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Abstract

We construct spherical homogeneous spaces X of semisimple simply connected
groups with connected stabilizers such that the Hasse principle or weak appro-
ximation fail for X .

Introduction

A homogeneous space X̄ = H̄\Ḡ of a connected semisimple simply connected group
Ḡ defined over an algebraically closed field k̄ of characteristic 0 is called spherical if
a Borel subgroup B̄ ⊂ Ḡ acts on X̄ with an open orbit.

This class of varieties includes many classical ones (cf. [7]):

(1) flag varieties (H̄ is a parabolic subgroup);
(2) symmetric spaces (H̄ is the set of fixed points of an involution of Ḡ);
(3) horospherical spaces (H̄ contains a maximal unipotent subgroup Ū of Ḡ).
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Now let X be a homogeneous space defined over a number field k. This means
that there is a transitive action X × G → X defined over k. We call X spherical if
X̄ = X ×k k̄ is spherical in the above sense.

Let Σ be a finite set of places v of k, and let kv denote the completion of k at v.
We are interested in the existence of rational points of X and their density. To

be more precise, we ask whether the two following properties hold:

(1) The Hasse principle: the existence of kv-points in X for all the places v of
k implies the existence of a k-point of X;

(2) Weak approximation: X(k) is dense in the product
∏
v∈Σ X(kv) for any

finite set Σ of places.

We are interested in homogeneous spaces of semisimple simply connected groups
with connected stabilizers. For this class of varieties there are some positive results.
Namely, the Hasse principle and weak approximation are known to hold for projec-
tive homogeneous spaces (that is, flag varieties) [6]. It is also true for symmetric
spaces [9], [2] and, more generally, for all affine spherical spaces [8].

In this paper we show that for a general spherical homogeneous space of a
semisimple simply connected group, the Hasse principle or weak approximation may
fail. We find counter-examples among horospherical spaces.

Our general approach is that of [1], [2]. One may interpret our counter-examples
in terms of the Brauer–Manin obstruction which is known to be the only one for
homogeneous spaces with connected stabilizer [4].

We describe the construction of counter-examples in Section 1. In Section 2 we
prove that they are indeed counter-examples.

Acknowledgements. This paper was written while the authors were visiting the
Sonderforschungsbereich 170 (Geometrie und Analysis) at Göttingen University. We
are grateful to SFB 170 for hospitality, support, and good working conditions.

We thank the referee for helpful comments.

1. Construction of counter-examples

1.1. We need some notation.
Let H be a connected group. We denote by Hu the unipotent radical of H. Set

H red = H/Hu, the reductive part of H; Hss = (H red)derived, the semisimple part of
H; H tor = H red/Hss, the toric part of H.
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For any algebraic torus T denote

X2(k, T ) = ker
[
H2(k, T ) →

⊕
v

H2(kv, T )
]
;

for any finite set Σ of places of k let

Q1
Σ(k, T ) = coker

[
H1(k, T ) →

⊕
v∈Σ

H1(kv, T )
]
.

1.2. We wish to construct a counter-example to weak approximation in the form
X = H\G, where G is semisimple simply connected. By [1], if Q1

Σ(k,H tor) = 0,
then weak approximation with respect to Σ holds for X. Therefore we should look
for X with Q1

Σ(k,H tor) �= 0.
We wish to construct a counter-example to the Hasse principle in the form

(G̃, X̃) = ψ(G,X), as a twisted form of (G,X), where X = H\G and ψ ∈
Z1(k,Aut (G,X)) is a cocycle (cf. [12], Ch. I, 5.3, [2], 1.3, and Subsection 2.1
below). Having such a ψ, one can define the twisted toric part ψH tor (cf. [12], Ch.
I, 5.6, [2], 1 .5, 1.7, and Subsection 2.3 below). By [2], 3.3, if X2(k, ψH tor) = 0,
then the Hasse principle holds for X̃. Therefore we should look for examples with
X2(k, ψH tor) �= 0.

1.3. Let L be the splitting field of a torus T , i.e. the minimal Galois extension of
k such that T×kL � G

d
m,L , and let g = Gal(L/k). Denote by T̂ = Hom(TL, Gm,L)

the g-module of characters of T , and set

X1
ω(g, T̂ ) = ker

[
H1(g, T̂ ) →

∏
C

H1(C, T̂ )
]
,

where C runs over all the cyclic subgroups of g.
One can show that if X1

ω(g, T̂ ) = 0, then
(i) X2(k, T ) = 0, and
(ii) Q1

Σ(k, T ) = 0 for any finite Σ.
Hence we should look for a g-module M with X1

ω(g,M) �= 0.

