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Abstract

In this article we give an introduction to mixed motives and sketch a couple of
ways to construct examples.

0. Introduction

In this article which is addressed to a fairly general audience we give an introduction
to mixed motives and sketch a couple of ways to construct examples due to Deligne,
Jannsen, Scholl, Kings, Huber and myself. Our list of examples is by no means
complete. For further constructions we refer e.g. to [12], [13]. Moreover we outline
the relationship between periods of critical mixed motives and the values of their
L–functions at integers conjectured by Deligne and Scholl building on the ideas of
Bloch and Beilinson. The mixed motives we discuss are constructed from cycles,
elements in algebraic K–groups, elliptic curves, modular forms and certain Laurent
polynomials in several variables. In the latter case a particular Deligne period of the
mixed motive attached to P has an interpretation as the logarithm of the Mahler
measure of P and hence by work of Lind, Schmidt and Ward [18] as the entropy of a
natural expansive Zn–action on a compact topological group. This connection may
be of interest to mathematicians working on dynamical systems.

I would like to thank the organizers of the Journées Arithmétiques and in par-
ticular P. Bayer for the opportunity to lecture at the conference. I would also like
to thank J.B. Bost for drawing my attention to [18] and Y. Ihara for the invitation
to Kyoto where this note was written and the RIMS for support.
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1. Mixed motives and their L–functions

The singular cohomology is a basic tool in the investigation of topological spaces. It
often reflects important topological properties and can be calculated in many cases.
In algebraic geometry of varieties over separably closed fields étale cohomology plays
a similar role.

If the topological space is the set of C–valued points with the analytic topology
of a complex algebraic variety then its singular cohomology is functorially equipped
with a mixed Hodge structure [5]. This additional structure contains important
information on the analytic structure of the variety. For any two elliptic curves over
C for example the singular cohomology groups are isomorphic. The Hodge structures
on the other hand are isomorphic if and only if the elliptic curves are isomorphic as
varieties.

In étale cohomology we have a similar picture. Assume that the variety X =
X ⊗k k

s is the base change to the separable closure ks of a variety X over a field
k. Then the absolute Galois group Gk of k acts on X and hence on the étale
cohomology of X. In many respects étale cohomology with this Galois operation
behaves similar to singular cohomology with its Hodge structure. For example in
both cases cohomology equipped with its additional structure can be viewed as
a functor into an abelian category in which there are defined notions of a tensor
product and duals.

A further example in this spirit is given by the crystalline cohomology of varie-
ties in characteristic p with its Frobenius action.

A somewhat weaker example is the algebraic de Rham cohomology of algebraic
varieties over k which takes values in the category of filtered k–vector spaces. Here
the target category is exact but not abelian.

In the sixties Grothendieck developed the idea that for varieties over a field
k there should exist a universal cohomology theory H∗ with values in a Q-linear
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abelian category MMk having a notion of ⊗ and duals. All the aforementioned
cohomologies should be obtained by specializing this universal theory. For example
there should be faithful realization functors:

MMk
( )l−→ finite dimensional continuous Ql[Gk]–modules

MMk
( )B−→ Q−MH = Q-mixed Hodge structures (if k ⊂ C)

MMk
( )dR−→ finite dimensional filtered k–vector spaces (if char k = 0)

such that

H∗
l (X) := H∗

ét

(
X ⊗k k

s,Ql

)
+Gk–action =

(
H∗(X)

)
l

H∗
B(X) := H∗

sing

(
X(C),Q

)
+ Hodge structure =

(
H∗(X)

)
B

and
H∗

dR(X) := H∗
dR(X/k) + Filtration = (H∗(X))dR .

More generally for every immersion Y ↪→ X of varieties there should be attached the
relative motive H∗(XrelY ) whose cohomologies are the usual relative cohomologies.
Corresponding facts should also be true for homology. As the reader may have
guessed the objects of the category MMk are to be called (mixed) motives over k.
Like its realizations every motive M should be equipped with a functorial increasing
“weight–filtration” W•M indexed by the integers and satisfying WnM = 0 for n� 0
and WnM = M for n 	 0. For all n the associated graded object GrW

n M should
be isomorphic in MMk to a subquotient of Hn(Y ) for a suitable smooth projective
variety Z over k. The n’s for which GrW

n M is non–zero are called the weights of M .
A motive is pure (of weight w) if GrW

n M = 0 for n 
= w. For any smooth projective
variety Z the motive Hw(Z) is to be pure of weight w. The full subcategory of
sums of pure motives should be semisimple. The extension groups ExtiMMk

(N,M)
describe to some extent how more complicated varieties are built out of simpler ones.
If k is a number field these groups should be zero for i ≥ 2 and related to higher
algebraic K-groups if i = 1.

