Collect. Math. **48**, 1–2 (1997), 209–216 © 1997 Universitat de Barcelona

Modular automorphisms of the Drinfeld modular curves $X_0(\mathfrak{n})$

ANDREAS SCHWEIZER

FB 9 Mathematik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany E-mail address: schweizer@math.uni-sb.de

Abstract

For $\mathfrak{n} \in \mathbb{F}_q[T]$, we determine the group of modular automorphisms of the Drinfeld modular curve $X_0(\mathfrak{n})$ or equivalently, the normalizer of the Hecke congruence subgroup $\Gamma_0(\mathfrak{n})$ in $GL_2(\mathbb{F}_q((T^{-1})))$. Some applications to the strong Weil uniformization of elliptic curves over $\mathbb{F}_q(T)$ are given.

Let \mathbb{F}_q be the finite field with q elements, $A = \mathbb{F}_q[T]$ the polynomial ring, $K = \mathbb{F}_q(T)$ the rational function field, and K_∞ the completion of K at the place $\infty = \frac{1}{T}$. These are the characteristic p analogues of \mathbb{Z} , \mathbb{Q} , and \mathbb{R} . As an analogue of the complex numbers \mathbb{C} we take C, the completion of the algebraic closure of K_∞ . Throughout this paper, \mathfrak{n} will denote a monic element of A and \mathfrak{p} and \mathfrak{p}_i will be primes (i.e., monic irreducible elements of A).

The group $GL_2(K_{\infty})$ acts by fractional linear transformations on the Drinfeld upper halfplane $\Omega := C - K_{\infty}$. The quotient space $\Gamma_0(\mathfrak{n}) \setminus \Omega$ by the Hecke congruence subgroup

$$\Gamma_0(\mathfrak{n}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A) : \mathfrak{n}|c \right\}$$

is a rigid analytic space that can be compactified by adding the finite set of cusps $\Gamma_0(\mathfrak{n}) \setminus \mathbb{P}^1(K)$. As in the classical situation, we thus obtain the Drinfeld modular curve

$$X_0(\mathfrak{n}) = \Gamma_0(\mathfrak{n}) \setminus \Omega \, \dot{\cup} \, \Gamma_0(\mathfrak{n}) \setminus \mathbb{P}^1(K) \,,$$

which as a curve is defined over K. Without further explanation we mention that $X_0(\mathfrak{n})$ is a coarse moduli scheme for rank 2 Drinfeld A-modules with a fixed cyclic \mathfrak{n} -isogeny. For all this and more information on $X_0(\mathfrak{n})$, see [2].

We also need the Bruhat-Tits tree \mathcal{T} of $GL_2(K_{\infty})$. This is a (q+1)-valent tree, whose vertices are the cosets $GL_2(K_{\infty})/K_{\infty}^{\times} \cdot GL_2(\mathcal{O}_{\infty})$, where \mathcal{O}_{∞} is the valuation ring of K_{∞} . Its oriented edges are the cosets $GL_2(K_{\infty})/K_{\infty}^{\times} \cdot \mathcal{J}$, where \mathcal{J} is the group $\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathcal{O}_{\infty}) : v_{\infty}(c) > 0 \}$, and the canonical reduction maps an oriented edge to its terminal vertex. Inversion of an edge is given by multiplication from the right with $\begin{pmatrix} 0 & 1 \\ T^{-1} & 0 \end{pmatrix}$. Thus $GL_2(K_{\infty})$ acts in an obvious way on \mathcal{T} .

There is a $GL_2(K_{\infty})$ -invariant mapping from Ω to \mathcal{T} (see [4] or [3] for an exact treatment), which makes it possible to reduce some questions concerning Drinfeld modular curves to graph-theoretic problems.

Denote by $\mathcal{N}_{GL_2(K_\infty)}(\Gamma_0(\mathfrak{n}))$ the normalizer of $\Gamma_0(\mathfrak{n})$ in $GL_2(K_\infty)$. It is not too difficult to show that the operation of $GL_2(K_\infty)$ on Ω resp. \mathcal{T} induces an injective mapping from

$$\mathcal{M}(\mathfrak{n}) := \mathcal{N}_{GL_2(K_\infty)}(\Gamma_0(\mathfrak{n})) / (K_\infty^{\times} \cdot \Gamma_0(\mathfrak{n}))$$

into $Aut(X_0(\mathfrak{n}))$ resp. $Aut(\Gamma_0(\mathfrak{n}) \setminus \mathcal{T})$. Its image is called the subgroup of *modular* automorphisms of $X_0(\mathfrak{n})$ resp. $\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}$.