1.4. A simple example of such a module can be constructed as follows. Let L =
k(
√

a,
√

b) be a biquadratic extension, g = Gal(L/k) � (Z/2)2, and let M be the
augmentation ideal of the group ring Z[g], i.e.

M = ker[ε:Z
[
g] → Z

]
,
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where

ε

(∑
g∈g

agg

)
=

∑
g∈g

ag .

In the exact sequence

0 → M → Z[g] ε→ Z → 0

the middle term is a free g-module, so its cohomology is trivial. Hence H1(g,M) =
Ĥ0(g,Z), where Ĥ0 stands for the modified Tate cohomology. We have Ĥ0(g,Z) =
Z/4. On the other hand, for all the cyclic subgroups C ⊂ g we have H1(C,M) =
Ĥ0(C,Z) = Z/2. Hence

X1
ω(g,M) = ker

[
Z/4 → (Z/2)3

]
�= 0.

In fact, one can show that X1
ω(g,M) = Z/2. Indeed, for any subgroup C ⊂ g the

map Ĥ0(g,Z) → Ĥ0(C,Z) is just the natural projection Z/ng → Z/nC , where ng

denotes the order of g , similarly for C.

1.5. Let L = k(
√

a,
√

b). Set T = RL/kGm/Gm,k, where RL/k denotes Weil’s
restriction of the ground field. Then from the exact sequence of tori

1 → Gm,k → RL/kGm → T → 1

one can get the dual exact sequence of character modules

0 → T̂ → Z[g] → Z → 0.

We see that T̂ is isomorphic to M constructed in 1.4.

1.6. Let us show that one can choose k and L in such a way that X2(k, T ) �= 0.

Lemma 1.6.1

Let k, L, and T be as in 1.5. If all the decomposition groups are cyclic, then

X2(k, T ) �= 0.
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Proof. For any k-torus T , the group X2(k, T ) is dual to X1(k, T̂ ). Under the
assumptions of the lemma, X1(k, T̂ ) = X1

ω(k, T̂ ) and X1
ω(k, T̂ ) = Z/2 as shown in

1.4. �

Remark 1.6.2. The hypotheses of Lemma 1.6.1 are satisfied if k = Q, a = 13, b = 17.

1.7. Let us show that one can choose k, L in 1.5, and Σ in such a way that
Q1

Σ(k, T ) �= 0.
For any k-torus T denote

X1
Σ(k, T̂ ) = ker

[
H1(k, T̂ ) →

∏
v/∈Σ

H1(kv, T̂ )
]
,

X1(k, T̂ ) = ker
[
H1(k, T̂ ) →

∏
v

H1(kv, T̂ )
]
.

For any finite abelian group A let A˜ denote the dual group, A˜ = Hom(A,Q/Z).

Lemma 1.7.1

For any k-torus T there exists an exact sequence

0 → X1(k, T̂ ) → X1
Σ(k, T̂ ) → Q1

Σ(k, T )˜ → 0.

Proof. In [10], Lemma 1.4, it is proved that for any finite abelian k-group B there
exists an exact sequence

0 → X1(k, B̂) → X1
Σ(k, B̂) → Q1

Σ(k,B)˜ → 0.

To obtain the desired exact sequence, one has to follow, word by word, Sansuc’s
proof replacing the reference to the Poitou–Tate duality for finite abelian groups by
a reference to the Nakayama–Tate duality for tori (cf. [5], 3.0.7). �

Lemma 1.7.2

Let k, L, and T be as in 1.5. Denote by Σ0 the set of places v such that the

decomposition group gv = Gal(Lw/kv) is noncyclic. If Σ0 �= ∅, then for any finite

Σ ⊇ Σ0 we have Q1
Σ(k, T ) �= 0.
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Proof. Under the hypotheses of the Lemma, X1
Σ(k, T̂ ) = X1

ω(k, T̂ ). By 1.4,
X1

ω(k, T̂ ) = Z/2. By the Nakayama–Tate duality, X1(k, T̂ ) = X2(k, T )˜. By [10],
1.9.4, we have X2(k, T ) = 0. By Lemma 1.7.1 we conclude that Q1

Σ(k, T ) = Z/2. �

Remark 1.7.3. The hypotheses of Lemma 1.7.2 are satisfied if k = Q, a = 2, b =
−1,Σ0 = {2}.

