak{n}$ and $(\mathfrak{m}, \mathfrak{n})=1$. Then all the matrices $\left(\begin{array}{cc}\mathfrak{m} a & b \\ \mathfrak{n} c & \mathfrak{m} d\end{array}\right)$ with determinant $\varepsilon \mathfrak{m}\left(a, b, c, d \in A\right.$ and $\left.\varepsilon \in \mathbb{F}_{q}^{\times}\right)$are in $\mathcal{N}_{G L_{2}(K)}\left(\Gamma_{0}(\mathfrak{n})\right)$. They are even all in the same coset modulo $\Gamma_{0}(\mathfrak{n})$, so they all induce the same modular automorphism of $X_{0}(\mathfrak{n})$ or $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$, the so-called (partial) Atkin-Lehner involution $W_{\mathfrak{m}}$.

Clearly, $W_{\mathfrak{m}}^{2}=i d$, and for divisors \mathfrak{m}_{1} and \mathfrak{m}_{2} of \mathfrak{n} as above, we have $W_{\mathfrak{m}_{1}} W_{\mathfrak{m}_{2}}=$ $W_{\mathfrak{m}_{3}}$ with $\mathfrak{m}_{3}=\frac{\mathfrak{m}_{1} \mathfrak{m}_{2}}{\left(\mathfrak{m}_{1}, \mathfrak{m}_{2}\right)^{2}}$. Hence the Atkin-Lehner involutions form a 2-elementary abelian subgroup $\mathcal{W}(\mathfrak{n})$ of $\mathcal{M}(\mathfrak{n})$ of cardinality 2^{s}, where s is the number of different prime divisors of \mathfrak{n}. As automorphisms of $X_{0}(\mathfrak{n})$ the Atkin-Lehner involutions are rational over K. For their interpretation on the moduli problem "Drinfeld modules plus \mathfrak{n}-isogeny" see [8].

By $\underline{H}_{t}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ we denote the space of \mathbb{R}-valued, alternating, harmonic, $\Gamma_{0}(\mathfrak{n})$ invariant functions on the oriented edges of \mathcal{T}, having finite support modulo $\Gamma_{0}(\mathfrak{n})$. Its dimension is $g\left(X_{0}(\mathfrak{n})\right)$, the genus of $X_{0}(\mathfrak{n})$. There exists a Petersson scalar product (\cdot, \cdot) on $\underline{H}_{t}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$, taking integral values on $\underline{H}_{t}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$.

More visible is the homology of the graph $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$, denoted by

$$
\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{R}\right)
$$

The modules $\underline{H}_{!}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$ and $\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{Z}\right)$ are isomorphic. If $q=2$, the isomorphism is induced by the canonical mapping from \mathcal{T} to $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$ and the scalar product of φ and ψ in $\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{R}\right)$ is just $\frac{1}{2} \sum_{e} \varphi(e) \psi(e)$, the sum being taken over the oriented edges of $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$. If $q>2$, one has to introduce weight factors (see [4] or [3] for more details).

In any case the modular automorphisms operate from the right on $\underline{H}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ and on $\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{R}\right)$ by acting from the left on the edges. Further, for $G \leq \mathcal{M}(\mathfrak{n})$ the dimension of the subspaces of G-invariants equals the genus of $G \backslash X_{0}(\mathfrak{n})$.

ExAmple: For $q=2$ and $\mathfrak{n}=T^{2}\left(T^{2}+T+1\right)$ the graph $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$ is given in the picture below. The cusps are abbreviated by arrows.

We see that the curve $X_{0}(\mathfrak{n})$ has 6 cusps and that its genus is 5 . The full AtkinLehner involution $W_{\mathfrak{n}}$ is the reflection at the middle axis, so the genus of the curve $W_{\mathfrak{n}} \backslash X_{0}(\mathfrak{n})$ is 2.