For example, fix a monic $\mathfrak{m} \in A$ with $\mathfrak{m}|\mathfrak{n}$ and $(\mathfrak{m}, \frac{\mathfrak{n}}{\mathfrak{m}}) = 1$. Then all the matrices $\binom{\mathfrak{m}a}{\mathfrak{n}c} \frac{b}{\mathfrak{m}d}$ with determinant $\varepsilon \mathfrak{m}$ $(a, b, c, d \in A \text{ and } \varepsilon \in \mathbb{F}_q^{\times})$ are in $\mathcal{N}_{GL_2(K)}(\Gamma_0(\mathfrak{n}))$. They are even all in the same coset modulo $\Gamma_0(\mathfrak{n})$, so they all induce the same modular automorphism of $X_0(\mathfrak{n})$ or $\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}$, the so-called (partial) Atkin-Lehner involution $W_{\mathfrak{m}}$.

Clearly, $W_{\mathfrak{m}}^2 = id$, and for divisors \mathfrak{m}_1 and \mathfrak{m}_2 of \mathfrak{n} as above, we have $W_{\mathfrak{m}_1}W_{\mathfrak{m}_2} = W_{\mathfrak{m}_3}$ with $\mathfrak{m}_3 = \frac{\mathfrak{m}_1\mathfrak{m}_2}{(\mathfrak{m}_1,\mathfrak{m}_2)^2}$. Hence the Atkin-Lehner involutions form a 2-elementary abelian subgroup $\mathcal{W}(\mathfrak{n})$ of $\mathcal{M}(\mathfrak{n})$ of cardinality 2^s , where s is the number of different prime divisors of \mathfrak{n} . As automorphisms of $X_0(\mathfrak{n})$ the Atkin-Lehner involutions are rational over K. For their interpretation on the moduli problem "Drinfeld modules plus \mathfrak{n} -isogeny" see [8].

By $\underline{\mathrm{H}}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ we denote the space of \mathbb{R} -valued, alternating, harmonic, $\Gamma_{0}(\mathfrak{n})$ invariant functions on the oriented edges of \mathcal{T} , having finite support modulo $\Gamma_{0}(\mathfrak{n})$. Its dimension is $g(X_{0}(\mathfrak{n}))$, the genus of $X_{0}(\mathfrak{n})$. There exists a Petersson scalar product (\cdot, \cdot) on $\underline{\mathrm{H}}_{!}(\mathcal{T}, \mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$, taking integral values on $\underline{\mathrm{H}}_{!}(\mathcal{T}, \mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$.

More visible is the homology of the graph $\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}$, denoted by

$$\mathrm{H}_1(\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}, \mathbb{R}).$$

The modules $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$ and $\mathrm{H}_{1}(\Gamma_{0}(\mathfrak{n})\setminus\mathcal{T},\mathbb{Z})$ are isomorphic. If q = 2, the isomorphism is induced by the canonical mapping from \mathcal{T} to $\Gamma_{0}(\mathfrak{n})\setminus\mathcal{T}$ and the scalar product of φ and ψ in $\mathrm{H}_{1}(\Gamma_{0}(\mathfrak{n})\setminus\mathcal{T},\mathbb{R})$ is just $\frac{1}{2}\sum_{e}\varphi(e)\psi(e)$, the sum being taken over the oriented edges of $\Gamma_{0}(\mathfrak{n})\setminus\mathcal{T}$. If q > 2, one has to introduce weight factors (see [4] or [3] for more details).

In any case the modular automorphisms operate from the right on $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ and on $\mathrm{H}_{1}(\Gamma_{0}(\mathfrak{n})\backslash\mathcal{T},\mathbb{R})$ by acting from the left on the edges. Further, for $G \leq \mathcal{M}(\mathfrak{n})$ the dimension of the subspaces of *G*-invariants equals the genus of $G\backslash X_{0}(\mathfrak{n})$.

EXAMPLE: For q = 2 and $\mathfrak{n} = T^2(T^2 + T + 1)$ the graph $\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}$ is given in the picture below. The cusps are abbreviated by arrows.

We see that the curve $X_0(\mathfrak{n})$ has 6 cusps and that its genus is 5. The full Atkin-Lehner involution $W_{\mathfrak{n}}$ is the reflection at the middle axis, so the genus of the curve $W_{\mathfrak{n}} \setminus X_0(\mathfrak{n})$ is 2.