In spite of much effort this program for a theory of motives has not yet been
fully realized. An overview on what is known is given in [16]. At present only the
constructions “via realizations” of Deligne [7], Jannsen [15] and Huber [14] yield
abelian categories on which the above mentioned realization functors are defined.
In their approach the étale, Hodge and de Rham cohomologies are in some sense
“glued together”. The explicit constructions of mixed motives in §§ 4, 5, 6 are
very geometric and work in any category of mixed motives which satisfies enough
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of the expected formal properties e.g. in any of the categories MMk defined “via
realizations”.

In the following we will take as ground field the field k = Q of rational numbers
and write MM for MMQ. Note that any variety X over a number field can be
viewed as an algebraic scheme over Q and hence gives rise to motives Hn(X) in
MM.

We next recall the definition of the L-series of a motive M in MM c.f. [9]. For
any prime number p fix a prime l 
= p, let Ip be the inertia group in the Galois group
Gp of Qp and define the geometric Frobenius Fp to be the inverse of the canonical
generator of Gp/Ip which maps x to xp in Fp. If Ml denotes the l-adic realization
of M define the local L-factor of M at p by the formula

Lp(M, s) = det
(
1− Fpp

−s |M Ip
l

)−1
.

It is expected that it is the inverse of a polynomial in Z[p−s] which is independent
of the chosen prime l 
= p. By the work of Deligne this is known for example if
M = Hn(X) and there is a smooth and proper scheme X/spec Zp such that

X ⊗Q Qp = X⊗Zp Qp .

Assuming this the L-series of M is defined for Re s	 0 as the Euler product

L(M, s) =
∏
p

Lp(M, s) .

According to the conjectures L(M, s) should have a meromorphic continuation to C.
For M = Q(0) := H0(spec Q) for example we have Ml = Ql with trivial Galois

action and hence L(M, s) = ζ(s) is the Riemann zeta function.
If M = H1(A) where A is an abelian variety over Q one finds that L(M, s) =

L(A, s) is the L-series classically associated to A e.g. in the Birch–Swinnerton-Dyer
conjecture.

Finally we need the notion of the Tate twist in MM:
Set Q(−1) = H1(Gm) and Q(−n) = Q(−1)⊗n and Q(n) = Q(−n)∨ for n ≥ 1.

Then the functor M �→ M(n) = M ⊗ Q(n) defines an autoequivalence of MM for
all n ∈ Z and we have:

L(M(n), s) = L(M, s+ n)

since Q(1)l =
(

lim
←−
ν

µlν (Q)
)
⊗Zl

Ql as a Galois module.
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2. Extensions of mixed motives attached to algebraic cycles and to

elements in K-theory

To any p-codimensional algebraic cycle given up to rational equivalence z ∈ CHp(X)
in a smooth projective variety X over a field k one associates a cycle class cll(z),
l 
= char k in

H2p
(
X ⊗k k

s,Ql(p)
)Gk = HomQl[Gk]

(
Ql, H

2p
l (X)(p)

)
.

If k ⊂ C there is a cycle class cl∞(z) in

H2p
(
X(C),Q(p)

)
∩Hp,p

(
X(C),C

)
= HomQ−MH

(
Q(0), H2p

B (X)(p)
)

and similarly in other cohomology theories. It is a basic requirement for a good
category MM that these cycle classes should be induced from a homomorphism:

(2.1) cl : CHp(X)Q −→ HomMM
(
Q(0), H2p(X)(p)

)
.

Here we write AQ = A⊗Q for any abelian group A. IfMM is defined via realizations
this property follows from the compatibility of the various cycle classes under the
comparison isomorphisms.

In fact one would like to have that cl induces an isomorphism:

cl : CHp(X)Q/CH
p(X)0Q

∼−→HomMM
(
Q(0), H2p(X)(p)

)
,

where CHp(X)0Q = Ker cll = Ker cl∞ is the subspace of cycles homologically equi-
valent to zero. For MM defined via realizations this would follow from either the
Hodge or the Tate conjecture. For more geometrically defined categories of motives
one builds this property into the definitions.

