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Abstract

The number of solutions of the “unit equation” x + y = 1 in units of (the
ring of integers of) an algebraic number field of degree n and unit rank r is
known to be bounded above by an exponential function of n and r, but the
best known lower bounds are only polynomial in n, and the true counts have
been computed only in a few cases.
We will present recently computed solution counts in number fields of unit
rank r ≤ 5, leading to a tentative formula for the largest number of solutions
attained by at least one field of given signature. The formula agrees with the
Stewart heuristic, predicting about exp(r 2/3+o(1)) solutions. These counts are
dominated by “small” solutions, whereas the smaller number of solutions which
can be attained infinitely often by fields of a fixed signature hinges on the “large”
ones.

1. Introduction

The unit equation x + y = 1, to be solved in invertible algebraic integers, first
appears in C. L. Siegel’s fundamental paper on diophantine approximation [26].
In spite of a 67-year history of research not very much is known in general about
how many solutions x, 1−x it can have in any given algebraic number field. Such x

are called exceptional units, a term introduced by T. Nagell in 1969 [20]. Siegel
already knew that their number in any given field is finite (an easy consequence of
Satz 7, Zusatz 1 of his dissertation [25]), and it follows from A. Baker’s theory of
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linear forms in logarithms that the solutions are effectively computable. This was
first made explicit by K. Győry in the 1970s [8]. J.-H. Evertse proved in 1983 [5]
that the number of solutions is at most

3 · 7n+2r+2 ,

where n = [K : Q] is the degree and r the rank of the group of units of the field K.
(By Dirichlet’s theorem, r = r1 + r2 − 1 if the field has r1 real and r2 pairs of
complex embeddings; since r1 + 2 r2 = n, we have n/2 ≤ r + 1 ≤ n.) Although
the numbers 3 and 7 can be reduced somewhat, Evertse’s bound has not yet been
improved in substance; all known upper bounds are of this form — exponential in n

or in r or in some combination of n and r. Note that the method used by Evertse,
H. P. Schlickewei and others (see the excellent survey [6]) is ineffective in the
sense that it does not provide bounds on the solutions themselves.

There can be no positive lower bounds valid for all fields of given signa-
ture (n, r). E.g., whenever an ideal of norm 2 is present, there can be no exceptional
units at all, since all the units must then lie in the nontrivial coset. The best one can
strive for are lower bounds for some or for infinitely many fields of given signature.
Nagell [19] noted that infinitely many non-isomorphic fields of degree n contain at
least

12n− 30

exceptional units ([19], after Théorème 10bis, p. 125; note that Nagell counts pairs
of solutions). This linear lower bound is the best known to date of its type. He also
gave a linear lower bound 12n − 18 for the number of exceptional units in at least
one field of degree n ([19], Théorème 10bis) and observed that the largest numbers
of solutions tend to occur in the fields of smallest absolute discriminant within each
signature. Using cyclotomic units, I can construct examples with solution counts
growing at least like n3, but we will see that these are still untypically low.

The present author, with the benefit of access to an extensive synopsis of num-
ber fields of moderately large degrees (which is being made available in electronic
form [21]), has been computing tables of exceptional units in many fields of small
absolute discriminant up to degree 11 and rank 5. Some rank 6 computations are in
progress at the time of writing. We will present a table of results below and attempt
to predict the true rate of growth for the number of solutions attainable at least once
per signature. Rather less is known about the (smaller) number of solutions which
can be attained infinitely often. We will give lower bounds for a few signatures at
the end of this note; more details can be found in an earlier version of it [23].



Counting exceptional units 197

In order to guide our expectations, let us look at the more general case of the
S-unit equation x+y = 1, where the unknowns x and y now range over the subgroup
of elements of K× which are integral with integral inverse at all places except those
in the finite set S. The rank of this group is r + s where s is the number of finite
places in S. Evertse’s upper bound remains valid for this situation with the exponent
n + 2r + 2 replaced accordingly by n + 2(r + s + 1). We can now consider a fixed
field K and let the set S vary. Congruence obstructions of the type mentioned above
can be removed by making the offending prime ideals invertible, and one may hope
for an improved lower bound in terms of r+s which holds for suitably chosen sets S