Theorem 1

a) $\mathcal{N}_{GL_2(K_\infty)}(\Gamma_0(\mathfrak{n})) = K_\infty^{\times} \cdot \mathcal{N}_{GL_2(K)}(\Gamma_0(\mathfrak{n})).$

b) If q > 2 then $\mathcal{M}(\mathfrak{n}) = \mathcal{W}(\mathfrak{n})$, that is, the partial Atkin-Lehner involutions are the only modular automorphisms.

c) If q = 2 and $\mathfrak{n} = \prod \mathfrak{p}_i^{e_i}$, we define $U_1 = \begin{pmatrix} 1 & 0 \\ \frac{\mathfrak{n}}{T} & 1 \end{pmatrix}$ and $U_2 = \begin{pmatrix} 1 & 0 \\ \frac{\mathfrak{n}}{T^2} & 1 \end{pmatrix}$ and

$$\mathcal{M}_{T}(\mathfrak{n}) = \begin{cases} \langle id \rangle & \text{if } ord_{T}(\mathfrak{n}) = 0\\ \langle W_{T} \rangle \cong C_{2} & \text{if } ord_{T}(\mathfrak{n}) = 1\\ \langle W_{T^{2}}, U_{1} \rangle \cong S_{3} & \text{if } ord_{T}(\mathfrak{n}) = 2\\ \langle W_{T^{3}}, U_{1} \rangle \cong D_{4} & \text{if } ord_{T}(\mathfrak{n}) = 3\\ \langle W_{T^{4}}, U_{1}, U_{2} \rangle \cong S_{4} & \text{if } ord_{T}(\mathfrak{n}) = 4\\ \langle W_{T^{5}}, U_{1}, U_{2} \rangle \cong D_{8} \rtimes C_{2} & \text{if } ord_{T}(\mathfrak{n}) = 5\\ \langle W_{T^{\nu}}, U_{1}, U_{2} \rangle & \text{if } ord_{T}(\mathfrak{n}) = \nu > 5 \,. \end{cases}$$

For $ord_T(\mathfrak{n}) > 5$ the group $\mathcal{M}_T(\mathfrak{n})$ is non-abelian of order 32. As an automorphism of $X_0(\mathfrak{n})$ the involution U_1 is rational over K, whereas the involution U_2 is rational only over $K(\alpha)$ with $\alpha^2 + \alpha = T^{-1}$.

 $\mathcal{M}_{T+1}(\mathfrak{n})$ is similarly defined with $V_i = \begin{pmatrix} 1 & 0 \\ \frac{\mathfrak{n}}{(T+1)^i} & 1 \end{pmatrix}$. The involutions U_1, U_2, V_1 , and V_2 commute with each other. For every $W_{\mathfrak{m}}$ with

 $T \not\mid \mathfrak{m}$ we have $W_{\mathfrak{m}}U_1 = U_1 W_{\mathfrak{m}}$ and

$$W_{\mathfrak{m}}U_{2} = \begin{cases} U_{2}W_{\mathfrak{m}} & \text{if } \mathfrak{m} \equiv 1 \mod T^{2}, \\ U_{1}U_{2}W_{\mathfrak{m}} & \text{if } \mathfrak{m} \equiv T+1 \mod T^{2} \end{cases}$$

Analogously for V_1 and V_2 .

There exists a semi-direct product decomposition

$$\mathcal{M}(\mathfrak{n}) = \langle \mathcal{M}_T(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n}) \rangle \rtimes \langle W_{\mathfrak{p}_i^{e_i}} : \mathfrak{p}_i \neq T, T+1 \rangle$$

with operation given by the relations above. Moreover,

$$\langle \mathcal{M}_T(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n}) \rangle = \mathcal{M}_T(\mathfrak{n}) \mathcal{M}_{T+1}(\mathfrak{n}),$$

which means that every $M \in \langle \mathcal{M}_T(\mathfrak{n}), \mathcal{M}_{T+1}(\mathfrak{n}) \rangle$ may be written as $M = M_T M_{T+1}$ with uniquely determined $M_T \in \mathcal{M}_T(\mathfrak{n})$ and $M_{T+1} \in \mathcal{M}_{T+1}(\mathfrak{n})$.