We remark that for any z ∈ CHp(X) with support Z ⊂ X the morphism
cl(z) : Q(0)→H2p(X)(p) is induced from a morphism cl(z) : Q(0)→H2p(XrelU)(p)
by the natural map H2p(XrelU)(p)→H2p(X)(p) where U = X \ Z.

The cycles z in CHp(X)0Q give rise to extensions of motives as follows: Consider
the relative exact sequence of motives in MM

0 = H2p−1(XrelU)→ H2p−1(X)→ H2p−1(U)→ H2p(XrelU)→ H2p(X) .

Since z is homologous to zero we can pull this back via cl(z) after twisting by Q(p):

0→ H2p−1(X)(p)→ H2p−1(U)(p) → H2p(XrelU)(p)

↑ cl(z)

Q(0)
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to get an extension of Q(0) by H2p−1(X)(p). The resulting homomorphism:

(2.2) CHp(X)0Q −→ Ext1MM
(
Q(0), H2p−1(X)(p)

)
is called the Abel–Jacobi map. For its relation to the classical Abel–Jacobi map and
more details we refer to [15] § 9. In an ideal category MM the map (2.2) should
be an isomorphism. Higher analogues of it have been described by Scholl [26]. His
generalized Abel–Jacobi maps

(2.3) CHp(X,n)Q −→ Ext1MM
(
Q(0), H2p−(n+1)(X)(p)

)
are defined on Bloch’s higher Chow groups for n ≥ 1, p ≥ 0.

On the other hand it was pointed out by Deligne that via a Chern class map
extensions of motives should come from elements of algebraic K-theory. For MM
defined by realizations this has been made precise by A. Huber. In [14] she constructs
for every simplicial variety X• over Q such that

HomMM
(
Q(0), H2p−n(X•)(n)

)
= 0

a functorial map

(2.4) Gr p
γKn(X•)Q −→ Ext1MM

(
Q(0), H2p−(n+1)(X•)(p)

)
,

where Gr γ is the graded space associated to the γ- filtration on algebraic K-theory.
If X• comes from a smooth, projective variety X it is known that the left hand sides
of (2.3) and (2.4) are isomorphic. However the compatibility of the two maps has
not been established in the literature.

With a good category of mixed motives one would expect (2.3) and (2.4) to be
isomorphisms.

3. Periods of mixed motives and L-values

For any motive M in MM the Q-vector space underlying MB carries a natural
GR = Gal(C/R)-action and we write M+

B for the fixed part. If M = Hn(X) for
a variety X over Q then M+

B is the subspace of Hn
sing(X(C),Q) which is fixed by

F ∗
∞ where F∞ denotes the antiholomorphic involution of X(C) induced by complex

conjugation. There is a canonical comparison isomorphism of C-vector spaces

(3.1) MB ⊗ C
∼−→MdR ⊗ C
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which is GR-equivariant if GR act diagonally on the left and via the second factor
on the right. Taking GR-invariants one obtains the perfect R-linear period pairing:

(3.2) 〈, 〉per : (MB ⊗ C)+ ⊗R (M̌dR ⊗ R) −→ R .

For the motive N = M̌(1) we have F 0NdR = F 1M̌dR. Following Deligne and Scholl
now consider the following restriction of the pairing (3.2):

(3.3) 〈, 〉per : (M+
B ⊗ R)⊗R (F 0NdR ⊗ R) −→ R .

We will call “Deligne periods of M” the image under 〈, 〉per of M+
B × F 0NdR in R.

As an example let M = H1(A) = H1(A)∨ for an abelian variety A over Q. Then

M+
B = H1(A(C),Q)+

and
F 0NdR = F 1H1

dR(A/Q) ∼= H0(A,Ω1) ,

and the Deligne periods are given by integrals

〈γ, ω〉per =
∫
γ

ω .

The importance of the Deligne periods stems from the following concepts and con-
jecture due originally to Deligne in the pure case [6] and then extended to mixed
motives by Scholl [24].

The motive M in MM is called critical if the pairing (3.3) is non-degenerate.
The Deligne period determinant

c+(M) = det
(
〈γi, ωj〉per

)
where {γi} and {ωj} are bases of M+

B resp. F 0NdR gives a well defined element of
R∗/Q∗. The motive M is called integral (over Z) if for all prime numbers p and all
l 
= p the weight filtration on Ml splits if Ml is considered as a module under the
inertia group Ip in Gp. Thus for example all pure motives are integral. Let MMZ

be the full subcategory of MM of integral motives. Then as shown by Scholl [25]
the following conjecture is equivalent under certain “standard” assumptions to the
conjunction of Beilinson’s conjectures [1] on special values of motivic L-series.