Theorem 1

a) $\mathcal{N}_{G L_{2}\left(K_{\infty}\right)}\left(\Gamma_{0}(\mathfrak{n})\right)=K_{\infty}^{\times} \cdot \mathcal{N}_{G L_{2}(K)}\left(\Gamma_{0}(\mathfrak{n})\right)$.
b) If $q>2$ then $\mathcal{M}(\mathfrak{n})=\mathcal{W}(\mathfrak{n})$, that is, the partial Atkin-Lehner involutions are the only modular automorphisms.
c) If $q=2$ and $\mathfrak{n}=\prod \mathfrak{p}_{i}^{e_{i}}$, we define $U_{1}=\left(\begin{array}{cc}1 & 0 \\ \frac{\mathfrak{n}}{T} & 1\end{array}\right)$ and $U_{2}=\left(\begin{array}{cc}1 & 0 \\ \frac{\mathfrak{n}}{T^{2}} & 1\end{array}\right)$ and

$$
\mathcal{M}_{T}(\mathfrak{n})= \begin{cases}\langle i d\rangle & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=0 \\ \left\langle W_{T}\right\rangle \cong C_{2} & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=1 \\ \left\langle W_{T^{2}}, U_{1}\right\rangle \cong S_{3} & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=2 \\ \left\langle W_{T^{3}}, U_{1}\right\rangle \cong D_{4} & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=3 \\ \left\langle W_{T^{4}}, U_{1}, U_{2}\right\rangle \cong S_{4} & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=4 \\ \left\langle W_{T^{5}}, U_{1}, U_{2}\right\rangle \cong D_{8} \rtimes C_{2} & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=5 \\ \left\langle W_{T^{\nu}}, U_{1}, U_{2}\right\rangle & \text { if } \operatorname{ord}_{T}(\mathfrak{n})=\nu>5\end{cases}
$$

For $\operatorname{ord}_{T}(\mathfrak{n})>5$ the group $\mathcal{M}_{T}(\mathfrak{n})$ is non-abelian of order 32. As an automorphism of $X_{0}(\mathfrak{n})$ the involution U_{1} is rational over K, whereas the involution U_{2} is rational only over $K(\alpha)$ with $\alpha^{2}+\alpha=T^{-1}$.
$\mathcal{M}_{T+1}(\mathfrak{n})$ is similarly defined with $V_{i}=\left(\begin{array}{cc}\frac{1}{n} & 0 \\ (T+1)^{i} & 1\end{array}\right)$.
The involutions U_{1}, U_{2}, V_{1}, and V_{2} commute with each other. For every $W_{\mathfrak{m}}$ with $T \nmid \mathfrak{m}$ we have $W_{\mathfrak{m}} U_{1}=U_{1} W_{\mathfrak{m}}$ and

$$
W_{\mathfrak{m}} U_{2}= \begin{cases}U_{2} W_{\mathfrak{m}} & \text { if } \mathfrak{m} \equiv 1 \bmod T^{2} \\ U_{1} U_{2} W_{\mathfrak{m}} & \text { if } \mathfrak{m} \equiv T+1 \bmod T^{2}\end{cases}
$$

Analogously for V_{1} and V_{2}.
There exists a semi-direct product decomposition

$$
\mathcal{M}(\mathfrak{n})=\left\langle\mathcal{M}_{T}(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n})\right\rangle \rtimes\left\langle W_{\mathfrak{p}_{i}^{e_{i}}}: \mathfrak{p}_{i} \neq T, T+1\right\rangle
$$

with operation given by the relations above. Moreover,

$$
\left\langle\mathcal{M}_{T}(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n})\right\rangle=\mathcal{M}_{T}(\mathfrak{n}) \mathcal{M}_{T+1}(\mathfrak{n})
$$

which means that every $M \in\left\langle\mathcal{M}_{T}(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n})\right\rangle$ may be written as $M=M_{T} M_{T+1}$ with uniquely determined $M_{T} \in \mathcal{M}_{T}(\mathfrak{n})$ and $M_{T+1} \in \mathcal{M}_{T+1}(\mathfrak{n})$.

One sees that $\mathcal{M}(\mathfrak{n})$ shows a similar feature as in the classical situation (compare [1] Theorem 8), where the existence of modular automorphisms that are no Atkin-Lehner involutions depends on divisibility of \mathfrak{n} by 4 or 9 . As in [6] p. 289, the modular automorphisms U_{1} and U_{2} can be given a modular interpretation on Drinfeld modules and \mathfrak{n}-isogenies.

We only give the idea of the proof of b) to show why the situation is different for $q=2$.