containing s finite places. A bound of this type, subexponential in s, was found by
P. Erdős, C. L. Stewart and R. Tijdeman [4]. (A simplified proof was given
by D. B. Zagier in [32], p. 425f.) It says that by choosing S carefully, one can
produce at least a constant times

exp
(
(4 + o(1))(s/log s)1/2

)

exceptional S-units in Q (implying a similar lower bound for all number fields). Soon
afterwards, Stewart suggested that an optimal choice of S ought to yield

exp(s2/3+o(1))

solutions ([6], p. 120).
Now experimental evidence suggests that in fields whose absolute discriminants

are small for their signatures, the rings of integers behave “nicely” in many ways
(e.g., they are often euclidean for the norm [11, 13, 12, 14]), whereas in a general
number field such nice behavior is only obtained after passing to S-integers and
S-units for large enough sets S. This observation has even been used in the opposite
direction for finding fields with small absolute discriminants, see [13, 12, 21]. Thus
it is not unreasonable to expect that Stewart’s heuristic might carry over to the
case of ordinary units in fields of small absolute discriminants. We will see that this
expectation is indeed borne out by examples.

The remainder of this note is organized as follows. After recalling some basic
facts and notation, we will draw a distinction between “small” and “large” solutions
in section 3. The former kind will account for most of the exceptional units seen in
fields of small absolute discriminant; they cannot contribute to infinitely many fields
of fixed signature except insofar as they come from proper subfields. We will focus
on these small solutions in section 4, presenting our conjectural formula for their
true number and the numerical evidence supporting this formula. The last section
is devoted to the large solutions.
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2. Basic facts

We recall some well-known simple properties of exceptional units (see [14] and the
references cited there for more details). Let R be a commutative ring with an
identity element 1 for multiplication; write R× for its group of units and E(R) =
R× ∩ (1 −R×) for the set of exceptional units of R. Homomorphisms of such rings
are understood to preserve identity elements, hence they map units to units and
exceptional units to exceptional units. Nagell noted that exceptional units (e.u.s
from now on) usually come in orbits of six:

Lemma 2.1

If x ∈ E(R) is an exceptional unit, then so are

xi := 1/x , xj := 1 − x , xk := x/(x− 1) , xij = 1 − 1/x , xji = 1/(1 − x) .

These are distinct unless either x2 − x+ 1 = 0, in which case we have x = xij = xji

and xi = xj = xk, or 1+1 ∈ R× and x ∈ {−1, 1+1, (1+1)−1}, when x = xi or xk

or xj , respectively. We write H =
〈
i, j, k ; i2 = j2 = k2 = (ij)3 = ijik = 1

〉
for this

nonabelian group of order 6 of homographic transformations. �

Now let f ∈ Z[X] be a monic irreducible polynomial, x a root of f (in some fixed
algebraic closure of Q) and Z[x] the subring of the ring of integers of the number
field K = Q(x) generated by x. The intersection of Z[x] with the group of units
of K is a subgroup of finite index and hence of full rank. In particular, whenever
an element of Z[x] is invertible in the full ring of integers of K, then it is already a
unit of Z[x].

Lemma 2.2

a) If g ∈ Z[X] is such that g(x) ∈ Z[x]×, then the canonical homomorphism
from Z[X] onto Z[x] which sends X to x extends to a unique homomorphism of
the ring of Laurent polynomials Z[X][g−1] onto Z[x]. The same is true, mutatis
mutandis, when the single polynomial g is replaced with a subset of nonconstant
elements of Z[X].

b) ([11], Lemma (2.5)) If g ∈ Z[X] is also monic and irreducible, and if y

denotes a root of g, then g(x) is a unit in Z[x] if and only if f(y) is a unit in Z[y]. �
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Combining a) and b), we see that the monic irreducible polynomial f ∈ Z[X]
is the minimal polynomial of an exceptional unit if and only if f(0), f(1) ∈ {±1}.
The following proposition is an immediate consequence.

Proposition 2.3 ([17], Théorème 1)

The only exceptional units in (the rings of integers of) quadratic number fields

are the roots of the four polynomials

X2 −X + 1 , X2 −X − 1 , X2 + X − 1 , X2 − 3X + 1 ;

i.e., the sixth roots of unity ζ±1
6 and the H-orbit of the golden ratio ϑ = 1

2 (1+
√

5). �

In [14] it is shown how one can compute the e.u.s of rings of Laurent polynomials
(finitely generated quotient rings of Z[X]). This can be used to construct rings
containing at least a prescribed number of e.u.s (see [14, 23]), but finding “good”
large sets of generator polynomials for the units of the Laurent ring is a problem in
its own right.

