Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 1-2 (1997), 115-136
(c) 1997 Universitat de Barcelona

Computing integral points on Mordell's elliptic curves

J. Gebel, A. Рethö and H. G. Zimmer ${ }^{1}$

Fachbereich 9 Mathematik, Universität des Saarlandes, Postfach 1511 50, D-66041 Saarbrücken, Germany

E-mail address: zimmer@math.uni-sb.de

Abstract

We use Mordell's elliptic curves E_{k} (see below) to illustrate our algorithm for computing all integral points on any given elliptic curve over the rationals (see [5]) and apply it to determine the integral points on E_{k} for k within the range $|k| \leq 10,000$. Actually, the calculations can be extended to $|k| \leq 100,000$. In this larger range Hall's conjecture holds with $c_{\epsilon}=5$.

1. Introduction

Siegel [12] proved in 1929 that the number of integral points on an elliptic curve E over an algebraic number field K is finite, and Mahler [9] generalized this result in 1934 to S-integral points. In 1978, Lang (and Demjanenko, see [8]) conjectured that the number of integral points on a quasi-minimal model of E over K is bounded by a constant depending only on K and the rank r of E over K, and this conjecture easily carries over to the number of S-integral points with a bound depending on r, K and S. Indeed, Silverman [13] proved these conjectures in 1981 for elliptic curves E over K with integral j-invariant.

Moreover, beginning with the pioneering work of Baker [1], several authors derived bounds for the size of the coordinates of integer points on elliptic curves E over K. Since we are interested in computing all integral points on the elliptic curve defined by Mordell's equation (by abuse of language, we shall speak of Mordell's elliptic curve)

$$
E_{k}: \quad y^{2}=x^{3}+k \quad(0 \neq k \in \mathbb{Z}),
$$

[^0]we mention here only the bounds obtained for this equation by Stark [17]:
$$
\max \{|x|,|y|\}<\exp \left\{c_{\epsilon}|k|^{1+\epsilon}\right\}
$$
with an effectively computable constant $c_{\epsilon}>0$ depending on a given $\epsilon>0$, and by Sprindžuk [16], p. 113,
$$
\max \{|x|,|y|\}<\exp \left\{c|k|(1+\ln |k|)^{6}\right\}
$$
with a computable absolute constant $c>0$.
Some numerical data led Hall [7] to make the

Conjecture.

$$
|x|<c_{\epsilon}|k|^{2+\epsilon}
$$

with a constant $c_{\epsilon}>0$ depending only on $\epsilon>0$.

Yet the coordinates of integer points on E_{k} can be quite large in comparison to k. For instance,

$$
233,387,325,399,875^{2}=3,790,689,201^{3}+28,024
$$

We shall not employ our numerical results to estimate the constants in the theorems of Stark and Sprindžuk here. Rather we shall use Mordell's elliptic curves E_{k} to illustrate our algorithm for computing all integral points on any given elliptic curve over the rationals (see [5]) and apply it to determine the integral points on E_{k} for k within the range $|k| \leq 10,000$. Actually, the calculations can be extended to $|k| \leq 100,000$. In this larger range Hall's conjecture holds with $c_{\epsilon}=5$.

One ingredient of our algorithm is an explicit lower bound for linear forms in elliptic logarithms. In fact, by considering also linear forms in p-adic elliptic logarithms as in [15], we are even able to determine all S-integral points on Mordell's elliptic curve E_{k} for any finite set of primes $S=\left\{\infty, p_{1}, \ldots, p_{n}\right\}$ of the rational number field \mathbb{Q}. In the final section, we shall list our results for $S=\{\infty, 2,3,5\}$ and $|k| \leq 10,000$.

An extended version of this paper will appear elsewhere.

2. Basic steps of the algorithm

By Mordell's theorem [11], the group of rational points of E_{k} over \mathbb{Q} is

$$
E_{k}(\mathbb{Q}) \cong E_{k, \text { tors }}(\mathbb{Q}) \oplus \mathbb{Z}^{r}
$$

where $E_{k, \text { tors }}(\mathbb{Q})$ is the (finite) torsion group and r is the rank of E_{k} over \mathbb{Q}. Let

$$
\left\{P_{1}, \ldots, P_{r}\right\} \text { be a basis of } E_{k}(\mathbb{Q})
$$

or, more precisely, of the free part of $E_{k}(\mathbb{Q})$.
Then, every point $P \in E_{k}(\mathbb{Q})$ admits a unique representation of the form

$$
\begin{equation*}
P=\sum_{\nu=1}^{r} n_{\nu} P_{\nu}+P_{r+1} \quad\left(n_{\nu} \in \mathbb{Z}\right) \tag{2.1}
\end{equation*}
$$

where $P_{r+1} \in E_{k, \text { tors }}(\mathbb{Q})$ is a torsion point.
Our aim is to find a positive integer N such that, for all integral points $P \in$ $E_{k}(\mathbb{Q})$,

$$
\begin{equation*}
\left|n_{\nu}\right| \leq N \quad(\nu=1, \ldots, r) \tag{2.2}
\end{equation*}
$$

This aim is reached essentially in three steps (see [5]):

1. Determine the torsion group, the rank and a basis of the Mordell-Weil group $E_{k}(\mathbb{Q})$ (see $[6]$).
2. Compute a lower bound for linear forms in elliptic logarithms (see [3]).
3. Reduce the bound N obtained in this way by numerical diophantine approximation techniques (see [18]).