If $M \in \mathcal{M}(\mathfrak{n})$ then by a) we may suppose $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in A$ and $\operatorname{gcd}(a, b, c, d)=1$. With $D=\operatorname{det}(M)$, from $M\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) M^{-1} \in \Gamma_{0}(\mathfrak{n})$ and $M\left(\begin{array}{ll}1 & 0 \\ \mathfrak{n} & 1\end{array}\right) M^{-1} \in$ $\Gamma_{0}(\mathfrak{n})$ one obtains $D|\mathfrak{n}, D| a^{2},(D, b)=1, D \mathfrak{n} \mid c^{2}$ and $D \mid d^{2}$.

If $q>2$ then \mathbb{F}_{q}^{\times}contains an $\varepsilon \neq 1$ and from $M\left(\begin{array}{ll}\varepsilon & 0 \\ 0 & 1\end{array}\right) M^{-1} \in \Gamma_{0}(\mathfrak{n})$ one can calculate that M is an Atkin-Lehner involution.

For $q=2$ one may give necessary and sufficient conditions for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to be in $\mathcal{N}_{G L_{2}(K)}\left(\Gamma_{0}(\mathfrak{n})\right)$ but several more pages are needed to derive statement c). A complete proof will be included in [7].

In $\underline{H}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ there exists the subspace of newforms $\underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$, the orthogonal complement of certain embeddings of $\underline{H}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{m})}$ for proper divisors \mathfrak{m} of \mathfrak{n}. And for every $\mathfrak{p} \nmid \mathfrak{n}$ there exists a Hecke operator $\mathcal{H}_{\mathfrak{p}}$ on $\underline{H}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ (compare [4] or [3] for exact definitions). These Hecke operators are simultaneously diagonalizable on $\underline{H}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$.

Now in our situation we dispose of the following deep theorem, analogous to the Shimura-Taniyama-Weil conjecture in the classical context.

Theorem 2 ([4], [3])

a) The $\mathbb{F}_{q}(T)$-isogeny classes of elliptic curves over $\mathbb{F}_{q}(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞ are in one-to-one correspondence with the 1 dimensional simultaneous eigenspaces of $\underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ with rational eigenvalues for the Hecke operators $\mathcal{H}_{\mathfrak{p}}$. Moreover, for $\mathfrak{p} \nmid \mathfrak{n}$ the number of A / \mathfrak{p}-rational points of the reduction mod \mathfrak{p} of any such curve is $q^{\operatorname{deg}(\mathfrak{p})}+1-c_{\mathfrak{p}}$, where $c_{\mathfrak{p}}$ is the $\mathcal{H}_{\mathfrak{p}}$-eigenvalue of the corresponding simultaneous eigenspace.
b) Every such eigenspace contains a (up to sign unique) primitive $\varphi \in \underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$. The degree $-v_{\infty}(j(E))$ of the j-invariant of the strong Weil curve E in the corresponding isogeny class is the minimal positive scalar product of φ with elements of $\underline{H}_{!}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$. The degree of the strong Weil uniformization $X_{0}(\mathfrak{n}) \rightarrow E$ is $\frac{(\varphi, \varphi)}{-v_{\infty}(j(E))}$.

Example (continued): Take again $q=2$ and $\mathfrak{n}=T^{2}\left(T^{2}+T+1\right)$. Then the space of newforms is 1-dimensional; more precisely $\mathrm{H}_{1}^{\text {new }}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{R}\right)=\mathbb{R} \cdot \varphi$, where φ takes the value 1 on the edges that form the closed path connecting the vertices 1 , $2,3, \ldots, 12,1$. So there exists exactly one $\mathbb{F}_{2}(T)$-isogeny class of elliptic curves over $\mathbb{F}_{2}(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞. The minimal positive scalar product of φ with elements of $\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{Z}\right)$ is 4 . Hence the degree of the j-invariant of the strong Weil curve E in this class is 4 . Since $q=2$ and the curves are Tate curves at ∞, every curve in this isogeny class is determined by the degree of its j-invariant. Thus one can verify that

$$
E: Y^{2}+T X Y+T Y=X^{3}+T^{2}
$$

is the strong Weil curve in this class. The degree of the strong Weil uniformization $X_{0}(\mathfrak{n}) \rightarrow E$ is $(\varphi, \varphi) / 4=3$.

