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Abstract

For n ∈ Fq[T ], we determine the group of modular automorphisms of the
Drinfeld modular curve X0(n) or equivalently, the normalizer of the Hecke
congruence subgroup Γ0(n) in GL2(Fq((T−1))). Some applications to the
strong Weil uniformization of elliptic curves over Fq(T ) are given.

Let Fq be the finite field with q elements, A = Fq[T ] the polynomial ring, K = Fq(T )
the rational function field, and K∞ the completion of K at the place ∞ = 1

T . These
are the characteristic p analogues of Z, Q, and R. As an analogue of the complex
numbers C we take C, the completion of the algebraic closure of K∞. Throughout
this paper, n will denote a monic element of A and p and pi will be primes (i.e.,
monic irreducible elements of A).

The group GL2(K∞) acts by fractional linear transformations on the Drinfeld
upper halfplane Ω := C−K∞. The quotient space Γ0(n)\Ω by the Hecke congruence
subgroup

Γ0(n) :=
{(

a b
c d

)
∈ GL2(A) : n|c

}

is a rigid analytic space that can be compactified by adding the finite set of cusps
Γ0(n)\P1(K). As in the classical situation, we thus obtain the Drinfeld modular
curve

X0(n) = Γ0(n)\Ω ∪̇ Γ0(n)\P1(K) ,

which as a curve is defined over K. Without further explanation we mention that
X0(n) is a coarse moduli scheme for rank 2 Drinfeld A-modules with a fixed cyclic
n-isogeny. For all this and more information on X0(n), see [2].
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We also need the Bruhat-Tits tree T of GL2(K∞). This is a (q+1)-valent tree,
whose vertices are the cosets GL2(K∞)/K×

∞ ·GL2(O∞), where O∞ is the valuation
ring of K∞. Its oriented edges are the cosets GL2(K∞)/K×

∞ · J , where J is the
group {

(
a b
c d

)
∈ GL2(O∞) : v∞(c) > 0}, and the canonical reduction maps an

oriented edge to its terminal vertex. Inversion of an edge is given by multiplication
from the right with

(
0 1
T−1 0

)
. Thus GL2(K∞) acts in an obvious way on T .

There is a GL2(K∞)-invariant mapping from Ω to T (see [4] or [3] for an exact
treatment), which makes it possible to reduce some questions concerning Drinfeld
modular curves to graph-theoretic problems.

The quotient graph Γ0(n)\T may be considered as a rough picture of X0(n). It is
a finite graph with a finite number of half-lines (i.e., graphs of the form •−−−•−−−•−−− . . .)
attached to it. These are in one-to-one correspondence with the cusps of X0(n) and
hence are also called cusps.

Denote by NGL2(K∞)(Γ0(n)) the normalizer of Γ0(n) in GL2(K∞). It is not too
difficult to show that the operation of GL2(K∞) on Ω resp. T induces an injective
mapping from

M(n) := NGL2(K∞)(Γ0(n))/(K×
∞ · Γ0(n))

into Aut(X0(n)) resp. Aut(Γ0(n)\T ). Its image is called the subgroup of modular
automorphisms of X0(n) resp. Γ0(n)\T .

For example, fix a monic m ∈ A with m|n and (m, n

m
) = 1. Then all the matrices(

ma b
nc md

)
with determinant εm ( a, b, c, d ∈ A and ε ∈ F×

q ) are in NGL2(K)(Γ0(n)). They
are even all in the same coset modulo Γ0(n), so they all induce the same modular
automorphism of X0(n) or Γ0(n)\T , the so-called (partial) Atkin-Lehner involution
Wm.

Clearly, W 2
m = id, and for divisors m1 and m2 of n as above, we have Wm1Wm2 =

Wm3 with m3 = m1m2
(m1,m2)2

. Hence the Atkin-Lehner involutions form a 2-elementary
abelian subgroup W(n) of M(n) of cardinality 2s, where s is the number of different
prime divisors of n. As automorphisms of X0(n) the Atkin-Lehner involutions are
rational over K. For their interpretation on the moduli problem “Drinfeld modules
plus n-isogeny” see [8].