3. Determination of the Mordell-Weil group (Step 1)

The torsion group is small and can be easily computed. We have (see [4])

Proposition 3.1

Let $k=m^{6} k_{0}$, with $m, k_{0} \in \mathbb{Z}, m>0, k_{0}$ free of 6 -th power prime factors. Then

$$
E_{k, \text { tors }}(\mathbb{Q})= \begin{cases}\mathbb{Z} / 6 \mathbb{Z} & \text { if } k_{0}=1 \\ \mathbb{Z} / 3 \mathbb{Z} & \text { if } k_{0} \neq 1 \text { is a square or } k_{0}=-432 \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } k_{0} \neq 1 \text { is a cube } \\ \{0\} & \text { otherwise } .\end{cases}
$$

Moreover, any torsion point $P=(x, y) \in E_{k, \text { tors }}(\mathbb{Q})$ has coordinates $x, y \in \mathbb{Z}$ such that

$$
y=0 \quad \text { or } \quad y \mid 3 k .
$$

Rank and basis of the group $E_{k}(\mathbb{Q})$ are much more difficult to determine. We follow the procedure developed in [6]. It relies on a theorem of Manin [10] and originally depends on the truth of the conjecture of Birch and Swinnerton-Dyer, but our results concerning the curves E_{k} can be verified afterwards without the assumption of any conjectures.

At first we need to introduce the height functions on $E_{k}(\mathbb{Q})$. For a rational point with coordinates written in simplest fraction representation

$$
\mathcal{O} \neq P=\left(\frac{\xi}{\zeta^{2}}, \frac{\eta}{\zeta^{3}}\right) \in E_{k}(\mathbb{Q}) \text { with } \xi, \eta, \zeta \in \mathbb{Z}, \zeta>0,(\xi, \zeta)=(\eta, \zeta)=1,
$$

we recall the definition of the ordinary height or Weil height

$$
h(P)=\left\{\begin{array}{cl}
\frac{1}{2} \log \max \left\{|\xi|, \zeta^{2}\right\} & \text { if } P \neq \mathcal{O} \\
0 & \text { if } P=\mathcal{O}
\end{array}\right\}
$$

But instead, we shall use the modified ordinary height (see [21])

$$
d(P)=\left\{\begin{array}{cl}
\frac{1}{2} \log \max \left\{\left|\sqrt[3]{k} \zeta^{2}\right|,|\xi|\right\} & \text { if } P \neq \mathcal{O} \\
\frac{1}{2} \log |\sqrt[3]{k}| & \text { if } P=\mathcal{O}
\end{array}\right\}
$$

in our derivation of bounds for the elliptic logarithms. Both functions can be taken to define the canonical height or Néron-Tate height

$$
\hat{h}(P)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} P\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{d\left(2^{n} P\right)}{2^{2 n}} .
$$

We list here the basic properties of these height functions.
(1) There are only finitely many points of bounded (ordinary or canonical) height in $E_{k}(\mathbb{Q})$.
(2) \hat{h} is a positive-semidefinite quadratic form on $E_{k}(\mathbb{Q})$, i.e.

$$
\begin{aligned}
& \hat{h}(P+Q)+\hat{h}(P-Q)=2 \hat{h}(P)+2 \hat{h}(Q) \text { for } P, Q \in E_{k}(\mathbb{Q}), \\
& \hat{h}(P) \geq 0 \text { for } P \in E_{k}(\mathbb{Q}),
\end{aligned}
$$

and \hat{h} has null space $E_{k, \text { tors }}(\mathbb{Q})$, i.e.

$$
\hat{h}(P)=0 \text { if and only if } P \in E_{k, \text { tors }}(\mathbb{Q}) .
$$

(3) \hat{h} extends to a positive-definite quadratic form on the factor group

$$
\tilde{E}_{k}(\mathbb{Q})=E_{k}(\mathbb{Q}) / E_{k, \text { tors }}(\mathbb{Q})
$$

with associated nondegenerate symmetric bilinear form

$$
\hat{h}(\tilde{P}, \tilde{Q})=2(\hat{h}(\tilde{P}+\tilde{Q})-\hat{h}(\tilde{P})-\hat{h}(\tilde{Q})) \text { for } \tilde{P}, \tilde{Q} \in \tilde{E}_{k}(\mathbb{Q})
$$

(4) \hat{h} induces a Euclidean norm $\sqrt{2 \hat{h}}$ on the r-dimensional real space

$$
\mathcal{E}_{k}(\mathbb{Q})=E_{k}(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{R}
$$

via the natural injective embedding

$$
\tilde{E}_{k}(\mathbb{Q}) \hookrightarrow \mathcal{E}_{k}(\mathbb{Q}) .
$$

(5) The absolute value of the determinant

$$
R=\left|\operatorname{det}\left(\hat{h}\left(P_{\mu}, P_{\nu}\right)\right)_{\mu, \nu=1, \ldots, r}\right|
$$

where $\left\{P_{1}, \ldots, P_{r}\right\}$ is a basis of $E_{k}(\mathbb{Q})$ modulo torsion, is an invariant, called the regulator of E_{k} / \mathbb{Q}.
(6) The difference between the ordinary height d (or h) and the canonical height \hat{h} is bounded by a constant depending only on k :

$$
|d(P)-\hat{h}(P)|<\delta_{k} \text { for } P \in E_{k}(\mathbb{Q}) .
$$

In fact, one can choose (see [20] - [22])

$$
\begin{equation*}
\delta_{k}=\frac{1}{6} \log |k|+\frac{5}{3} \log 2 . \tag{3.1}
\end{equation*}
$$

More precisely, we have (see [21], [22])

$$
\begin{equation*}
-\frac{5}{6} \log 2 \leq d(P)-\hat{h}(P) \leq \frac{1}{6} \log |k|+\frac{5}{3} \log 2 . \tag{3.2}
\end{equation*}
$$

In terms of the ordinary height h, these estimates read

$$
-\frac{1}{6} \log |k|-\frac{5}{6} \log 2 \leq h(P)-\hat{h}(P) \leq \frac{1}{6} \log |k|+\frac{5}{3} \log 2 .
$$

Silverman [14] established the bounds

$$
-\frac{1}{6} \log |k|-1.576 \leq h(P)-\hat{h}(P) \leq \frac{1}{6} \log |k|+1.48 .
$$

A comparison shows that Silverman's constants are slightly weaker than ours, but their dependence on k is the same.