Conjecture 3.4
For any motive M in MMZ we have
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a) ords=0L(M, s) = dim Ext1MMZ
(M,Q(1))− dim HomMMZ

(M,Q(1)).
If in addition M is critical then:
b) L(M, 0) ≡ c+(M)mod Q∗ if L(M, 0) is nonzero.

4. Extensions attached to CM elliptic curves

In this and the following sections we give examples of arithmetically interesting
extensions of mixed motives which are directly constructed using the surrounding
geometry. The constructions work in any abelian category of mixed motives over Q

satisfying enough of the basic formal properties e.g. in the categories MM defined
using realizations [7], [15], [14].

A much more detailed treatment of the material in this section is given in [10].
Consider a CM elliptic curve E0/Q and let k ≥ 2 be an integer. Then we have

HomMM
(
H1(E0)(2− k),Q(1)

)
= 0

since H1(E0)(2− k) has weight 2k − 3 
= −2.
Thus by (3.4) a) the Q-vector space

Ext1MMZ

(
Q(0), H1(E0)(k)

)
= Ext1MMZ

(
H1(E0)(2− k),Q(1)

)
is expected to have dimension equal to the vanishing order of

L
(
H1(E0)(2− k), s

)
= L(E0, s+ 2− k)

at s = 0 which is known to be one. Thus we should have:

dim Ext1MMZ

(
Q(0), H1(E0)(k)

)
= 1 .

The following result shows that the dimension of Ext1MMZ
(Q(0), H1(E0)(k)) is at

least one and gives evidence for conjecture (3.4) b):

Theorem 4.1
The following construction gives an extension in MMZ

0 −→ H1(E0)(k) −→M −→ Q(0) −→ 0

which is critical and for which we have:

L(M, 0) ≡ c+(M) mod Q∗ .

Note that

L(M, s) = ζ(s)L(E0, s+ k) and hence L(M, 0) = −1
2
L(E0, k) .

Moreover dimM+
B = 2, so that c+(M) is the determinant of a 2× 2-matrix.
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Remark. More generally one can treat the motives of Hecke characters of imaginary
quadratic fields instead of H1(E0).

Proof. The construction of M relies heavily on ideas of Beilinson and Scholl. Fix
integers n ≥ 1, N ≥ 3 and an isomorphism (Z/N)2 ∼−→E0N (Q). Furthermore let
K/Q be a finite extension such that the N -torsion of E = E0⊗K is K-rational and
complex multiplication is defined over K. The group (Z/N)2 acts by translation on
E. Also the group µ2 = {±1} acts by inversion on E. We thus get a natural action
of the semidirect product

Γn =
(
(Z/N)2 ×|µ2

)n ×|Sn

on En. Let ε = εn : Γn → µ2 be the character that is trivial on (Z/N)2n, the
product on µn2 and the sign character on Sn.

Let M(N) be the affine modular curve over Q classifying elliptic curves with
a level N -structure. By adding a finite scheme of cusps M∞(N) one obtains the
compactified smooth projective modular curve M(N) = M(N) ∪ M∞(N). Let
E(N) π→ M(N) be the universal elliptic curve over M(N) and E(N) π→ M(N) the
universal generalized elliptic curve over M(N). There exists a functorial desingula-
rization E(N)n of the n-fold cartesian product

E(N)n = E(N)×M(N) . . .×M(N) E(N) .

Note that the fibers of E(N) over the cusps are singular and that E(N)n is a singular
variety over Q for n ≥ 2. As above the group Γn acts naturally on E(N)n, E(N)n

and E(N)n.
For any object H in a Q-linear abelian category on which Γn acts write H(ε)

for its ε-isotypical component:

H(ε) = Im

(
|Γn|−1

∑
σ∈Γn

ε(σ)σ : H → H

)
.