By H!(T ,R)Γ0(n) we denote the space of R-valued, alternating, harmonic, Γ0(n)-
invariant functions on the oriented edges of T , having finite support modulo Γ0(n).
Its dimension is g(X0(n)), the genus of X0(n). There exists a Petersson scalar
product (·, ·) on H!(T ,R)Γ0(n), taking integral values on H!(T ,Z)Γ0(n).

More visible is the homology of the graph Γ0(n)\T , denoted by

H1(Γ0(n)\T ,R).
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The modules H!(T ,Z)Γ0(n) and H1(Γ0(n)\T ,Z) are isomorphic. If q = 2, the iso-
morphism is induced by the canonical mapping from T to Γ0(n)\T and the scalar
product of ϕ and ψ in H1(Γ0(n)\T ,R) is just 1

2

∑
e ϕ(e)ψ(e), the sum being taken

over the oriented edges of Γ0(n)\T . If q > 2, one has to introduce weight factors
(see [4] or [3] for more details).

In any case the modular automorphisms operate from the right on H!(T ,R)Γ0(n)

and on H1(Γ0(n)\T ,R) by acting from the left on the edges. Further, for G ≤ M(n)
the dimension of the subspaces of G-invariants equals the genus of G\X0(n).

Example: For q = 2 and n = T 2(T 2 + T + 1) the graph Γ0(n)\T is given in the
picture below. The cusps are abbreviated by arrows.

We see that the curve X0(n) has 6 cusps and that its genus is 5. The full Atkin-
Lehner involution Wn is the reflection at the middle axis, so the genus of the curve
Wn\X0(n) is 2.
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Theorem 1

a) NGL2(K∞)(Γ0(n)) = K×
∞ · NGL2(K)(Γ0(n)).

b) If q > 2 then M(n) = W(n), that is, the partial Atkin-Lehner involutions are the

only modular automorphisms.

c) If q = 2 and n =
∏

p
ei
i , we define U1 =

(
1 0
n

T 1

)
and U2 =

(
1 0
n

T2 1

)
and

MT (n) =




〈id〉 if ordT (n) = 0
〈WT 〉 ∼= C2 if ordT (n) = 1
〈WT 2 , U1〉 ∼= S3 if ordT (n) = 2
〈WT 3 , U1〉 ∼= D4 if ordT (n) = 3
〈WT 4 , U1, U2〉 ∼= S4 if ordT (n) = 4
〈WT 5 , U1, U2〉 ∼= D8 ×| C2 if ordT (n) = 5
〈WT ν , U1, U2〉 if ordT (n) = ν > 5 .

For ordT (n) > 5 the group MT (n) is non-abelian of order 32. As an automorphism

of X0(n) the involution U1 is rational over K, whereas the involution U2 is rational

only over K(α) with α2 + α = T−1.

MT+1(n) is similarly defined with Vi =
(

1 0
n

(T+1)i
1

)
.

The involutions U1, U2, V1, and V2 commute with each other. For every Wm with

T � |m we have WmU1 = U1Wm and

WmU2 =
{
U2Wm if m ≡ 1 mod T 2,
U1U2Wm if m ≡ T + 1 mod T 2 .

Analogously for V1 and V2.

There exists a semi-direct product decomposition

M(n) = 〈MT (n),MT+1(n)〉 ×| 〈W
p
ei
i

: pi �= T, T + 1〉

with operation given by the relations above. Moreover,

〈MT (n),MT+1(n)〉 = MT (n)MT+1(n),

which means that every M ∈ 〈MT (n),MT+1(n)〉 may be written as M = MTMT+1

with uniquely determined MT ∈ MT (n) and MT+1 ∈ MT+1(n).
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One sees that M(n) shows a similar feature as in the classical situation (com-
pare [1] Theorem 8), where the existence of modular automorphisms that are no
Atkin-Lehner involutions depends on divisibility of n by 4 or 9. As in [6] p. 289,
the modular automorphisms U1 and U2 can be given a modular interpretation on
Drinfeld modules and n-isogenies.

We only give the idea of the proof of b) to show why the situation is different
for q = 2.