A basis P_{1}, \ldots, P_{r} of the free part of $E_{k}(\mathbb{Q})$ is now determined by applying the method of successive minima from geometry of numbers to the r-dimensional Euclidean space

$$
\mathcal{E}_{k}(\mathbb{Q})=E_{k}(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{R} .
$$

This method requires the knowledge of the rank r of E_{k} over \mathbb{Q}. The rank can be obtained by computing suitable derivatives of the L-series $L\left(s, E_{k} / \mathbb{Q}\right)$ at $s=1$ and assuming the Birch and Swinnerton-Dyer conjecture to be true. We use the following important theorem due to Manin [10].

Theorem 3.2

Put

$$
B=\delta_{k}+\frac{2^{2 r}}{\gamma_{r}^{2}} R^{\prime 2} \max \left\{1, h^{\prime 2(1-r)}\right\}
$$

where δ_{k} is the bound mentioned above, r is the rank of $E_{k} / \mathbb{Q}, \gamma_{r}$ is the volume of the r-dimensional unit ball, $R^{\prime} \geq R$ is an upper bound for the regulator of E_{k} / \mathbb{Q} and $h^{\prime}>0$ is a lower bound for the canonical height on nontorsion points in $E_{k}(\mathbb{Q})$:

$$
0<h^{\prime}<\hat{h}(P) \quad \text { for } P \in E_{k}(\mathbb{Q}) \backslash E_{k, \text { tors }}(\mathbb{Q}) .
$$

Then the set

$$
\left\{P \in E_{k}(\mathbb{Q}) ; h(P) \leq B\right\}
$$

generates a subgroup of $\widetilde{E}_{k}(\mathbb{Q})$ of finite index $\leq r!$
The quantities in Manin's bound B can be determined as follows. Put

$$
M_{k}:=\left\{P \in E_{k}(\mathbb{Q}) \backslash E_{k, \text { tors }}(\mathbb{Q}) ; h(P) \leq 2 \delta_{k}\right\} .
$$

Then

$$
h^{\prime}=\left\{\begin{array}{l}
\delta_{k} \text { if } M_{k}=\emptyset \\
\min \left\{\hat{h}(P) ; P \in M_{k}\right\} \text { if } M_{k} \neq \emptyset
\end{array}\right\} .
$$

The quantity γ_{r} is taken from tables. A bound for the difference between the ordinary height and the canonical height on $E_{k}(\mathbb{Q})$ is chosen according to (3.1). The
determination of the rank r and the upper bound R^{\prime} for the regulator is based on the (see [2])

Conjecture of Birch and Swinnerton-Dyer.

(i) The L-series $L\left(s, E_{k} / \mathbb{Q}\right)$ of E_{k} / \mathbb{Q} has a zero of order r at $s=1$, wherer r is the rank of E_{k} / \mathbb{Q}.
(ii) $\lim _{s \rightarrow 1} \frac{L\left(s, E_{k} / \mathbb{Q}\right)}{(s-1)^{r}}=\frac{\Omega \cdot \sharp \operatorname{III}_{k} \cdot R}{\left(\sharp E_{k, \text { tors }}(\mathbb{Q})\right)^{2}} \prod_{p \mid \mathcal{N}} c_{p}$,
where
$\Omega=m \omega_{1}$ with the real period ω_{1} of E_{k} (computed by the arithmetic-geometric mean method of Gauss) and the number m of connected components of $E_{k}(\mathbb{R})$,
$\mathrm{III}_{k}=$ Tate-Shafarevich group of E_{k} / \mathbb{Q},
$R=$ regulator of E_{k} / \mathbb{Q},
$c_{p}=p$-th Tamagawa number of E_{k} / \mathbb{Q} and
$\mathcal{N}=$ conductor of E_{k} / \mathbb{Q} (computed by Tate's algorithm).
Taking this conjecture for granted, we can compute the rank r of E_{k} / \mathbb{Q} on the basis of the relation

$$
r=\min \left\{\rho \in \mathbb{Z} ; \rho \geq 0, L^{(\rho)}\left(1, E_{k} / \mathbb{Q}\right) \neq 0\right\} .
$$

Of course, the problem here is to decide whether or not $L^{(\rho)}\left(1, E_{k} / \mathbb{Q}\right)=0$. But assuming that the ρ-th derivative is $\neq 0$ at $s=1$ and hence that $r=\rho$, and starting a sieving procedure with the bound B in Manin's theorem, one can either verify by contradiction that $L^{(\rho)}\left(1, E_{k} / \mathbb{Q}\right)=0$ or figure out that this derivative is $\neq 0$.

Once the rank r is known, we are able to compute the upper bound for the regulator

$$
R^{\prime}=\frac{L^{(r)}\left(1, E_{k} / \mathbb{Q}\right)\left(\not E_{k, \text { tors }}(\mathbb{Q})\right)^{2}}{\Omega r!\prod_{p \mid \mathcal{N}} c_{p}} \geq R
$$

in crudely estimating the order of the Tate-Shafarevich group by one:

$$
\sharp \mathrm{III}_{k} \geq 1 .
$$

By virtue of Manin's theorem, a basis of $E_{k}(\mathbb{Q})$ is then determined in five steps.
(i) Compute the bound B.
(ii) Determine the set $\left\{P \in E_{k}(\mathbb{Q}) \backslash E_{k, \text { tors }}(\mathbb{Q}) ; h(P) \leq B\right\}$ by a suitable sieving procedure.
(iii) By repeated divisions by 2 , compute a complete set of representatives in $E_{k}(\mathbb{Q})$ of the factor group $E_{k}(\mathbb{Q}) / 2 E_{k}(\mathbb{Q})$.
(iv) Determine a generating system of points for $E_{k}(\mathbb{Q})$ by the infinite descent method.
(v) Compute a basis from the generating system by applying the (modified) $L L L$ algorithm.