1.8. Let us embed T into a semisimple simply connected group G.
From the definition of T̂ we see that as Z-module it is generated by the elements

of the form (g − 1), g running over g, so T̂ =< s − 1, t − 1, st − 1 >, where s and t

denote two generators of g. Let us consider the homomorphism of g-modules

µ:Z[g] ⊕ Z[g] → T̂ ,

mapping two generators of the free module to (s − 1) and (t − 1). As µ(1, s) =
(s− 1) + s(t− 1) = st− 1, we conclude that µ is surjective. Thus one may consider
the dual inclusion of tori

ν:T ↪→RL/kGm × RL/kGm.

Composing ν with the diagonal embedding Gm↪→SL2, x �→ diag(x, x−1), we obtain
an embedding

T ↪→(RL/kGm)2↪→(RL/kSL2)2 = G.

Let U0⊂SL2,Lbe the unipotent upper-triangular subgroup, and set U = (RL/kU0)2⊂
G. Then T ⊂ G normalizes U , hence TU is a subgroup of G.

Now we can state the main result.

Theorem 1.9

Let G, T , and U be as in 1.8, and let H = TU , X = H\G.

(i) If k and L are chosen as in 1.6, then there exists a k-form (G̃, X̃) = ψ(G,X)
of the pair (G,X) twisted by a cocycle ψ ∈ Z1(k,Aut (G,X)) such that for X̃ the

Hasse principle fails.

(ii) If k, L, and Σ are chosen as in 1.7, then weak approximation with respect to Σ
fails for X.
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Remark 1.9.1. From the construction it is clear that X is horospherical, hence
spherical.

2. Proofs

In this section we prove Theorem 1.9.

2.1. Let us recall (cf. Subsection 1.2) that we wish to construct a counter-example
to the Hasse principle, twisting (G,X) by a cocycle ψ ∈ Z1(k,Aut (G,X). By
technical reasons we are looking for a cocycle with values in Aut (G,X)◦, the identity
component of Aut (G,X). Let us explicitly describe Aut (G,X)◦.

We need some additional notation. For a connected group H set Hcf = ker[H →
H tor], the character-free part of H. We denote by Int G the group of inner automor-
phisms of a group G, and by int(g) the inner automorphism g′ �→ gg′g−1, defined
by g ∈ G. Let Z(G) denote the center of G.

As in [2], we introduce the group Ã(G,H) of pairs (s, a), where s ∈ G, a ∈ AutG

are such that
s · a(H) · s−1 = H

with the composition

(s1, a1) · (s2, a2) = (s1 · a1(s2), a1a2).

Let N(H) denote the normalizer of H in G. We have embeddings

i:N(H) → Ã(G,H), s �→ (s, 1) for s ∈ N(H);

j:G → Ã(G,H), t �→ (t, int(t−1)) for t ∈ G.

One checks immediately that i(N(H)) and j(G) commute in Ã(G,H). We have a
canonical exact sequence

(2.1.1) 1 → H → Ã(G,H) → Aut (G,H\G) → 1

cf. [2], 1.2.

Lemma 2.2

Let G be a connected group, and let H be a connected subgroup of G.

(i) The connected component Ã(G,H)◦ of Ã(G,H) equals i(N(H)◦) · j(G).
(ii) i(N(H)) ∩ j(G) = j(Z(G)).
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Proof. (i) Let (s, a) ∈ Ã(G,H)◦. Then a ∈ IntG. Write a = int(t), then

(s, a) = (st, 1) · (t−1, int(t)) = i(st) · j(t−1),

where st ∈ N(H). Since (s, a) ∈ Ã(G,H)◦, we have st ∈ N(H)◦.
(ii) If (s, a) ∈ i(N(H)) ∩ j(G), then (s, a) ∈ i(N(H)), hence a = 1. Thus

(s, 1) ∈ j(G), hence int(s) = 1, and we see that s ∈ Z(G). Conversely, j(Z(G)) ⊂
i(N(H)) ∩ j(G). �

2.3. Define Ã′(G,H) = Ã(G,H)/Hcf (we write Hcf for i(Hcf)). From Lemma 2.2

Ã′(G,H)◦ = (N(H)/Hcf)◦ · j(G).