3. The large and the small solutions

Evertse’s bound is the sum of two contributions estimated by different methods,
covering respectively the solutions of small and of large height. There are various
notions of height (or size, or measure) for algebraic numbers ([15], Ch. 4), each of
which can be bounded in terms of (the degree and) any of the others, and all of
which have the fundamental property that any set of algebraic numbers of bounded
degree and height is finite and effectively computable, at least in principle. (Any
choice of upper bounds for degree and height constitutes or entails bounds for the
coefficients of the minimal polynomials.)

For the purpose of the following discussion, think of some fixed notion of height
and assume that a positive bound B(n, r) has been chosen. Among all exceptional
units in fields of degree n and unit rank r (always working in a fixed algebraic closure
of Q), call those of height not exceeding B(n, r) the “small” ones and the others the
“large” ones. By the fundamental property of heights, the small e.u.s in all fields of
this signature are the roots of a finite set of polynomials. Therefore they generate
only finitely many distinct fields, and we deduce Theorem 3.1.



200 Niklasch

Theorem 3.1

Fix a signature (n, r) and a notion of smallness as explained above. Then small

exceptional units which are themselves of degree n, i.e., which are primitive elements

of the fields under consideration, can exist only in finitely many distinct number

fields of the prescribed signature, and these fields can be effectively determined. If

any other field of the given signature contains a small exceptional unit x, then x

along with its H-orbit must lie in a proper subfield. �

Thus it is appropriate to subdivide the problem of counting e.u.s in number fields
into two subproblems as follows. For given n and r, let C1(n, r) denote the maximal
number #E(R) of exceptional units where R ranges over the rings of integers of
all fields of degree n and unit rank r. Furthermore, let C2(n, r) be the largest
integer N such that infinitely many distinct fields of this signature possess N e.u.s
of degree n, i.e. not counting e.u.s contained in proper subfields. The existence of
these maxima follows at once from Evertse’s bound; clearly we have C2(n, r) ≤
C1(n, r) ≤ 3 · 7n+2r+2.

The theorem implies that the small solutions do not affect C2(n, r) at all. When
we are interested in counts including the e.u.s in subfields, the best approach is pro-
bably to consider extensions of one fixed subfield at a time. E.g., Nagell [18] proved
C2(n, 1) = 0 for all three cases of n ∈ {2, 3, 4} (clearly C2(2, 0) = C2(2, 1) = 0
follows from proposition 2.3) and pointed out that there are infinitely many totally
complex quadratic extensions of the real quadratic field Q(ϑ); every one of these
fields contains the six e.u.s of the subfield, but except for the cyclotomic field Q(ζ5)
and the composite Q(ζ6, ϑ) they contain no further e.u.s. A similar statement holds
for quadratic extensions of Q(ζ6). Along the way, Nagell determined all e.u.s which
generate fields of unit rank one, establishing C1(2, 1) = 6 (proposition 2.3 again),
C1(3, 1) = 12 attained by the field of minimal discriminant −23 and C1(4, 1) = 20
attained by the complex quartic field of smallest discriminant 117, an extension
of Q(ζ6). All this was possible using elementary estimates. Linear forms in log-
arithms only enter the scene when r > 1.

4. Large numbers of small solutions

In unit ranks r ≥ 2, exact numbers of e.u.s are known only for a few fields. These
include Nagell’s results #E(R) = 42 and 18 for the rings of integers of the cyclic
cubic fields of discriminants 72, smallest among all real cubic fields, and 92 [20].
Work in progress [22, 28] will provide many more examples in degrees 3 and 4.
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B. M. M. de Weger [pers. comm.] computed #E(R) = 570 for the ring of
integers R = Z[ζ11 + ζ−1

11 ] of the real subfield of the 11th cyclotomic field, which has
the smallest discriminant 14641 among all totally real quintic fields. Beyond these
examples, CM extensions of totally real fields already treated can be handled using
an idea of Győry ([7], Lemme 12); this covers e.g. the seventh, ninth and eleventh
cyclotomic fields with 72, 38 and 660 e.u.s respectively.