4. Elliptic logarithms (Step 2)

The elliptic curve E_{k} / \mathbb{Q} can be parametrized by Weierstrass' \wp-function corresponding to the lattice $\Omega=\left\langle\omega_{1}, \omega_{2}\right\rangle$ generated by the real and complex period ω_{1} and ω_{2} of E_{k} / \mathbb{C}, respectively. Indeed we have the analytic isomorphism

$$
\begin{aligned}
& \mathbb{C} / \Omega \quad \stackrel{\sim}{\longrightarrow} E_{k}(\mathbb{C}) \\
& u+\Omega \quad \longmapsto P=\left(\wp(u), \wp^{\prime}(u)\right)=\left(\frac{\xi}{\zeta^{2}}, \frac{\eta}{\zeta^{3}}\right) .
\end{aligned}
$$

For integer points $P \in E_{k}(\mathbb{Q})$, we thus obtain

$$
\xi=\wp(u), \eta=\wp^{\prime}(u)
$$

The real period admits an integral representation

$$
\omega_{1}=2 \int_{\alpha}^{\infty} \frac{d x}{\sqrt{x^{3}+k}}
$$

where $\alpha=\sqrt[3]{k} \in \mathbb{R}$ is the real root of $x^{3}+k$, and the elliptic logarithm u of an integer point $P=(\xi, \eta)=\left(\wp(u), \wp^{\prime}(u)\right)$ admits the integral representation

$$
\begin{equation*}
u=\frac{1}{\omega_{1}} \int_{\xi}^{\infty} \frac{d x}{\sqrt{x^{3}+k}}(\bmod \mathbb{Z}) \tag{4.1}
\end{equation*}
$$

provided that $\xi \geq|\sqrt[3]{k}|$. We shall normalize the elliptic logarithm to

$$
\left.u \in]-\frac{1}{2},+\frac{1}{2}\right] .
$$

It can be computed by Gauss' arithmetic-geometric mean method or by an algorithm of Zagier [19].

Let $\left\{P_{1}, \ldots, P_{r}\right\}$ be the basis of the infinite part of $E_{k}(\mathbb{Q})$ computed in Step 1. Denote by $\lambda_{1} \in \mathbb{R}, \lambda_{1}>0$, the smallest eigenvalue of the regulator matrix

$$
\left(\hat{h}\left(P_{\mu}, P_{\nu}\right)\right)_{\mu, \nu=1, \ldots, r}
$$

associated with the bilinear form \hat{h}. Then, any point $P \in E_{k}(\mathbb{Q})$ in its representation (2.1) in terms of the basis has canonical height

$$
\begin{equation*}
\hat{h}(P)=\hat{h}\left(\sum_{\nu=1}^{r} n_{\nu} P_{\nu}+P_{r+1}\right) \geq \lambda_{1} N^{2} \tag{4.2}
\end{equation*}
$$

for

$$
\begin{equation*}
N=\max _{\nu=1, \ldots, r}\left\{\left|n_{\nu}\right|\right\} \tag{4.3}
\end{equation*}
$$

in accordance with (2.2). For integral points $P=(\xi, \eta) \in E_{k}(\mathbb{Q})$ whose first coordinate is sufficiently large compared to k, viz.

$$
|\xi|>|\sqrt[3]{k}|
$$

we derive from (3.2) and (4.2) the lower estimate

$$
\frac{1}{2} \log |\xi| \geq \hat{h}(P)-\frac{5}{6} \log 2 \geq \lambda_{1} N^{2}-\frac{5}{6} \log 2
$$

We wish to translate this inequality into an upper estimate for the elliptic logarithm u of P. To this end we put

$$
\xi_{0}=\kappa|\sqrt[3]{k}| \quad \text { with } \kappa=\left\{\begin{array}{cc}
2 & \text { if } k<0 \tag{4.4}\\
\frac{2 \sqrt[3]{2}-1}{\sqrt[3]{2}-1} & \text { if } k>0
\end{array}\right\}
$$

Then, for

$$
\begin{equation*}
\xi>\xi_{0}, \tag{4.5}
\end{equation*}
$$

the following inequality holds:

$$
\int_{\xi}^{\infty} \frac{d x}{\sqrt{x^{3}+k}}<\frac{2 \sqrt{2}}{\sqrt{\xi}}
$$

Observing (4.1) and assuming (4.5), we now arrive at the desired upper estimate for the elliptic logarithm u of the given integral point $P=(\xi, \eta)=\left(\wp(u), \wp^{\prime}(u)\right) \in$ $E_{k}(\mathbb{Q}):$

$$
\log |u|<\log (2 \sqrt{2})-\log \omega_{1}-\lambda_{1} N^{2}+\frac{5}{6} \log 2
$$

or

$$
\begin{equation*}
|u|<c_{1}^{\prime} \exp \left(-\lambda_{1} N^{2}\right) \tag{4.6}
\end{equation*}
$$

for

$$
c_{1}^{\prime}=\frac{2^{\frac{7}{3}}}{\omega_{1}} .
$$

For the sake of simplicity, we eliminate the torsion point in (2.1) by multiplying this representation by the order g of the torsion group. This number g is explicitly known from proposition 3.1. For the point $P^{\prime}=g P$, the representation (2.1) becomes

$$
P^{\prime}=\sum_{\nu=1}^{r} n_{\nu}^{\prime} P_{\nu} \quad\left(n_{\nu}^{\prime}=g n_{\nu} \in \mathbb{Z}\right)
$$

and this translates into the equation

$$
u^{\prime}=n_{0}^{\prime}+\sum_{\nu=1}^{r} n_{\nu}^{\prime} u_{\nu}
$$

for the (normalized) elliptic logarithms

$$
u^{\prime}=g u \text { of } P^{\prime} \text { and } u_{\nu} \text { of } P_{\nu} \quad(\nu=1, \ldots, r) .
$$

The inequality (4.6) now becomes

$$
\begin{equation*}
\left|u^{\prime}\right|<g c_{1}^{\prime} \exp \left(-\lambda_{1} N^{2}\right) . \tag{4.7}
\end{equation*}
$$

On combining this upper bound with an explicit lower bound obtained by S . David [3], we arrive at the desired estimates for the elliptic logarithm of any integer point in $E_{k}(\mathbb{Q})$. We use the following notation.