Now the modular automorphism $U_{1} W_{T^{2}}$ maps the edge from vertex 14 to vertex 2, that is the edge whose double-coset representative in $G L_{2}\left(K_{\infty}\right)$ is $\left(\begin{array}{cc}1 & 0 \\ T+1 & 1\end{array}\right)$, to the edge with representative $\left(\begin{array}{cc}0 & 1 \\ 1 & T^{3}\end{array}\right)$, that is the edge from vertex 14 to vertex 6 . This determines $U_{1} W_{T^{2}}$ as an automorphism of the graph; namely: $U_{1} W_{T^{2}}$ fixes the vertices 13 and 14 and acts as permutation $(2,6,10)(4,8,12)$ on their neighbours. One easily sees that the subspace of $U_{1} W_{T^{2}}$-invariant elements of $\mathrm{H}_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{R}\right)$ is just $\mathbb{R} \cdot \varphi$, so

$$
E=\left\langle U_{1} W_{T^{2}}\right\rangle \backslash X_{0}(\mathfrak{n}) .
$$

In the same way (i.e., calculation of the graph $\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}$ by computer program as described in [5] and calculation of some Hecke operators and modular automorphisms by hand) one obtains.

Proposition 1

There are exactly 24 different $\mathbb{F}_{2}(T)$-isogeny classes of elliptic curves over $\mathbb{F}_{2}(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞, where $\mathfrak{n} \in \mathbb{F}_{2}[T]$ and $\operatorname{deg}(\mathfrak{n}) \leq 4$. The table below shows twelve of these, and replacing T by $T+1$ gives the other twelve.

Here ∂ denotes the degree of the strong Weil uniformization. G is a subgroup of $\mathcal{M}(\mathfrak{n})$ such that $E=G \backslash X_{0}(\mathfrak{n})$, and - means that such a subgroup doesn't exist.

\mathfrak{n}	equation of strong Weil curve E	∂	G
T^{3}	$Y^{2}+T X Y=X^{3}+T^{2}$	1	$\langle i d\rangle$
$T^{2}(T+1)$	$Y^{2}+T X Y+T Y=X^{3}$	1	$\langle i d\rangle$
$T\left(T^{2}+T+1\right)$	$Y^{2}+(T+1) X Y+Y=X^{3}+T\left(T^{2}+T+1\right)$	2	$\left\langle W_{T}\right\rangle$
$Y^{2}+(T+1) X Y+Y=X^{3}+X^{2}+T+1$	2	$\left\langle W_{T^{2}+T+1}\right\rangle$	
$T^{4}+T^{3}+1$	$Y^{2}+T X Y+Y=X^{3}+X^{2}$	2	$\left\langle W_{T^{4}+T^{3}+1}\right\rangle$
T^{4}	$Y^{2}+T X Y=X^{3}+T X^{2}+T^{2}$	2	$\left\langle\left(W_{T^{4}} U_{1}\right)^{2}\right\rangle$
$T^{3}(T+1)$	$Y^{2}+T X Y=X^{3}+(T+1)^{2} X$	4	$\left\langle W_{T^{3}}, U_{1} W_{T^{3}} U_{1}\right\rangle$
$T^{2}\left(T^{2}+T+1\right)$	$Y^{2}+T X Y+T Y=X^{3}+T^{2}$	3	$\left\langle U_{1} W_{T^{2}}\right\rangle$
$T\left(T^{3}+T+1\right)$	$Y^{2}+(T+1) X Y+T Y=X^{3}+X^{2}$	4	$\left\langle W_{T}, W_{T^{3}+T+1}\right\rangle$
	$Y^{2}+(T+1) X Y+T Y=X^{3}+T^{3}$	4	-
	$Y^{2}+(T+1) X Y+T Y=X^{3}$	2	$\left\langle W_{T^{3}+T^{2}+1}\right\rangle$
$T\left(T^{3}+T^{2}+1\right)$	$Y^{2}+(T+1) X Y+T Y=$		-
	$\quad X^{3}+(T+1) X^{2}+T^{3} X+T^{2}$	14	-

Finding the equations of the strong Weil curves involves some trial and error, but a posteriori they can be proved to be correct.

