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Abstract

Let X be a Banach space and let 1 ≤ r < +∞. We prove that X∗ is
isomorphic to a subspace of anLr(µ)-space if and only if the operator (αn) ∈
�r → ∑

αnxn ∈ X is s-nuclear (1/r + 1/s = 1) whenever
∑ ‖xn‖s <

+∞.

It is well known that the operator

(αn) ∈ �∞ →
∞∑

n=1

αnxn ∈ X

is 1-nuclear whenever
∑ ‖xn‖ < +∞ regardless the Banach space X [1]. Then

a natural question arises: Given 1 ≤ r < +∞, which Banach spaces X have the
property that the operator

T
x̂

: (αn) ∈ �r →
∑

αnxn ∈ X (1)

is s-nuclear (r−1 + s−1 = 1) for every sequence x̂ = (xn) ∈ �sa(X)?. In the case
r = 1, it seems reasonable to ask for a characterization of Banach spaces X for
which the operator (αn) ∈ �1 → ∑

αnxn ∈ X is ∞-nuclear for every null sequence
(xn) in X. Recall that an operator T : X → Y is called ∞-nuclear if T admits a
representation of the form Tx =

∑∞
n=1〈x, an〉yn for all x ∈ X, where (an) is a null

269

Servicio de Textos




270 Piñeiro

sequence in X∗ and (yn) is a weakly absolutely summable sequence in Y (that is to
say:

∑ |〈yn, y∗〉| < +∞ for all y∗ ∈ Y ∗). So, in an obvious way T can be written in
the form Tx =

∑〈x, an〉yn for all x ∈ X, with (an) a bounded sequence and (yn) an
unconditionally summable sequence. The following Lemma show that the converse
result is true. Hence, it follows from [6] that the following statements are equivalent:

a) X∗ is isomorphic to a subspace of an L1(µ)-space.
b) (αn) ∈ �1 → ∑

αnxn ∈ X is ∞-nuclear for every null sequence (xn) in X.
That is the reason why we only consider the case 1 < r < +∞ from now on.

Lemma 1

If (xn) is an unconditionally summable sequence in X, then there exist an

unconditionally summable sequence (yn) in X and a scalar sequence (αn) ∈ c0 such

that xn = αnyn for all n ∈ N.

Proof. Since each unconditionally summable sequence (xn) satisfies

lim
n→∞

sup

{ ∞∑
k=n

|〈xk, x∗〉| : x∗ ∈ BX∗

}
= 0 ,

the proof is similar to that of the scalar case. �
We use the classical notation in Banach space theory. If X is a Banach space,

X∗ denotes its dual space and BX its closed unit ball.
We refer to [5] or [7] for the definition of the r-nuclear and r-summing norm

(1 ≤ r ≤ +∞) of an operator T , denoted respectively by νr(T ) and πr(T ). If
X and Y are Banach spaces, Nr(X,Y ) (Πr(X,Y )) will be the space of r-nuclear
(r-summing) operators from X into Y . If T : X → Y is a finite rank operator, its
finite r-nuclear norm is defined by

νor (T ) = inf
m∑

n=1

‖x∗n‖‖yn‖ ,

where the infimum is taken over all finite representations T =
∑m

n=1 x
∗
n ⊗ yn. If X

or Y is finitedimensional, then the r-nuclear norm and the finite r−nuclear norm
are equal [7].

As usual, �ra(X) stands for the Banach space of all sequences (xn) in X such
that ‖(xn)‖r = (

∑ ‖xn‖r)
1
r < +∞(1 ≤ r < +∞).

Definition 2. Let 1 < r < +∞. P (r) will denote the class of all Banach spaces X
such that the operator (1) is s-nuclear whenever (xn) ∈ �sa(X) , (r−1 + s−1 = 1).
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Remark 3. If X ∈ P (r), we can consider the natural linear map

x̂ = (xn) ∈ �sa(X) → T
x̂
∈ Ns(�r, X).

Since this map has closed graph, it follows that X ∈ P (r) if and only if there exists
a constant c > 0 such that

νs

(
m∑

n=1

e∗n ⊗ xn : �r → X

)
≤ c

(
m∑

n=1

‖xn‖s
)1/s

(2)

for every finite subset {x1, .., xm} of X ({e∗n : n ∈ N} denotes the canonical basis
of �s).

The next Proposition contains some properties of the class P (r).

Proposition 4

i) Ls(µ) ∈ P (r) for every extended positive measure µ.

ii) If X∗∗ ∈ P (r), then X ∈ P (r).
iii) If X ∈ P (r), then Z ∈ P (r) for every quotient Z of X.

Proof. i) Since Ls(µ) is an Ls−space it suffices to prove that �s belongs to P (r).
So, let (xn) be a sequence in �s such that

∑ ‖xn‖ss < +∞. Define an operator
T : �r → �s by

T (αn) =
∞∑

n=1

αnxn for any (αn) ∈ �r .