Recent improved estimates for linear forms in logarithms [1, 9, 31] have con-
siderably cut down on the amount of computation required for solving the unit
equation completely with Baker’s method, but complete solutions are still expensive
to obtain. Our experiments were therefore restricted to finding most solutions in
each of a large number of fields, thus establishing lower bounds on C1(n, r) which
we hope are quite close to the truth. We investigated the fields with r ≤ 5 and
minimal discriminants for those signatures for which they are known, n ≤ 7 and
(n, r) = (8, 3), and the fields with smallest known absolute discriminants for the re-
maining signatures which appear below, with defining polynomials taken from [13]
and [12]; see also [21]. For many signatures, further fields with discriminants close
to the minima were inspected. For each field, a suitably reduced set of fundamental
units η1, . . . , ηr and, if necessary, a root of unity ζ of maximal order were computed
using PARI/GP. Then for all units ε = ζa0

∏r
1 η

aj

j with individually bounded ex-
ponents aj , we checked whether the norm of ε − 1 was ±1, using exact arithmetic.
The largest exponents actually seen to occur in solutions were recorded, and the
exponent bounds were extended until the actual maxima stayed strictly within the
bounds, and until the total number of solutions (other than sixth roots of unity) was
divisible by 6. (With additional bookkeeping, it would have been possible to detect
missing members of individual H-orbits, but we were more concerned with speed for
the time being. Indeed, we exploited the symmetry with respect to taking inverses
for halving the range of one of the exponents.) The examples where full lists of e.u.s
are known suggest that this approach will rarely miss any (large) solutions.

We found not a single example where the largest number of e.u.s was not at-
tained by the field of minimal discriminant, although in a few cases the same count
was attained by the field of second smallest absolute discriminant. The counts we
obtained are listed in the following table.
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Table 4.1: C1(n, r) ≥ . . .

n = 2 3 4 5 6 7 8 9 10 11

r = 0 2
1 6 12 20
2 42 54 78 110
3 162 228 288 366 438
4 570 750 954 1110 1344 1584
5 2070 2310 2958 3342 3840 4482

Although 5 is not a very large number, one is tempted to try and fit a smooth
function through these data points. Writing T1(n, r) for the tabulated counts, the
best fit I found was

log T1(n, r) ≈ r2/3(log r)1/3 + r1/3 log n + 1 . (∗)

For 2 ≤ r ≤ 5, the difference between the lefthand and the righthand side of (∗)
does not exceed 0.163 in magnitude, with the largest deviation occurring for (n, r) =
(4, 2). The relative error is less than 4.1% in this case and less than 2% for all other
signatures with 2 ≤ r ≤ 5.

Whereas the dominant r2/3 in (∗) is well constrained by the tabulated values,
the exponent attached to the log r and the second and third summands are not.
That exponent could be a real number close to 1/3, there may well be a numerical
coefficient and/or an exponent close to 1 missing from the log n term, etc. More
importantly, there ought to be a (negative) contribution from (the logarithm of)
the absolute discriminant and from the regulator. This will probably show up for
(n, r) = (7, 6) where the smallest discriminant 20 134 393 [24] is significantly larger
than the Odlyzko bound, and such a contribution might also describe the decrease
of the counts as one walks away from the minimal discriminant, but it is too early
for guessing the shape of suitable terms.

We therefore propose the more modest Conjecture 4.2.

Conjecture 4.2 As n, r → ∞, we have logC1(n, r) = r2/3+o(1).

In the signatures with larger ranks the numbers of solutions were seen to vary
almost monotonically with the discriminant, apparently unaffected by the presence
or absence of subfields and of nontrivial roots of unity. Therefore we expect C1(n, r)
to be independent of such accidental properties of the field or fields with minimal
discriminants.
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Let us confront the conjecture with the contribution from small solutions to
Evertse’s upper bound, where the precise meaning of “small” is explained in [5].
This bound is given by the last displayed formula (70) of [5] which reads, in our
notation,

5 ·Ar+1 ·
(
2e24/A

)n

where A is an arbitrary positive integer parameter. Evertse proceeds to set A = 49
in order to obtain a simple formula for the combined upper bound, but clearly the
optimal values for our application lie between A = 24 for totally real fields (n = r+1)
and A = 48 for totally complex ones (n = 2r + 2). They lead to 5 · (48e)r+1 and
5 ·(192e)r+1, respectively, as upper bounds for the number of small e.u.s, expressions
which are purely exponential in r. Evertse’s proof is based on the product formula
for absolute values; a number-geometric argument invoking the discriminant and/or
the regulator might perhaps yield a sharper result.