The canonical exact sequence (2.1.1) gives rise to the exact sequence

1 → H tor → Ã′(G,H) → Aut (G,H\G) → 1

and to the exact sequence

1 → H tor → Ã′(G,H)◦ → Aut (G,H\G)◦ → 1.

Since H tor is abelian, for any cocycle ψ ∈ Z1(k,Aut (G,X)) one can define the
twisted group ψH tor and the cohomology class ∆(ψ) ∈ H2(k, ψH tor) (cf. [12], Ch. I,
5.6).

The group Aut (G,H\G)◦ is connected; the automorphism group of the torus
H tor is discrete; thus the action of Aut (G,H\G)◦ on H tor is trivial, and for ψ ∈
Z1(k,Aut (G,H\G)◦) we have ψH tor = H tor.

Since H tor is central in Ã′(G,H)◦, one can define the connecting map

∆:H1(k,Aut (G,H\G)◦) → H2(k,H tor),

cf. [12], 1.5.7. Abusing the notation we will write ∆(ψ) for ∆(Cl(ψ)), where Cl(ψ)
is the cohomology class of a cocycle ψ.

2.4 We will need some results from [2], [3]. For any reductive group G over a field
K of characteristic 0, let Hi

ab(K,G) be the abelian Galois cohomology of G (cf. [3],
Section 2). We need the following facts concerning Hi

ab.

Lemma 2.4.1 ([3], 5.8, 5.10).
Let K be a local or a number field, and let

1 → G1 → G2 → G3 → 1

be an exact sequence of connected reductive groups. Then the sequence

H1(K,G2) → H1(K,G3)
∆′
→ H2

ab(K,G1)
ε→ H2

ab(K,G2)

is exact.
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Lemma 2.4.2 ([3], 2.11(2)).

Suppose that the semisimple part Hss of H is simply connected. Then

Hi
ab(K,H) = Hi(K,H tor).

Remark 2.4.3. If H is abelian, then by the definition of abelian cohomology
Hi

ab(K,H) = Hi(K,H).

Remark 2.4.4. One can show that if G1 is a torus, then the connecting map ∆′

defined in 2.4.1 coincides with the connecting map ∆ defined in [12], I.5.7, see
Subsection 2.3.

The following fact will be used in the proof of Theorem 1.9(ii).

Lemma 2.4.5 ([2], 1.4, 1.5).

Let ψ ∈ Z1(k,Aut (G,H\G)). If ψ(G,H\G) has a k-point, then ∆(ψ) = 0.

Proposition 2.5

Let G, H be as in the statement of Theorem 1.9, and let η ∈ X2(k,H tor) ⊂
H2(k,H tor). Then there exists ψ ∈ Z1(k,Aut (G,H\G)◦) such that η = ∆(ψ).

Proof. By Lemma 2.4.1, we have the exact sequence

(2.5.1) H1(k,Aut
(
G,H\G)◦

) ∆′
→ H2(k,H tor) ε→ H2

ab
(
k, Ã′(G,H)◦

)
.

According to Remark 2.4.4, there is no difference between ∆ and ∆′. We have H =
TU , N(H) = SU where S = (RL/kGm)2 is a maximal torus in G = (RL/kSL2)2, cf.
1.8. Since S normalizes U , so does T . Hence H tor = T , Hcf = U , N(H)/Hcf = S,
and Ã′(G,H)◦ = i(S) · j(G). The semisimple part of Ã′(G,H)◦ is j(G) � G, hence
it is simply connected. By Lemma 2.4.2,

H2
ab

(
k, Ã′(G,H)◦

)
= H2

(
k, (Ã′(G,H)◦)tor).

But (Ã′(G,H)◦)tor = i(S) · j(G)/j(G) = S/Z(G), hence H2
ab(k, Ã′(G,H)◦) =

H2(k, S/Z(G)).
We have Z(G) = (RL/kµ2)2, S/Z(G) � (RL/kGm)2, hence X2(k, S/Z(G)) = 0,

cf. [10], 1.9. By hypothesis η ∈ X2(k,H tor), hence ε(η) ∈ X2(k, S/Z(G)) = 0,
with the notation of (2.5.1). It follows that η ∈ im ∆′. Thus there exists ψ ∈
Z1(k,Aut (G,H\G)◦) such that η = ∆′(ψ) = ∆(ψ). �
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2.6. Proof of Theorem 1.9 (i).
Let η ∈ X2(k,H tor), η �= 0. Such an η exists by Lemma 1.6.1. By Proposition

2.5 there exists ψ ∈ Z1(k,Aut (G,H\G)) such that ∆(ψ) = η. Let (G̃, X̃) = ψ(G,X)
be the twisted form of (G,X).