If M ∈ M(n) then by a) we may suppose M =
(
a b
c d

)
with a, b, c, d ∈ A and

gcd(a, b, c, d) = 1. With D = det(M), from M
(
1 1
0 1

)
M−1 ∈ Γ0(n) and M

(
1 0
n 1

)
M−1 ∈

Γ0(n) one obtains D|n, D|a2, (D, b) = 1, Dn|c2 and D|d2.
If q > 2 then F×

q contains an ε �= 1 and from M
(
ε 0
0 1

)
M−1 ∈ Γ0(n) one can

calculate that M is an Atkin-Lehner involution.
For q = 2 one may give necessary and sufficient conditions for

(
a b
c d

)
to be

in NGL2(K)(Γ0(n)) but several more pages are needed to derive statement c). A
complete proof will be included in [7].

In H!(T ,R)Γ0(n) there exists the subspace of newforms Hnew
! (T ,R)Γ0(n), the

orthogonal complement of certain embeddings of H!(T ,R)Γ0(m) for proper divisors
m of n. And for every p � | n there exists a Hecke operator Hp on H!(T ,R)Γ0(n)

(compare [4] or [3] for exact definitions). These Hecke operators are simultaneously
diagonalizable on Hnew

! (T ,R)Γ0(n).
Now in our situation we dispose of the following deep theorem, analogous to

the Shimura-Taniyama-Weil conjecture in the classical context.

Theorem 2 ([4], [3])

a) The Fq(T )-isogeny classes of elliptic curves over Fq(T ) with conductor ∞ · n and

split multiplicative reduction at ∞ are in one-to-one correspondence with the 1-

dimensional simultaneous eigenspaces of Hnew
! (T ,R)Γ0(n) with rational eigenvalues

for the Hecke operators Hp. Moreover, for p � | n the number of A/p-rational points of

the reduction mod p of any such curve is qdeg(p)+1−cp, where cp is the Hp-eigenvalue

of the corresponding simultaneous eigenspace.

b) Every such eigenspace contains a (up to sign unique) primitive ϕ∈Hnew
! (T ,Z)Γ0(n).

The degree −v∞(j(E)) of the j-invariant of the strong Weil curve E in the corre-

sponding isogeny class is the minimal positive scalar product of ϕ with elements of

H!(T ,Z)Γ0(n). The degree of the strong Weil uniformization X0(n) → E is (ϕ,ϕ)
−v∞(j(E)) .
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Example (continued): Take again q = 2 and n = T 2(T 2 + T + 1). Then the space
of newforms is 1-dimensional; more precisely Hnew

1 (Γ0(n)\T ,R) = R · ϕ, where ϕ
takes the value 1 on the edges that form the closed path connecting the vertices 1,
2, 3,. . .,12, 1. So there exists exactly one F2(T )-isogeny class of elliptic curves over
F2(T ) with conductor ∞ · n and split multiplicative reduction at ∞. The minimal
positive scalar product of ϕ with elements of H1(Γ0(n)\T ,Z) is 4. Hence the degree
of the j-invariant of the strong Weil curve E in this class is 4. Since q = 2 and the
curves are Tate curves at ∞, every curve in this isogeny class is determined by the
degree of its j-invariant. Thus one can verify that

E : Y 2 + TXY + TY = X3 + T 2

is the strong Weil curve in this class. The degree of the strong Weil uniformization
X0(n) → E is (ϕ,ϕ)/4 = 3.

Now the modular automorphism U1WT 2 maps the edge from vertex 14 to vertex
2, that is the edge whose double-coset representative in GL2(K∞) is

(
1 0
T+1 1

)
, to the

edge with representative
(

0 1
1 T 3

)
, that is the edge from vertex 14 to vertex 6. This

determines U1WT 2 as an automorphism of the graph; namely: U1WT 2 fixes the
vertices 13 and 14 and acts as permutation (2, 6, 10)(4, 8, 12) on their neighbours.
One easily sees that the subspace of U1WT 2-invariant elements of H1(Γ0(n)\T ,R)
is just R · ϕ, so

E = 〈U1WT 2〉\X0(n).

In the same way (i.e., calculation of the graph Γ0(n)\T by computer program as
described in [5] and calculation of some Hecke operators and modular automorphisms
by hand) one obtains.