Let $\tau=\frac{\omega_{2}}{\omega_{1}}$ be such that $\operatorname{im}(\tau)>0$, choose $V_{\nu} \in \mathbb{R}$ such that

$$
\log V_{\nu} \geq \max \left\{\hat{h}\left(P_{\nu}\right), \log |4 k|, \frac{3 \pi\left|u_{\nu}\right|^{2}}{\omega_{1}^{2} \operatorname{im}(\tau)}\right\} \quad(\nu=1, \ldots, r)
$$

and put ${ }^{2}$ (cf. [3])

$$
C=2.9 \cdot 10^{6+6 r} \cdot 4^{2 r^{2}} \cdot(r+1)^{2 r^{2}+9 r+12.3} .
$$

${ }^{2}$ This constant is a corrected version of the constant originally given by David.

Theorem 4.1

The elliptic logarithm

$$
u=n_{0}+\sum_{\nu=1}^{r} n_{\nu} u_{\nu}+u_{r+1}
$$

of an integer point

$$
P=\left(\wp(u), \wp^{\prime}(u)\right)=(\xi, \eta)=\sum_{\nu=1}^{r} n_{\nu} P_{\nu}+P_{r+1}
$$

with first coordinate of absolute value

$$
|\xi|>\xi_{0}
$$

satisfies the inequalities

$$
\begin{aligned}
\exp \{ & \left.-C \log ^{r+1}|4 k|\left(\log \left(\frac{r+1}{2} g N\right)+1\right)\left(\log \log \left(\frac{r+1}{2} g N\right)+1\right)^{r+1} \prod_{\nu=1}^{r} \log V_{\nu}\right\} \\
& \leq|g u|<g c_{1}^{\prime} \exp \left(-\lambda_{1} N^{2}\right)
\end{aligned}
$$

with N from (4.3), ξ_{0} from (4.4), c_{1}^{\prime} from (4.6) and

$$
g=\sharp E_{k, \text { tors }}(\mathbb{Q}) .
$$

Since, for sufficiently large N, the left hand bound exceeds the right hand bound, we can now derive from theorem 4.1 an upper estimate for N and hence, by (4.3), for the coefficients n_{ν} in the representation (2.1) of all integer points in terms of the basis of $E_{k}(\mathbb{Q})$.

To achieve this, we introduce the quantities

$$
c_{1}=\max \left\{1, \frac{\log \left(g c_{1}^{\prime}\right)}{\lambda_{1}}\right\} \quad \text { with } c_{1}^{\prime}=\frac{2^{\frac{7}{3}}}{\omega_{1}}
$$

and

$$
c_{2}=\max \left\{10^{9}, \frac{C}{\lambda_{1}}\right\}\left(\frac{\log |4 k|}{2}\right)^{r+1} \prod_{\nu=1}^{r} \log V_{\nu}
$$

Then theorem 4.1 tells us that

$$
N^{2}<c_{1}+c_{2} \log ^{r+2} N^{2}
$$

The largest solution of this inequality satisfies

$$
N_{0}<N_{1}=2^{r+2} \sqrt{c_{1} c_{2}} \log ^{\frac{r+2}{2}}\left(c_{2}(r+2)^{r+2}\right),
$$

where, in addition, N_{1} is subject to the condition

$$
N_{1}>\max \left\{e^{e},(6 r+6)^{2}, \sqrt{\frac{\log \left(2 g c_{1}^{\prime}\right)}{\lambda_{1}}}\right\} .
$$

The upper bound for N is the following.

Theorem 4.2

For an integer point

$$
P=(\xi, \eta)=\sum_{\nu=1}^{r} n_{\nu} P_{\nu}+P_{r+1} \quad\left(n_{\nu} \in \mathbb{Z}\right)
$$

with first coordinate of absolute value

$$
|\xi|>\xi_{0},
$$

where ξ_{0} is defined by (4.4), the maximum

$$
N=\max _{\nu=1, \ldots, r}\left\{\left|n_{\nu}\right|\right\}
$$

satisfies the inequality

$$
N \leq N_{2}:=\max \left\{N_{1}, \frac{2 V}{r+1}\right\} \quad \text { for } V=\max _{\nu=1, \ldots, r}\left\{V_{\nu}\right\} .
$$

5. Reduction of the bound (Step 3)

The bound N_{2} for N obtained in theorem 4.2 is very large so that a search for integer points $P \in E_{k}(\mathbb{Q})$ with coefficients $\left|n_{\nu}\right| \leq N$ is not feasible. That is why we need to reduce this bound N_{2}. The reduction is accomplished by a numerical diophantine approximation technique due to de Weger [18].

Let therefore C_{0} be a suitable positive integer, specifically

$$
C_{0} \sim N_{2}^{r+1} .
$$

Consider the lattice

$$
\Gamma:=\left\langle\underline{e}_{1}, \ldots, \underline{e}_{r},\left(\left\lfloor C_{0} u_{1}\right\rfloor, \ldots,\left\lfloor C_{0} u_{r}\right\rfloor, C_{0}\right)\right\rangle \subseteq \mathbb{R}^{r+1}
$$

where \underline{e}_{ν} denotes the ν-th unit vector in \mathbb{R}^{r+1}. Designate by $l(\Gamma)$ the Euclidean length of the shortest vector in Γ. Then de Weger shows the following. Regard (cf. (4.6))

$$
\begin{array}{r}
\left|n_{0}+\sum_{\nu=1}^{r} n_{\nu} u\right|<c_{1}^{\prime} \exp \left(-\lambda_{1} N^{2}\right), \tag{5.1}\\
N \leq N_{2}
\end{array}
$$

as a homogeneous diophantine approximation problem.