We claim that X̃ is a counter-example to the Hasse principle. Since ∆(ψ) �= 0,
we have X(k) = ∅, cf. Lemma 2.4.5. It remains to show that X(kv) �= 0 for any
place v of k.

Consider the commutative diagram

H1(k, Ã′(G,H)◦) −→ H1(k,Aut (G,H\G)◦) ∆−→ H2(k,H tor)� �locv
�locv

H1(kv, Ã′(G,H)◦) −→ H1(kv,Aut (G,H\G)◦) ∆−→ H2(kv, H tor)

where locv denotes localization at v.

Lemma 2.6.1

H1(K, Ã′(G,H)◦) = 1 for any field K ⊃ k.

Proof. We have an exact sequence

1 → G → Ã′(G,H) → S/Z(G) → 1.

Here H1(K,G) = 1 because G = (RL/kSL2)2 (cf. [11], Ch. X, §1), and
H1(K,S/Z(G)) = 1 because S/Z(G) � (RL/kGm)2. It follows that
H1

(
K, Ã′(G,H)◦

)
= 1. �

Let ξ ∈ H1(k,Aut (G,H\G)◦) be the cohomology class of ψ. We have

∆(ψ) = η ∈ X2
(
k,H tor) .

It follows that for the localization locvξ we have

∆v

(
locvξ

)
= 0.

Hence locvξ comes from H1(kv, Ã′(G,H)◦). But by Lemma 2.6.1,
H1(kv, Ã′(G,H)◦) = 1. Thus locvξ = 1. We see that locvξ is a coboundary. It
follows that X̃kv � Xkv , hence X̃kv (kv) �= 0. This proves Theorem 1.9 (i).
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2.7. Proof of Theorem 1.9 (ii).
The proof immediately follows from [1]. Indeed, Theorem 1.1 of [1] states

that Q1
Σ(k,H) = 0 if and only if weak approximation with respect to Σ holds for

X = H\G. Theorem 1.4 of [1] gives Q1
Σ(k,H) = Q1

Σ(k,H tor). By Lemma 1.7.2 we
have Q1

Σ(k,H tor) �= 0. �

2.8. For the reader’s convenience we give below a self-contained proof of Theorem
1.9(ii) including an easier part of [1].

Let kΣ =
∏
v∈Σ kv. Let O(X,G, k) be the set of orbits of G(k) in X(k), and let

O(X,G, kΣ) be the set of orbits of G(kΣ) in X(kΣ). Since G is simply connected,
by a theorem of Kneser–Harder it satisfies weak approximation with respect to any
finite Σ. Hence the closure of an orbit (x · G(k)) in X(kΣ) equals x · G(kΣ) for any
x ∈ X(k). Thus weak approximation for X with respect to Σ holds if and only if
the map

iΣ:O
(
X,G, k

)
→ O

(
X,G, kΣ

)
,

induced by the embedding X(k)↪→X(kΣ), is surjective. But one can describe the
above orbit spaces in cohomological terms:

O
(
X,G, k

)
= ker

[
H1(k,H) → H1(k,G)

]
,

O
(
X,G, kΣ

)
= ker

[
H1(kΣ, H) → H1(kΣ, G)

]
(cf. [12], Ch. I, 5.4, Cor. 1 of Prop. 36). Thus nonsurjectivity of the map

ker
[
H1(k,H) → H1(k,G)

]
→

⊕
v∈Σ

ker
[
H1(kv, H) → H1(kv, G)

]
implies lack of weak approximation for X with respect to Σ.

In our case G = (RL/kSL2)2, hence H1(K,G) = 1 for any K ⊃ k (cf. [11], Ch.
X, §1). Since Hcf = U , we have H1(K,H) = H1(K,H tor) for any K ⊃ k (cf. [10],
1.13). So we see that weak approximation with respect to Σ holds for X if and only
if the map

H1
(
k,H tor) →

⊕
v∈Σ

H1
(
kv, H

tor)
is surjective, that is Q1

Σ(k,H tor) = 0. But we have Q1
Σ(k,H tor) �= 0, thus weak

approximation with respect to Σ does not hold for X. This proves Theorem 1.9
(ii). �
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