By [7, Proposition 9.8], we have

νs(T ) ≤
( ∞∑

n=1

‖T ∗(en)‖ss

)1/s

,

where {en} is the unit vector basis of �r. But the last sum is equal to
∑ ‖xn‖ss. In

fact, we have

∞∑
n=1

‖T ∗(en)‖ss =
∞∑

n=1

∞∑
m=1

|〈em, T ∗(en)〉|s =
∞∑

m=1

∞∑
n=1

|〈T (em), en〉|s

=
∞∑

m=1

‖T (em)‖ss =
∞∑

m=1

‖xm‖ss .
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ii) If X∗∗ ∈ P (r), then there exists a constant c > 0 such that

νs

(
m∑

n=1

e∗n ⊗ x∗∗n : �r → X∗∗
)

≤ c

(
m∑

n=1

‖x∗∗n ‖s
)1/s

for every finite subset {x∗∗1 , .., x∗∗m } of X∗∗. Then we have

νs

(
m∑

n=1

e∗n ⊗ xn : �r → X∗∗
)

≤ c

(
m∑

n=1

‖xn‖s
)1/s

for every finite set {xn}m1 ⊂ X. If T denotes the operator
∑m

n=1 e
∗
n ⊗ xn : �r → X,

we have to prove that
νs(T ) = νs(T ∗∗). (3)

For this, we consider the operator Tm : �mr → X defined by Tm(αn) =
∑m

n=1 αnxn
for all (αn)m1 ∈ �mr . It is easy to prove that νs(T ) = νs(Tm) and νs((Tm)∗∗) =
νs(T ∗∗). Hence, it suffices to prove that (3) also holds changing T by Tm. But, as
mentioned earlier, the norm s-nuclear and the norm finite s-nuclear are equal if the
operator is defined on a finitedimensional space. So, (3) follows from the equality
νos (Tm) = νos ((Tm)∗∗) [1, Proposition 17.3].

iii) If X ∈ P (r), there exists a constant c > 0 such that (2) holds for every finite
subset {x1, .., xm} of X. Given ε > 0 and {xn}mn=1 ⊂ Z, choose xn ∈ xn such that
‖xn‖ ≤ ε+ ‖xn‖ for all n ≤ m. If φ : X → Z is the canonical surjection, we have

νs

(
m∑

n=1

e∗n ⊗ xn : �r → Z

)
≤ ‖φ‖ νs

(
m∑

n=1

e∗n ⊗ xn : �r → X

)

≤ c

[
m∑

n=1

(‖xn‖ + ε)s
]1/s

The statement follows letting ε tend to zero. �

Now we are ready for the main Theorem.

Theorem 5

Let X be a Banach space and let 1 < r < +∞. X ∈ P (r) if and only if X∗ is

isomorphic to a subspace of an Lr(µ)-space.
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Proof. If X ∈ P (r), we consider the continuous linear map

U : x̂ = (xn) ∈ �sa(X) → T
x̂
∈ Ns(�r, X) .

Since with the trace duality Πr(X, �r) (resp. �ra(X
∗)) can be isometrically identified

to the dual space of Ns(�r, X) (resp. �sa(X)) [2], in a standard way we obtain

U∗ : T ∈ Πr(X, �r) → (T �(e∗n)) ∈ �ra(X
∗) .

So, there is a constant c > 0 such that(
m∑

n=1

‖x∗n‖r
)1/r

≤ c πr

(
m∑

n=1

x∗n ⊗ en : X → �r

)
(4)

for every finite subset {x∗1, .., x∗n} of X∗. To prove that X∗ is isometric to a subspace
of an Lr(µ)-space, we will use the well known characterization of J. Lindenstrauss
and A. Pelczynski [3]: A Banach space X is isomorphic to a subspace of an Lr(µ)-
space if and only if there exists a constant ρ > 0 such that

(
m∑
i=1

‖xi‖r
)1/r

≤ ρ

 n∑
j=1

‖yj‖r
1/r

whenever
m∑
i=1

|〈xi, x∗〉|r ≤
n∑

j=1

|〈yj , x∗〉|r

for all x∗ ∈ X∗. If {x∗i }mi=1 and {y∗j }nj=1 are finite subsets of X∗ so that

m∑
i=1

|〈x, x∗i 〉|r ≤
n∑

j=1

|〈x, y∗j 〉|r for allx ∈ X (5)

we can define two linear operators T and S from X into �r by

Tx =
m∑
i=1

〈x, x∗i 〉ei and Sx =
n∑

j=1

〈x, y∗j 〉ej

for all x ∈ X. From (5) it follows that πr(T ) ≤ πr(S). This and (4) yields(
m∑
i=1

‖x∗i ‖r
)1/r

≤ c πr(T ) ≤ c πr(S) ≤ c νr(S) .
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As mentioned earlier, νr(S) ≤
( ∑n

j=1 ‖y∗j ‖r
) 1

r . Hence, X∗ is isomorphic to a sub-
space of an Lr(µ)-space.

Conversely, if X∗ is isomorphic to a subspace of an Lr-space, then X∗∗ is
isomorphic to a quotient of an Ls-space. Proposition 4 assures us that X ∈ P (r). �

Remark 6. a) It is clear that, for every sequence (xn) belonging to �ra(X
∗), the

operator T : x ∈ X → (〈x, x∗n〉) ∈ �r is r-nuclear with

νr(T ) ≤
( ∞∑

n=1

‖x∗n‖r
)1/r

.

Hence, the linear map (x∗n) ∈ �ra(X
∗) → T ∈ Nr(X, �r) is continuous and injective.

On the other hand, if X∗ is isomorphic to a subspace of an Lr-space, it follows from
the proof of Theorem 5 that the map

T ∈ Πr(X, �r) → (T �(e∗n)) ∈ �ra(X
∗)

is continuous. Hence, in an obvious sense, we have the equalities

Πr(X, �r) = Nr(X, �r) = �ra(X
∗) ,

whenever X∗ is isomorphic to a subspace of an Lr-space.
b) By analyzing the proofs it is easy to obtain a quantitative version of Theo-

rem 5:
Let X be a Banach space and let 1 < r < +∞. Let c > 0. The following

statements are equivalent:
i) There are a measure µ and a subspace H of Lr(µ) with d(X∗, H) ≤ c.
ii) For any finite subset {x1, .., xm} of X, the inequality

νs

(
m∑

n=1

e∗n ⊗ xn : �r → X

)
≤ c

(
m∑

n=1

‖xn‖s
)1/s

holds.
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