Proposition 5.1

If $\hat{N} \in \mathbb{N}$ is such that

$$
\hat{N} \leq \frac{l(\Gamma)}{\sqrt{r^{2}+5 r+4}}
$$

then the diophantine approximation problem (5.1) cannot be solved for $N \in \mathbb{Z}$ within the range

$$
\sqrt{\frac{1}{\lambda_{1}} \log \frac{2^{\frac{7}{3}} C_{0}}{\omega_{1} \hat{N}}}<N \leq \hat{N} .
$$

The proposition leads to the
Reduction algorithm with starting value $N=N_{2}$. (Here the symbol \sim means order of magnitude.)
(i) Choose a sufficiently large integer $C_{0}\left(\sim N_{2}^{r+1}\right.$ or larger).
(ii) Compute an $L L L$-reduced basis $\left\{\underline{b}_{1}, \ldots, \underline{b}_{r+1}\right\}$ of the lattice Γ.
(iii) Put

$$
\hat{N}=2^{-\frac{r}{2}}\left\|\underline{b}_{1}\right\| / \sqrt{r^{2}+5 r+4}
$$

and

$$
N_{1}=\sqrt{\frac{1}{\lambda_{1}} \log \frac{2^{\frac{7}{3}} C_{0}}{\omega_{1} \hat{N}}} .
$$

(iv) If $N_{1} \geq \hat{N}$, then choose another (larger) C_{0} and go to (ii).
(v) If $N_{1}<\hat{N}$, then $N=N_{1}$ and go to (i).
(vi) Output (N). Stop.

After a sufficient number of reductions, N cannot be reduced any further. It then remains to test all linear combinations

$$
P=n_{1} P_{1}+\cdots+n_{r} P_{r}+P_{r+1}
$$

with

$$
n_{\nu} \in \mathbb{Z},\left|n_{\nu}\right| \leq N(\nu=1, \ldots, r) \text { and } P_{r+1} \in E_{k, \text { tors }}(\mathbb{Q})
$$

for integrality of $P \in E_{k}(\mathbb{Q})$.
An extra search - by sieving - is necessary in order to find all integral points

$$
P=(\xi, \eta) \in E_{k}(\mathbb{Q}) \quad \text { with } \xi \leq \xi_{0} .
$$

As pointed out above, if we employ also p-adic elliptic logarithms we are able to produce all S-integral points on E_{k} for any finite set S of places (including the infinite one) of \mathbb{Q}.

6. Examples and tables

Example 1: $E: y^{2}=x^{3}+108$
rank: $\quad 1$
basis: $\quad(6,18)$
regulator: 0.1501068952
torsion: \mathcal{O}
set of primes: $S=\{2,3,5, \infty\}$
$12=6 \cdot 2$ S-integral points

1. $(6,18)=(6,18)$
2. $(-3,9)=2 \cdot(6,18)$
3. $(-2,10)=-3 \cdot(6,18)$
4. $(366,7002)=5 \cdot(6,18)$
5. $(33 / 4,207 / 8)=-4 \cdot(6,18)$
6. $(109 / 25,1727 / 125)=6 \cdot(6,18)$

Example 2: $\quad E: y^{2}=x^{3}+225$
rank: 2
basis: $(-6,3),(-5,10)$
regulator: 1.3890930394
torsion: $\quad \mathcal{O},(0,15),(0,-15)$
set of primes: $S=\{2,3,5, \infty\}$
$44=22 \cdot 2$ S-integral points

1. $(0,15)=(0,15)$
2. $(-6,3)=(-6,3)$
3. $(10,35)=(0,-15)-(-6,3)$
4. $(15,60)=(0,-15)+(-6,3)$
5. $(336,6159)=-2 \cdot(-6,3)$
6. $(180,2415)=(-6,3)-(-5,10)$
7. $(-5,10)=(-5,10)$
8. $(6,21)=(0,-15)-(-5,10)$
9. $(30,165)=(0,-15)+(-5,10)$
10. $(60,465)=-(-6,3)-(-5,10)$
11. $(4,17)=(0,15)+(-6,3)+(-5,10)$
12. $(351,6576)=(0,-15)+(-6,3)+2 \cdot(-5,10)$
13. $(720114,611085363)=(0,15)-3 \cdot(-6,3)-2 \cdot(-5,10)$
14. $(9 / 4,123 / 8)=(0,15)-(-6,3)+(-5,10)$
15. $(-15 / 4,105 / 8)=(0,15)-(-6,3)-(-5,10)$
16. $(385 / 16,7615 / 64)=-2 \cdot(-5,10)$
17. $(105 / 64,7755 / 512)=(0,15)+2 \cdot(-6,3)$
18. $(-20 / 9,395 / 27)=(0,15)+(-6,3)-(-5,10)$
19. $(550 / 9,12905 / 27)=(0,-15)+2 \cdot(-6,3)+(-5,10)$
20. $(130 / 81,11035 / 729)=(0,-15)-(-6,3)-2 \cdot(-5,10)$
21. $(99 / 25,2118 / 125)=(0,-15)-2 \cdot(-6,3)-(-5,10)$
22. $(2146 / 25,99431 / 125)=(0,-15)-(-6,3)+2 \cdot(-5,10)$