212

One sees that $\mathcal{M}(\mathfrak{n})$ shows a similar feature as in the classical situation (compare [1] Theorem 8), where the existence of modular automorphisms that are no Atkin-Lehner involutions depends on divisibility of \mathfrak{n} by 4 or 9. As in [6] p. 289, the modular automorphisms U_1 and U_2 can be given a modular interpretation on Drinfeld modules and \mathfrak{n} -isogenies.

We only give the idea of the proof of b) to show why the situation is different for q = 2.

If $M \in \mathcal{M}(\mathfrak{n})$ then by a) we may suppose $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in A$ and gcd(a, b, c, d) = 1. With D = det(M), from $M \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M^{-1} \in \Gamma_0(\mathfrak{n})$ and $M \begin{pmatrix} 1 & 0 \\ \mathfrak{n} & 1 \end{pmatrix} M^{-1} \in \Gamma_0(\mathfrak{n})$ one obtains $D|\mathfrak{n}, D|a^2, (D, b) = 1, D\mathfrak{n}|c^2$ and $D|d^2$.

If q > 2 then \mathbb{F}_q^{\times} contains an $\varepsilon \neq 1$ and from $M \begin{pmatrix} \varepsilon & 0 \\ 0 & 1 \end{pmatrix} M^{-1} \in \Gamma_0(\mathfrak{n})$ one can calculate that M is an Atkin-Lehner involution.

For q = 2 one may give necessary and sufficient conditions for $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to be in $\mathcal{N}_{GL_2(K)}(\Gamma_0(\mathfrak{n}))$ but several more pages are needed to derive statement c). A complete proof will be included in [7].

In $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ there exists the subspace of newforms $\underline{\mathrm{H}}_{!}^{new}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$, the orthogonal complement of certain embeddings of $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{m})}$ for proper divisors \mathfrak{m} of \mathfrak{n} . And for every $\mathfrak{p}/\mathfrak{n}$ there exists a Hecke operator $\mathcal{H}_{\mathfrak{p}}$ on $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ (compare [4] or [3] for exact definitions). These Hecke operators are simultaneously diagonalizable on $\underline{\mathrm{H}}_{!}^{new}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$.

Now in our situation we dispose of the following deep theorem, analogous to the Shimura-Taniyama-Weil conjecture in the classical context.

Theorem 2 ([4], [3])

a) The $\mathbb{F}_q(T)$ -isogeny classes of elliptic curves over $\mathbb{F}_q(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞ are in one-to-one correspondence with the 1dimensional simultaneous eigenspaces of $\underline{\mathrm{H}}_!^{new}(\mathcal{T},\mathbb{R})^{\Gamma_0(\mathfrak{n})}$ with rational eigenvalues for the Hecke operators $\mathcal{H}_\mathfrak{p}$. Moreover, for $\mathfrak{p} \not| \mathfrak{n}$ the number of A/\mathfrak{p} -rational points of the reduction mod \mathfrak{p} of any such curve is $q^{deg(\mathfrak{p})} + 1 - c_\mathfrak{p}$, where $c_\mathfrak{p}$ is the $\mathcal{H}_\mathfrak{p}$ -eigenvalue of the corresponding simultaneous eigenspace.

b) Every such eigenspace contains a (up to sign unique) primitive $\varphi \in \underline{\mathrm{H}}_{!}^{new}(\mathcal{T},\mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$. The degree $-v_{\infty}(j(E))$ of the *j*-invariant of the strong Weil curve *E* in the corresponding isogeny class is the minimal positive scalar product of φ with elements of $\underline{\mathrm{H}}_{!}(\mathcal{T},\mathbb{Z})^{\Gamma_{0}(\mathfrak{n})}$. The degree of the strong Weil uniformization $X_{0}(\mathfrak{n}) \to E$ is $\frac{(\varphi,\varphi)}{-v_{\infty}(j(E))}$.

EXAMPLE (continued): Take again q = 2 and $\mathfrak{n} = T^2(T^2 + T + 1)$. Then the space of newforms is 1-dimensional; more precisely $\mathrm{H}_1^{new}(\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}, \mathbb{R}) = \mathbb{R} \cdot \varphi$, where φ takes the value 1 on the edges that form the closed path connecting the vertices 1, 2, 3,...,12, 1. So there exists exactly one $\mathbb{F}_2(T)$ -isogeny class of elliptic curves over $\mathbb{F}_2(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞ . The minimal positive scalar product of φ with elements of $\mathrm{H}_1(\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}, \mathbb{Z})$ is 4. Hence the degree of the *j*-invariant of the strong Weil curve *E* in this class is 4. Since q = 2 and the curves are Tate curves at ∞ , every curve in this isogeny class is determined by the degree of its *j*-invariant. Thus one can verify that

$$E: Y^2 + TXY + TY = X^3 + T^2$$

is the strong Weil curve in this class. The degree of the strong Weil uniformization $X_0(\mathfrak{n}) \to E$ is $(\varphi, \varphi)/4 = 3$.