Proposition 1

There are exactly 24 different F2(T )-isogeny classes of elliptic curves over F2(T )
with conductor ∞ · n and split multiplicative reduction at ∞, where n ∈ F2[T ] and

deg(n) ≤ 4. The table below shows twelve of these, and replacing T by T + 1 gives

the other twelve.

Here ∂ denotes the degree of the strong Weil uniformization. G is a subgroup

of M(n) such that E = G\X0(n), and − means that such a subgroup doesn’t exist.
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n equation of strong Weil curve E ∂ G

T 3 Y 2 + TXY = X3 + T 2 1 〈id〉
T 2(T + 1) Y 2 + TXY + TY = X3 1 〈id〉

Y 2 + (T + 1)XY + Y = X3 + T (T 2 + T + 1) 2 〈WT 〉T (T 2 + T + 1)
Y 2 + (T + 1)XY + Y = X3 +X2 + T + 1 2 〈WT 2+T+1〉

T 4 + T 3 + 1 Y 2 + TXY + Y = X3 +X2 2 〈WT 4+T 3+1〉
T 4 Y 2 + TXY = X3 + TX2 + T 2 2 〈(WT 4U1)2〉

T 3(T + 1) Y 2 + TXY = X3 + (T + 1)2X 4 〈WT 3 , U1WT 3U1〉
T 2(T 2 + T + 1) Y 2 + TXY + TY = X3 + T 2 3 〈U1WT 2〉

Y 2 + (T + 1)XY + TY = X3 +X2 4 〈WT ,WT 3+T+1〉T (T 3 + T + 1)
Y 2 + (T + 1)XY + TY = X3 + T 3 4 −
Y 2 + (T + 1)XY + TY = X3 2 〈WT 3+T 2+1〉

T (T 3 + T 2 + 1) Y 2 + (T + 1)XY + TY =
X3 + (T + 1)X2 + T 3X + T 2 14 −

Finding the equations of the strong Weil curves involves some trial and error,
but a posteriori they can be proved to be correct.

The first five curves in the table and the corresponding graphs are already in [3].
Some further elliptic curves of the form G\X0(n), even some with conductor ∞ · m
for a proper divisor m of n, are listed in [8]. However, all in all there exist only
finitely many ones.

Proposition 2

Let n =
∏s

i=1 p
ei
i be such that G\X0(n) is elliptic for a subgroup G of M(n).

Then (with d = deg(n)) one of the following assertions must hold:

a) q = 2, d ≤ 15, s ≤ 4,

b) q = 3, d ≤ 7, s ≤ 4,

c) q = 4, d ≤ 5, s ≤ 4,

d) q = 5, d ≤ 5, s ≤ 5,

e) q = 7, d ∈ {3, 4}, s ∈ {3, 4},
f) q ∈ {8, 9}, d = 4, s ∈ {3, 4},
g) q ∈ {11, 13}, d = 4, s = 4.

Proof. Except for the bound d ≤ 15, s ≤ 4 in case q = 2 this is the statement of
Proposition 17 in [8], where the caseG ≤ W(n) is treated. In case q = 2, where M(n)
can be larger than W(n), arguments and calculations similar to those developed in
section 3 of [8] yield the bound given above. �

Without proof (compare again [7]) we also state.
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Proposition 3

Let q = 2.

a) If T 3|n then U1 acts as −1 on Hnew
! (T ,R)Γ0(n).

b) If T 5|n then U2 acts on Hnew
! (T ,R)Γ0(n) as twist by T−1, that is: If ϕ ∈

Hnew
! (T ,R)Γ0(n) is a simultaneous eigenform for the Hecke operators with eigen-

values cp then ϕ ◦ U2 has Hecke eigenvalues χ(p)cp, where χ is the character of the

field extension of K generated by X2 +X = T−1.

Similar statements hold for V1 and V2.

Statement b) implies: If T 5|n and E belongs to ϕ ∈ Hnew
! (T ,Z)Γ0(n) then ϕ◦U2

belongs to the T−1-twist of E.
This holds also for ordT (n) = 4, but then ϕ ◦ U2 is not necessarily a newform,

that is, the conductor of the T−1-twist of E might be smaller. For example in the
table in Proposition 2 one sees that the T−1-twist of the curve with conductor ∞·T 4

is the curve with conductor ∞ · T 3.
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