Finally we set Hn(Z,m) = Hn(Z)(m) in MM. According to a result of Scholl
in [23] one has a natural exact sequence in MM for n ≥ 1:

0→ Hn+1
(
E(N)n, n+ 1

)
(ε)→ Hn+1

(
E(N)n, n+ 1

)
(ε)

res−→
Eis←−H

0
(
M∞(N)

)(n) → 0

which is canonically split by the Manin–Drinfeld principle: The Hecke operators
act with different eigenvalues on Hn+1(E(N)n, n+1)(ε) and H0(M∞(N))(n) (which
denotes the motive H0(M∞(N)) but with a twisted action of the Hecke algebra).
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Since Hn+1(E(N)n, n+1)(ε) is pure of weight −(n+1) 
= 0 as E(N)n is smooth
projective over Q we get an isomorphism of Q-vector spaces:

Q[M∞(N)]

= HomMM
(
Q(0), H0

(
M∞(N)

)) Eis∗∼= HomMM
(
Q(0), Hn+1

(
E(N)n, n+ 1

)
(ε)

)
where Q[M∞(N)] denotes the space of Q-linear divisors on M∞(N). The chosen
level N -structure on E gives a Γn-equivariant embedding i : E ↪→ E(N). It is not
difficult to see that: Hi(E(N)n)(ε) = 0 for i 
= n+1 and Hi(En)(ε) for i 
= n. Hence
we obtain an exact sequence in MM:

0→ Hn
(
En, n+ 1

)
(ε)→ Hn+1

(
E(N)nrelEn, n+ 1

)
(ε)

→ Hn+1
(
E(N)n, n+ 1

)
(ε)→ 0 .

To construct the extension M of theorem (4.1) one first notes that for k ≥ 2 setting
n = 2k − 3 the motive H1(E0)(k) is a direct summand of

Hn(En, n+ 1)(ε) = SymnH1(E)(n+ 1) .

If k ≥ 3 this requires the hypothesis of complex multiplication. Now let

π : Hn(En, n+ 1)(ε) −→ H1(E0)(k)

be the projection and recall that divisors α in Q[M∞(N)] correspond to maps

Eis∗(α) : Q(0) −→ Hn+1
(
E(N)n, n+ 1

)
(ε).

Pushing the above extension forward via π and pulling it back via Eis∗(α) for suit-
able α we get the sought for extension M . For the verification that c+(M) is a
non-vanishing rational multiple of L(M, 0) = − 1

2L(E0, k) one first calculates the
Hodge realization of the Eisenstein splitting Eis in terms of holomorphic Eisenstein
series. In the period calculations for c+(M) certain non-holomorphic Eisenstein se-
ries appear. Finally one uses the classical fact that the L-series of a CM elliptic
curve can be expressed in terms of such series. For the complete proof one re-
formulates [10] using the considerations of [24]. Finally it can be shown that the
extensions just constructed agree with those obtained via the map (2.4) from the
K-theory elements constructed earlier in [3], [1] Ch. 2, [8]. �
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5. Extensions attached to modular forms

The construction of extensions described in this section is due to Kings [17] building
upon the results of Beilinson [2] and Scholl [27].

In this section we will work in the category MM ⊗ Q which has the same
objects as MM but where the morphisms are tensored with Q. For the following
it will be useful to regard M(N), E(N) etc. in the limit: Consider the projective
systems

En = lim
←−
N

E(N)n and En = lim
←−
N

E(N)n

of schemes with finite transition maps. For n = 0 set E0 = M . Their motives are
defined to be

H∗(En) = lim
−→
N

H∗(E(N)n
)

and H∗(En)
= lim
−→
N

H∗(E(N)n
)

in the ind category of MM⊗ Q. For n ≥ 1 the group IΓn = (A2
f ×|µ2)n ×|Sn acts

on H∗(En) and H∗(En) and we can consider ε-isotypic components with respect to
the character ε = εn : IΓn → µ2 defined as before. In addition the group GL 2(Af )
acts on these motives preserving the ε-isotypical components. According to Deligne
and Scholl [23] for k ≥ 0 the GL 2(Af )-isotypical constituents of Hk+1(Ek)(ε) are
precisely the motives attached to holomorphic cusp forms of weight k + 2 i.e. the
motives whose L-functions equal the L-function of the corresponding cusp forms.
One shows: All the extensions of Q(−k − l − 2), l ≥ 0 by the motives of cusp forms
of weight k + 2 predicted by a Q-version of conjecture (3.4) a) are obtained by
pushing out the extensions of Q(−k − l − 2) by Hk+1(Ek)(ε) described next.