Example 3: $\quad E: y^{2}=x^{3}+1025$

```
rank: 3
basis: }\quad(10,45),(-5,30),(-10,5
regulator: 1.1945306597
torsion: \mathcal{O}
set of primes: S={2,3,5,\infty}
70 = 35 - 2 S-integral points
    1. }(20,95)=-(10,45)+(-5,30
    2. }(166,2139)=2\cdot(10,45)-(-5, 30
    3. }(10,45)=(10,45
    4. }(-5,30)=(-5,30
    5. (-4, 31) = - (10, 45) - (-5, 30)
    6. }(3730,227805)=(10,45)+2\cdot(-5,30
    7. }(64,513)=-(-5,30)+(-10,5
    8. }(446,9419)=-2\cdot(10,45)+(-10,5
    9. }(-10,5)=(-10,5
    10. }(4,33)=-(10,45)-(-10,5
    11. }(155,1930)=-2\cdot(10,45)-(-10,5
    12. (-1, 32) = (10, 45) - (-5, 30) - (-10, 5)
    13. (40, 255) = -(-5, 30) - (-10, 5)
    14. }(50,355)=(10,45)+(-5,30)+(-10,5
    15. (920, 27905) = - 2 ( (-10, 5)
    16. }(3631,218796)=-(10,45)-2\cdot(-5,30)-2\cdot(-10,5
    17. }(25/4,285/8)=-(10,45)+(-10,5
    18. }(985/4,30915/8)=-(10,45)+2\cdot(-5,30)+(-10,5
    19. (1/16, 2049/64) = 2 ( (10,45) + (-5, 30) + (10, 5)
    20. (185/16, 3245/64) = -2 \cdot (-5, 30)
    21. (-575/64, 8865/512) = -2 ( (10, 45) + (-5, 30) - (-10, 5)
    22. (8201/4096, 8425499/262144) = -2 \cdot(10,45) +2\cdot(-5,30)+2\cdot(-10,5)
    23. }(10/9,865/27)=(10,45)-(-5,30)+(-10,5
    24. }(46/9,919/27)=2\cdot(-5,30)+(-10,5
    25. }(-80/9,485/27)=2\cdot(10,45
    26. }(295/9,5140/27)=(10,45)+(-5,30)-(-10,5
    27. (2260/81, 109945/729) = - (10,45) + (-5, 30) +2\cdot(-10,5)
    28. (3715/729,669610/19683) = -2 ( (10,45) - 2 ( (-5, 30) - (-10, 5)
    29. }(7114/729,870137/19683)=-3\cdot(10,45)+(-5,30)-(-10,5
    30. }(194380/729,85701635/19683)=(10,45) - 3 ( (-5, 30)
    31. (-74/25, 3951/125) = (-5, 30) +2\cdot(-10, 5)
```


Example 3:

32. $(-206 / 25,2697 / 125)=(10,45)-2 \cdot(-5,30)$
33. $(-215 / 36,6155 / 216)=-(10,45)-(-5,30)-2 \cdot(-10,5)$
34. $(1481 / 100,65371 / 1000)=-(10,45)+(-5,30)-2 \cdot(-10,5)$
35. $(-342614 / 50625,304585741 / 11390625)=-3 \cdot(10,45)-(-5,30)+(-10,5)$

Example 4: $\quad E: y^{2}=x^{3}+2089$
rank: 4
basis: $\quad(-4,45),(-10,33),(8,51),(-12,19)$
regulator: 17.5653394266
torsion: \mathcal{O}
set of primes: $S=\{2,3,5, \infty\}$
$94=47 \cdot 2$ S-integral points

1. $(60,467)=(-4,45)-(8,51)$
2. $(183,2476)=-(-4,45)+(-10,33)$
3. $(-4,45)=(-4,45)$
4. $(-10,33)=(-10,33)$
5. $(18,89)=-(-4,45)-(-10,33)$
6. $(8,51)=(8,51)$
7. $(129968,46854861)=2 \cdot(-4,45)+(8,51)$
8. $(3,46)=-(-10,33)-(8,51)$
9. $(170,2217)=(-4,45)+(-10,33)+(8,51)$
10. $(9278,893679)=(-4,45)+(-10,33)-(8,51)+(-12,19)$
11. $(698,18441)=-(-10,33)+(-12,19)$
12. $(80,717)=-(-4,45)+(-12,19)$
13. $(-12,19)=(-12,19)$
14. $(71,600)=-(-4,45)-(8,51)$
15. $(-15 / 4,361 / 8)=-(-4,45)-(8,51)$
16. $(65 / 4,639 / 8)=-(8,51)+(-12,19)$
17. $(-39 / 16,2915 / 64)=-(-4,45)+(8,51)+(-12,19)$
18. $(425 / 16,9237 / 64)=-(-4,45)-(-12,19)$
19. $(42417 / 64,8735977 / 512)=(-4,45)+2 \cdot(-10,33)+(8,51)-(-12,19)$
20. $(-12823 / 1024,366837 / 32768)=2 \cdot(-4,45)-(8,51)$
21. $(-5 / 9,1234 / 27)=(-4,45)+(-10,33)-(-12,19)$
22. $(214 / 9,3365 / 27)=(-10,33)-(8,51)$
23. $(232 / 9,3743 / 27)=(-4,45)+(8,51)-(-12,19)$
24. $(250 / 9,4141 / 27)=(-10,33)+(8,51)+(-12,19)$
25. $(191362 / 9,83711197 / 27)=(-4,45)-(-10,33)-2 \cdot(-12,19)$

Example 4:
(continued)
26. $(-752 / 81,26171 / 729)=-(-4,45)+(8,51)-(-12,19)$
27. $(52 / 729,899623 / 19683)=2 \cdot(-10,33)+(-12,19)$
28. $(559 / 729,899720 / 19683)=(-4,45)+(-10,33)+2 \cdot(8,51)$
29. (12594790/729, 44697825539/19683)

$$
=-(-4,45)+(-10,33)-2 \cdot(8,51)+(-12,19)
$$

30. $(174 / 25,6157 / 125)=(-4,45)+(-10,33)+(-12,19)$
31. $(164 / 25,6087 / 125)=-(8,51)-(-12,19)$
32. $(-289 / 25,2916 / 125)=-(-4,45)-(-10,33)+(8,51)$
33. $(-306 / 25,1997 / 125)=(-4,45)-(-10,33)-(-12,19)$
34. $(306 / 25,7829 / 125)=(-10,33)+(8,51)-(-12,19)$
35. $(9134 / 25,872973 / 125)=-(-10,33)-2 \cdot(8,51)$
36. $(20319 / 25,2896372 / 125)=-2 \cdot(-4,45)-(-10,33)-(8,51)+(-12,19)$
37. $(84116 / 25,24395961 / 125)=2 \cdot(-4,45)-(8,51)-(-12,19)$
38. $(10946 / 625,1349631 / 15625)=(-4,45)-(-10,33)+(8,51)$
39. (37470434/625, 229368135873/15625)
$=-(-4,45)-(-10,33)-(8,51)-2 \cdot(-12,19)$
40. $(172033 / 36,71353889 / 216)=-2 \cdot(8,51)-(-12,19)$
41. $(-60679 / 6400,18005619 / 512000)=(-4,45)+2 \cdot(8,51)-(-12,19)$
42. $(2691681 / 160000,5296996079 / 64000000)=-2 \cdot(-10,33)-2 \cdot(-12,19)$
43. $(1864 / 225,173987 / 3375)=-2 \cdot(-4,45)$
44. $(-2876 / 225,2557 / 3375)=(-4,45)+2(-10,33)+(8,51)$
45. $(9160098049 / 94478400,877702508470657 / 918330048000)$ $=2 \cdot(-4,45)+2 \cdot(-10,33)-2 \cdot(8,51)$
46. (5226209/409600, 16920395823/262144000) $=(-4,45)+2 \cdot(-10,33)+2 \cdot(8,51)+(-12,19)$
47. $(83521 / 8100,41143681 / 729000)=(-4,45)+2 \cdot(-10,33)-(8,51)$