5. A few large solutions, infinitely often

Evertse’s upper bound for the number of large solutions (for some precise meaning
of “large”) and a fortiori for C2(n, r) is ([5], Lemma 9)

2 · 72r+2 .

One must bear in mind that this covers more general kinds of unit equations than
the ones we are considering. At any rate, the known lower bounds for C2(n, r) are
much smaller.

As has been explained in much more detail in [23], such lower bounds are readily
obtained by using Lemma 2.2 to construct suitable infinite families of polynomials
of fixed degree n. With some extra care, one can ensure that up to finitely many
exceptions, these polynomials will have n real roots, or n−2 real roots and a pair of
complex roots; larger numbers of non-real places are more difficult to force. Within
such a family, one has good control over the locations of the real and complex roots,
and the author suggested in [23] that the methods pioneered by E. Thomas [30]
and M. Mignotte [16] and further developed by A. Pethő et al. could be used to
show that equation orders arising from a well-constructed family contain no other
e.u.s than the forced ones. These methods combine diophantine approximation
techniques (a gap principle) with linear forms in logarithms to obtain exact solution
counts for entire families of exponential diophantine equations. Some such examples
are now being worked out in full detail by N. P. Smart and the author [28, 22]. It
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is another matter, but still possible in some cases, to show that there are no spurious
solutions outside the equation order (which a priori might be and sometimes is a
proper subring of the full ring of integers of the field).

Conjecture 5.1 For each of n = 3, 4, 5, 6, we should have C2(n, 2) = 6.

We have already seen in section 3 that C2(n, 1) = 0 for all three possible values
of n. The case (n, r) = (3, 2) of real cubic fields has been the subject of numerous
studies (see e.g. [19, 3, 10] and the references cited there). By Lemma 2.2, the
minimal polynomials of the possible e.u.s, up to the action of H, form two infinite
one-parameter families, one of which produces only cyclic fields (and some of them
more than once), whereas the other avoids the cyclic fields with finitely many excep-
tions, and never seems to hit a non-cyclic real cubic fields more than once. Nagell
conjectured that the non-cyclic family produces pairwise distinct fields.

For quartic and for quintic rank two fields, [23] gives families which show C2 ≥ 6;
in the totally complex degree 6 case one can easily obtain the same result using
suitable families of cubic extensions of fixed imaginary quadratic fields. The point
of the conjecture is that C2 should not be larger than 6.

A proof of the full conjecture probably cannot be based on such families alone,
as there are too many free parameters when n > 3. I have a heuristic argument
which ought to furnish a proof at least for n = 4 and n = 5, but the details remain
to be worked out.

Proceeding to higher ranks, we have C2(4, 3) ≥ 18 since infinitely many such
fields arise from minimal polynomials f satisfying {f(0), f(1), f(−1)} ⊆ {±1} and
producing what J.-D. Thérond calls unités vraiment exceptionnelles [29]. Simi-
larly, the conditions

{f(0), f(1)} ⊆ {±1} and f(ζ6) ∈ {±1,± ζ±1
6 }

lead to families establishing C2(5, 3) ≥ 24, one of which is the main example dis-
cussed in [23], and C2(5, 4) ≥ 48 follows from considering

{f(0), f(1)} ⊆ {±1} and f(ϑ) ∈ ±ϑZ .

I believe that these lower bounds are already the correct values but do not know at
the moment how one could go about proving this. An argument à la Thomas [30]
ought to show that with at most finitely many exceptions, the equation orders Z[x]
defined by the family polynomials contain no extraneous solutions, but one would
also need to deal with possible solutions outside Z[x].
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At present, we possess insufficient evidence to predict the behaviour of C2(n, r)
for larger degrees and ranks, except that it should stay rather smaller than C1. It
may turn out that factors other than the signature are relevant here, such as the
Galois group of the normal closure or the presence of nontrivial roots of unity in
proper subfields. One would then have to consider C2(n, r) as the maximum of
several similarly defined quantities C ′

2(n, r, . . .) which need to be studied separately.
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