Consider all pairs (r, s) of integers with r + s = k + 2l and r ≥ s ≥ l. The
natural embedding

i : Ek+2l = Er+s ↪→ Er ×Q Es

is equivariant with respect to the natural IΓr× IΓs-action. One checks that for s > 0
the relative exact sequence with respect to i yields the short exact sequence

0→ Hk+2l+1
(
Ek+2l

)(
εr × εs

)
→ Hk+2l+2

(
Er ×Q Esrel Ek+2l

)(
εr × εs

)
→ Hr+1

(
Er

)(
εr

)
⊗Hs+1

(
Es

)(
εs

)
→ 0 .

Moreover there is a natural projection

Q : Hk+2l+1
(
Ek+2l

)(
εr × εs

)
−→ Hk+1

(
Ek,−l

)(
εk

)
.



108 Deninger

Both facts are consequences of the Künneth- and Clebsch Gordan formulas. Using
the Eisenstein splitting of the preceding section one gets from Q a projection

Q : Hk+2l+1
(
Ek+2l

)(
εr × εs

)
−→ Hk+1

(
Ek,−l

)(
εk

)
.

In addition one gets maps

λ : Q(0) −→ Hr+1(Er, r + 1)(εr)⊗Hs+1(Es, s+ 1)(εs)

associated to pairs of divisors on the cusps.
Pushing out the above exact sequence via Q and pulling it back via the maps

λ one obtains extensions of Q(−k − l − 2) by Hk+1(Ek)(εk) as desired. One also
needs to consider the case s = 0 where also l = 0. In this instance the construction
obviously has to be modified to get non- trivial extensions. We refer to [17] II 3.
for the details. In loc. cit. is is also explained that the extensions associated to
modular forms just described parallel the earlierK-theory constructions by Beilinson
and Scholl.

6. Extensions attached to Laurent polynomials and entropy

For a nonzero Laurent polynomial P in Z[Zn] = Z[T±1
1 , . . . , T±1

n ] set

m(P ) =
1

(2πi)n

∫
Tn

log |P (z1, . . . , zn)|dz1
z1
∧ . . . ∧ dzn

zn

=
∫ 1

0

. . .

∫ 1

0

log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . . dθn

where Tn = (S1)n is the n-dimensional real torus. The integral exists and defines
a real non-negative number whose exponential M(P ) = exp(m(P )) is called the
Mahler measure of P . It appears in transcendence theory as a local height of the
polynomial P at the infinite place [20]. The study of M(P ) is also important in the
context of Lehmer’s problem c.f. [4]. More recently m(P ) has been interpreted as
the entropy of an associated Zn-action on a compact abelian topological group as
follows. Let Z(P ) ⊂ Gn

m,Z denote the closed subscheme defined by P . The group
Zn acts by translations on the regular functions

Γ(Z(P ),O) = Z[Zn]/(P )
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of Z(P ). Viewing Γ(Z(P ),O) as a topological group under addition with the discrete
topology we get by functoriality an action of Zn on the compact Pontrjagin dual
Γ(Z(P ),O)∗.

The topological entropy of a continuous Zn-action on a compact metrizable
space is a nonnegative real number which measures the extent to which repeated
application of the action “scatters around points”. The concept originated in ther-
modynamics and information theory where it is a measure of disorder and loss of
information respectively. We refer to [19] for a lucid introduction to the concept of
entropy in the one-variable case n = 1 and to [22] Ch. V for the general situation.
There is also a notion of metric entropy for a measurable Zn-action on a probability
space. For a continuous Zn-action on a compact topological group with probabil-
ity measure given by the normalized Haar measure fortunately the two notions of
entropy coincide [22] V. Th. 13.3.

The following result has been established by Lind, Schmidt and Ward in [18]
c.f. also [22] V. Th. 18.1:

Theorem 6.1

For P as above the entropy of the associated Zn-action on Γ(Z(P ),O)∗ is equal

to m(P ).

The case n = 1 of this result was proved in the mid sixties by Yuzvinskii, the
first results being due to Sinai by the end of the fifties. Examples by among others
Smyth [28], Boyd [4] and Ray [21] show that for certain simple Laurent polynomials
P the value m(P ) is related to special values of arithmetic L-functions e.g.:

(6.2) m
(
1 + T1 + T2 + T3

)
=

7
2π2

ζ(3)

(6.3) m
(
(T1 + T2)2 ± 3

)
=

2
3

log 3 +
√

3
π
L

(
χ3, 2

)
where χ3 : (Z/3)∗ → µ2 is the non-trivial character of (Z/3)∗. See e.g. [22] VI, 19.10
and 19.11. for proofs.