6.1 Determination of all S-integral points on Mordell's Equation

$$
E_{k}: y^{2}=x^{3}+k \quad(k \in \mathbb{Z})
$$

for $S=\{2,3,5, \infty\}$ and $0<|k| \leq 10,000$.

S-integral points on Mordell's equation (Summary)

number of S-integral points	curves with rank $r=0$	curves with rank $r=1$	curves with rank $r=2$	curves with rank $r=3$	curves with rank $r=4$	$\begin{gathered} \text { all } \\ \text { curves } \end{gathered}$
0	6459	4425	86			10970
1	24					24
2	45	4352	841			5238
4		640	886	6		1532
5	4	7				11
6		67	615	19		703
7		3				3
8		20	419	37		476
10		13	263	48		324
11		3				3
12		9	151	42		203
13		1				1
14		5	66	52		124
16		2	30	53		85
18			24	54		79
20			9	44		53
22			13	30		43
24			5	16		21
26			3	16		19
28			2	14		16
30			1	5		6
32				6	2	7
34			3	5	2	10
36			1	5	1	7
38				6	1	5
40				3	2	5
42				4		4
44			1	2	1	5
46				5	1	6
48			1	1	1	3

S-integral points on Mordell's equation (Summary)

number of S-integral points	curves with rank $r=0$	curves with rank $r=1$	curves with rank $r=2$	curves with rank $r=3$	curves with rank $r=4$	all curves
52				1	1	2
54				1		1
56					1	1
58				1		1
62					1	1
64					1	1
66					1	1
70				1	1	2
72					1	1
94					1	1
	6532	9547	3426	477	18	20000

6.2 Total and average number of points

Integer points:							
	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	all curves	
total number	134	5810	8228	2724	228	17124	
average	0.021	0.607	2.402	5.699	12.667	0.856	

S-integral points $(\mathrm{S}=\{2,3,5, \infty\}):$						
	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	all curves
total number	134	12268	19624	8506	928	41460
average	0.021	1.285	5.728	17.832	51.556	2.073

References

1. A. Baker, The diophantine equation $y^{2}=a x^{3}+b x^{2}+c x+d$, J. London Math. Soc. 43 (1968), 1-9.
2. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves I, II, J. Reine Angew. Math. 212 (1963), 7-25, 218 (1965), 79-108.
3. S. David, Minorations de formes linéaires de logarithmes elliptiques, Publ. Math. Univ. Pierre et Marie Curie 106, Problèmes diophantiens 1991-1992, exp. no. 3.
4. R. Fueter, Über kubische diophantische Gleichungen, Comment. Math. Helv. 2 (1930), 69-89.
5. J. Gebel, A. Pethö and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192.
6. J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over \mathbb{Q}. In: Elliptic Curves and Related Topics, Eds.: H. Kisilevsky and M. Ram Murty, CRM Proceed. and Lect. Notes, Amer. Math. Soc., Providence, RI 1994, 61-83.
7. M. Hall, The Diophantine equation $x^{3}-y^{2}=k$. In: Computers in Number Theory, Eds. A. O. L. Atkin and B. J. Birch, Academic Press, London 1971, 173-198.
8. S. Lang, Elliptic Curves: Diophantine Analysis, Grundl. Math. Wiss. 231, Springer-Verlag, Berlin 1978.
9. K. Mahler, Über die rationalen Punkte auf Kurven vom Geschlecht Eins, J. Reine Angew. Math. 170 (1934), 168-178.
10. Yu. I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), 7-78.
11. L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambr. Philos. Soc. 21 (1922), 179-192.
12. C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. (1929), 1-41.
13. J. H. Silverman, A quantitative version of Siegel's theorem, J. Reine Angew. Math. 378 (1981), 60-100.
14. J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743.
15. N. Smart, S-integral points on elliptic curves, Proc. Cambr. Phil. Soc. 116 (1994), 391-399.
16. V. G. Sprindžuk, Classical Diophantine Equations, Lect. Notes in Math. 1559, Springer-Verlag, Berlin 1993.
17. H. M. Stark, Effective estimates of solutions of some Diophantine equations, Acta Arith. 24 (1973), 251-259.
18. B. M. M. de Weger, Algorithms for diophantine equations, PhD Thesis, Centr. for Wiskunde en Informatica, Amsterdam 1987.
19. D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436.
20. H. G. Zimmer, On the difference of the Weil height and the Néron-Tate height, Math. Z. 147 (1976), 35-51.
21. H. G. Zimmer, Generalization of Manin's conditional algorithm. SYMSAC '76. Proc. 1976 ACM Sympos. on Symb. Alg. Comp. Ed. R. D. Jenks, Yorktown Heights, N.Y. 1976, 285-299.
22. H. G. Zimmer, A limit formula for the canonical height of an elliptic curve and its application to height computations. In: Number Theory, Ed. R. A. Mollin, W. de Gruyter, Berlin 1990, $641-$ 659.

[^0]: 1 The lecture was delivered by the last author.