The first five curves in the table and the corresponding graphs are already in [3]. Some further elliptic curves of the form $G \backslash X_{0}(\mathfrak{n})$, even some with conductor $\infty \cdot \mathfrak{m}$ for a proper divisor \mathfrak{m} of \mathfrak{n}, are listed in [8]. However, all in all there exist only finitely many ones.

Proposition 2

Let $\mathfrak{n}=\prod_{i=1}^{s} \mathfrak{p}_{i}^{e_{i}}$ be such that $G \backslash X_{0}(\mathfrak{n})$ is elliptic for a subgroup G of $\mathcal{M}(\mathfrak{n})$. Then (with $d=\operatorname{deg}(\mathfrak{n})$) one of the following assertions must hold:
a) $q=2, d \leq 15, s \leq 4$,
b) $q=3, d \leq 7, s \leq 4$,
c) $q=4, d \leq 5, s \leq 4$,
d) $q=5, d \leq 5, s \leq 5$,
e) $q=7, d \in\{3,4\}, s \in\{3,4\}$,
f) $q \in\{8,9\}, d=4, s \in\{3,4\}$,
g) $q \in\{11,13\}, d=4, s=4$.

Proof. Except for the bound $d \leq 15, s \leq 4$ in case $q=2$ this is the statement of Proposition 17 in [8], where the case $G \leq \mathcal{W}(\mathfrak{n})$ is treated. In case $q=2$, where $\mathcal{M}(\mathfrak{n})$ can be larger than $\mathcal{W}(\mathfrak{n})$, arguments and calculations similar to those developed in section 3 of [8] yield the bound given above.

Without proof (compare again [7]) we also state.

Proposition 3

Let $q=2$.
a) If $T^{3} \mid \mathfrak{n}$ then U_{1} acts as -1 on $\underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$.
b) If $T^{5} \mid \mathfrak{n}$ then U_{2} acts on $\underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ as twist by T^{-1}, that is: If $\varphi \in$ $\underline{H}_{!}^{\text {new }}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ is a simultaneous eigenform for the Hecke operators with eigenvalues $c_{\mathfrak{p}}$ then $\varphi \circ U_{2}$ has Hecke eigenvalues $\chi(\mathfrak{p}) c_{\mathfrak{p}}$, where χ is the character of the field extension of K generated by $X^{2}+X=T^{-1}$.

Similar statements hold for V_{1} and V_{2}.
Statement b) implies: If $T^{5} \mid \mathfrak{n}$ and E belongs to $\varphi \in \underline{\mathrm{H}}_{!}^{\text {new }}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$ then $\varphi \circ U_{2}$ belongs to the T^{-1}-twist of E.

This holds also for $\operatorname{ord}_{T}(\mathfrak{n})=4$, but then $\varphi \circ U_{2}$ is not necessarily a newform, that is, the conductor of the T^{-1}-twist of E might be smaller. For example in the table in Proposition 2 one sees that the T^{-1}-twist of the curve with conductor $\infty \cdot T^{4}$ is the curve with conductor $\infty \cdot T^{3}$.

Acknowledgements. The author wishes to express his gratitude to Deutsche Forschungsgemeinschaft for support in general as well as for financially supporting his participation in the Journées Arithmétiques 1995 in Barcelona.

References

1. A. O. Atkin and J. Lehner, Hecke Operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
2. E.-U. Gekeler, Über Drinfeld'sche Modulkurven vom Hecke-Typ, Compositio Math. 57 (1986), 219-236.
3. E.-U. Gekeler, Analytical Construction of Weil Curves over Function Fields, J. Théorie Nombres Bordeaux 7 (1995), 27-49.
4. E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math., to appear.
5. U. Nonnengardt, Arithmetisch definierte Graphen über rationalen Funktionenkörpern, Diplomarbeit, Saarbrücken, 1994.
6. A. Ogg, Über die Automorphismengruppe von $X_{0}(N)$, Math. Ann. 228 (1977), 279-292.
7. A. Schweizer, Zur Arithmetik der Drinfeld'schen Modulkurven $X_{0}(\mathfrak{n})$, Dissertation, Saarbrücken, 1996.
8. A. Schweizer, Hyperelliptic Drinfeld Modular Curves, manuscript, Saarbrücken, 1995.