Now the modular automorphism $U_1W_{T^2}$ maps the edge from vertex 14 to vertex 2, that is the edge whose double-coset representative in $GL_2(K_{\infty})$ is $\begin{pmatrix} 1 & 0 \\ T+1 & 1 \end{pmatrix}$, to the edge with representative $\begin{pmatrix} 0 & 1 \\ 1 & T^3 \end{pmatrix}$, that is the edge from vertex 14 to vertex 6. This determines $U_1W_{T^2}$ as an automorphism of the graph; namely: $U_1W_{T^2}$ fixes the vertices 13 and 14 and acts as permutation (2, 6, 10)(4, 8, 12) on their neighbours. One easily sees that the subspace of $U_1W_{T^2}$ -invariant elements of $H_1(\Gamma_0(\mathfrak{n}) \setminus \mathcal{T}, \mathbb{R})$ is just $\mathbb{R} \cdot \varphi$, so

$$E = \langle U_1 W_{T^2} \rangle \backslash X_0(\mathfrak{n}).$$

In the same way (i.e., calculation of the graph $\Gamma_0(\mathfrak{n})\backslash \mathcal{T}$ by computer program as described in [5] and calculation of some Hecke operators and modular automorphisms by hand) one obtains.

Proposition 1

There are exactly 24 different $\mathbb{F}_2(T)$ -isogeny classes of elliptic curves over $\mathbb{F}_2(T)$ with conductor $\infty \cdot \mathfrak{n}$ and split multiplicative reduction at ∞ , where $\mathfrak{n} \in \mathbb{F}_2[T]$ and $deg(\mathfrak{n}) \leq 4$. The table below shows twelve of these, and replacing T by T + 1 gives the other twelve.

Here ∂ denotes the degree of the strong Weil uniformization. G is a subgroup of $\mathcal{M}(\mathfrak{n})$ such that $E = G \setminus X_0(\mathfrak{n})$, and – means that such a subgroup doesn't exist.

n	equation of strong Weil curve E	∂	G
T^3	$Y^2 + TXY = X^3 + T^2$	1	$\langle id angle$
$T^2(T+1)$	$Y^2 + TXY + TY = X^3$	1	$\langle id angle$
$T(T^2 + T + 1)$	$Y^{2} + (T+1)XY + Y = X^{3} + T(T^{2} + T + 1)$	2	$\langle W_T \rangle$
	$Y^2 + (T+1)XY + Y = X^3 + X^2 + T + 1$	2	$\langle W_{T^2+T+1} \rangle$
$T^4 + T^3 + 1$	$Y^2 + TXY + Y = X^3 + X^2$	2	$\langle W_{T^4+T^3+1} \rangle$
T^4	$Y^2 + TXY = X^3 + TX^2 + T^2$	2	$\langle (W_{T^4}U_1)^2 \rangle$
$T^{3}(T+1)$	$Y^2 + TXY = X^3 + (T+1)^2 X$	4	$\langle W_{T^3}, U_1 W_{T^3} U_1 \rangle$
$T^2(T^2 + T + 1)$	$Y^2 + TXY + TY = X^3 + T^2$	3	$\langle U_1 W_{T^2} \rangle$
$T(T^3 + T + 1)$	$Y^2 + (T+1)XY + TY = X^3 + X^2$	4	$\langle W_T, W_{T^3+T+1} \rangle$
	$Y^2 + (T+1)XY + TY = X^3 + T^3$	4	—
	$Y^{2} + (T+1)XY + TY = X^{3}$	2	$\langle W_{T^3+T^2+1} \rangle$
$T(T^3 + T^2 + 1)$	$Y^2 + (T+1)XY + TY =$		
	$X^3 + (T+1)X^2 + T^3X + T^2$	14	—

Finding the equations of the strong Weil curves involves some trial and error, but a posteriori they can be proved to be correct.

The first five curves in the table and the corresponding graphs are already in [3]. Some further elliptic curves of the form $G \setminus X_0(\mathfrak{n})$, even some with conductor $\infty \cdot \mathfrak{m}$ for a proper divisor \mathfrak{m} of \mathfrak{n} , are listed in [8]. However, all in all there exist only finitely many ones.