In the following we will sketch basic relations of m(P ) with periods of mixed
motives. In conjunction with conjecture 3.4 this gives some explanation why in
simple cases m(P ) is related to special values of L-series. We will only consider
the case where P does not vanish on Tn ⊂ (C∗)n or in dynamical terms where
the corresponding Zn-action is expansive [22] II Th. 6.5. This assumption is not
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fulfilled in the examples (6.2), (6.3) though. The general case is more intricate. It is
considered in [11] where complete proofs for the following assertions are also given.

At first P can be any Laurent polynomial in Q[T±1
1 , . . . , T±1

n ]. The complement

XP = Gn
m,Q \ Z(P )

of its zero locus can be viewed as a closed subvariety of Gn+1
m via the embedding

(everything over Q):
i : XP

∼= Gn+1
m ∩ ΓP ↪→ Gn+1

m

where
ΓP =

{
(z0, z′) ∈ A1 ×Gn

m | z0 = P (z′)
}

is the graph of P . On Gn+1
m the group µn+1

2 acts naturally. Let ε : µn+1
2 → µ2 be

the product on µn+1
2 . Let X be the union in Gn+1

m of the translates of i(XP ) under
the automorphisms γ ∈ µn+1

2 :

X =
⋃

γ∈µn+1
2

i(XP )γ ⊂ Gn+1
m .

With the reduced subscheme structure X becomes a closed and hence affine sub-
variety of Gn+1

m of dimension n. Thus we have Hn+1(X) = 0 in MM. Using the
Künneth formula it is easy to see that Hn(Gn+1

m )(ε) = 0 in MM where as be-
fore (ε) denotes the ε-isotypical component. Hence the µn+1

2 -equivariant embedding
X ⊂ Gn+1

m gives rise to the following short exact sequence in MM:

0→ Hn(X,n+ 1)(ε)→ Hn+1
(
Gn+1

m relX,n+ 1
)
(ε)→ Hn+1

(
Gn+1

m , n+ 1
)
(ε)→ 0 .

Note that in MM we have a canonical isomorphism:

Q(0) ∼−→Hn+1
(
Gn+1

m , n+ 1
)
(ε)

since H1(Gm) = Q(−1). Under the induced isomorphism

Q = F 0Q(0)dR
∼−→Fn+1Hn+1

dR

(
Gn+1

m /Q
)
(ε)

1 ∈ Q corresponds to the class of the invariant n + 1-form dz0
z0
∧ . . . ∧ dzn

zn
where

z0, . . . , zn are the coordinates of Gn+1
m .

Setting
N = Hn+1

(
Gn+1

m relX,n+ 1
)
(ε)
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the above short exact sequence gives an identification

F 0NdR
∼= Fn+1Hn+1

dR

(
Gn+1

m /Q
)
(ε)

since Fn+1Hn
dR(X/Q) = 0. Let ωH ∈ F 0NdR be the form corresponding to the class

of dz0
z0
∧ . . . ∧ dzn

zn
. On the other hand for the Betti realization of

M = Ň(1) = Hn+1

(
Gn+1

m relX,−n
)
(ε)

we find, again by using the exact sequence that

M+
B
∼= HB

n

(
X,Q(−n)

)+(ε)

since Q(1)+B = 0.
Now assume that P does not vanish on Tn i.e. that Tn ⊂ XP (C). Then

Tn defines a homology class [Tn] in Hn(XP (C),Q) and we let i∗[Tn](ε) be the
ε-isotypical component of i∗[Tn] in Hn(X(C),Q). Let c ∈ M+

B be the element
corresponding to the cycle

i∗[Tn](ε)⊗ (2πi)−n in HB
n

(
X,Q(−n)

)+(ε) .

Then our observation is this:

Theorem 6.4

For P ∈ Q[T±1
1 , . . . , T±1

n ] without zeroes on Tn we have under the period pairing

〈, 〉per : M+
B × F 0NdR −→ R

of section 2 that

〈c, ωH〉per = m(P ) .

If P has integer coefficients we thus get an interpretation of the Deligne period

〈c, ωH〉 as an entropy of a natural Zn-action.

The proof is not difficult [11] § 2.
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