Proposition 2

Let $\mathfrak{n} = \prod_{i=1}^{s} \mathfrak{p}_{i}^{e_{i}}$ be such that $G \setminus X_{0}(\mathfrak{n})$ is elliptic for a subgroup G of $\mathcal{M}(\mathfrak{n})$. Then (with $d = deg(\mathfrak{n})$) one of the following assertions must hold:

a) $q = 2, d \le 15, s \le 4$, b) $q = 3, d \le 7, s \le 4$, c) $q = 4, d \le 5, s \le 4$, d) $q = 5, d \le 5, s \le 5$, e) $q = 7, d \in \{3, 4\}, s \in \{3, 4\},$ f) $q \in \{8, 9\}, d = 4, s \in \{3, 4\},$ g) $q \in \{11, 13\}, d = 4, s = 4$.

Proof. Except for the bound $d \leq 15$, $s \leq 4$ in case q = 2 this is the statement of Proposition 17 in [8], where the case $G \leq \mathcal{W}(\mathfrak{n})$ is treated. In case q = 2, where $\mathcal{M}(\mathfrak{n})$ can be larger than $\mathcal{W}(\mathfrak{n})$, arguments and calculations similar to those developed in section 3 of [8] yield the bound given above. \Box

Without proof (compare again [7]) we also state.

Proposition 3

Let q = 2.

a) If $T^3|\mathfrak{n}$ then U_1 acts as -1 on $\underline{\mathrm{H}}_!^{new}(\mathcal{T}, \mathbb{R})^{\Gamma_0(\mathfrak{n})}$. b) If $T^5|\mathfrak{n}$ then U_2 acts on $\underline{\mathrm{H}}_!^{new}(\mathcal{T}, \mathbb{R})^{\Gamma_0(\mathfrak{n})}$ as twist by T^{-1} , that is: If $\varphi \in$ $\underline{\mathrm{H}}^{new}_{!}(\mathcal{T},\mathbb{R})^{\Gamma_{0}(\mathfrak{n})}$ is a simultaneous eigenform for the Hecke operators with eigenvalues $c_{\mathfrak{p}}$ then $\varphi \circ U_2$ has Hecke eigenvalues $\chi(\mathfrak{p})c_{\mathfrak{p}}$, where χ is the character of the field extension of K generated by $X^2 + X = T^{-1}$.

Similar statements hold for V_1 and V_2 .

Statement b) implies: If $T^5|\mathfrak{n}$ and E belongs to $\varphi \in \underline{\mathrm{H}}_{!}^{new}(\mathcal{T},\mathbb{Z})^{\Gamma_0(\mathfrak{n})}$ then $\varphi \circ U_2$ belongs to the T^{-1} -twist of E.

This holds also for $ord_T(\mathfrak{n}) = 4$, but then $\varphi \circ U_2$ is not necessarily a newform, that is, the conductor of the T^{-1} -twist of E might be smaller. For example in the table in Proposition 2 one sees that the T^{-1} -twist of the curve with conductor $\infty \cdot T^4$ is the curve with conductor $\infty \cdot T^3$.

Acknowledgements. The author wishes to express his gratitude to Deutsche Forschungsgemeinschaft for support in general as well as for financially supporting his participation in the Journées Arithmétiques 1995 in Barcelona.

References

- 1. A. O. Atkin and J. Lehner, Hecke Operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
- 2. E.-U. Gekeler, Über Drinfeld'sche Modulkurven vom Hecke-Typ, Compositio Math. 57 (1986), 219-236.
- 3. E.-U. Gekeler, Analytical Construction of Weil Curves over Function Fields, J. Théorie Nombres Bordeaux 7 (1995), 27-49.
- 4. E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math., to appear.
- 5. U. Nonnengardt, Arithmetisch definierte Graphen über rationalen Funktionenkörpern, Diplomarbeit, Saarbrücken, 1994.
- 6. A. Ogg, Über die Automorphismengruppe von $X_0(N)$, Math. Ann. 228 (1977), 279–292.
- 7. A. Schweizer, Zur Arithmetik der Drinfeld'schen Modulkurven $X_0(\mathfrak{n})$, Dissertation, Saarbrücken, 1996.
- 8. A. Schweizer, Hyperelliptic Drinfeld Modular Curves, manuscript, Saarbrücken, 1995.

216