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ABSTRACT

Let X be a Banach space and let 1 < r < 4o00. We prove that X™* is
isomorphic to a subspace of an L" (1)-space if and only if the operator (v, ) €
b, — Y apx, € X is s-nuclear (1/7 + 1/s = 1) whenever Y, ||z, [|° <
+00.

It is well known that the operator

(an) S goo - Zan$n cX

n=1

is 1-nuclear whenever >’ ||z,| < +oo regardless the Banach space X [1]. Then
a natural question arises: Given 1 < r < +o0, which Banach spaces X have the
property that the operator

T (an) €4 — Zanazn eX (1)

is s-nuclear (r~—! 4+ s71 = 1) for every sequence T = (z,) € £3(X)?. In the case
r = 1, it seems reasonable to ask for a characterization of Banach spaces X for
which the operator (ay,) € 1 — > ayz, € X is co-nuclear for every null sequence
(r) in X. Recall that an operator T': X — Y is called oo-nuclear if T' admits a
representation of the form Tz = > °7 | (z, a, )y, for all z € X, where (a,) is a null

269


Servicio de Textos



270 PINEIRO

sequence in X* and (y,,) is a weakly absolutely summable sequence in Y (that is to
say: > {yn, y*)| < +oo for all y* € Y*). So, in an obvious way T' can be written in
the form Tz = > (z,a,,)y,, for all x € X, with (@, ) a bounded sequence and (7,,) an
unconditionally summable sequence. The following Lemma show that the converse
result is true. Hence, it follows from [6] that the following statements are equivalent:

a) X* is isomorphic to a subspace of an L' (j)-space.
b) (o) € 1 — > apx, € X is co-nuclear for every null sequence (z,) in X.
That is the reason why we only consider the case 1 < r < 400 from now on.

Lemma 1

If (z,,) Is an unconditionally summable sequence in X, then there exist an
unconditionally summable sequence (y,,) in X and a scalar sequence (a,) € ¢ such
that =, = a,y, for all n € N.

Proof. Since each unconditionally summable sequence (z,,) satisfies

lim sup{z [z, x™)| :z™ € BX*} =0,
k=n

the proof is similar to that of the scalar case. [J

We use the classical notation in Banach space theory. If X is a Banach space,
X* denotes its dual space and By its closed unit ball.

We refer to [5] or [7] for the definition of the r-nuclear and r-summing norm
(1 < r < 400) of an operator T, denoted respectively by v,.(T) and m.(T). If
X and Y are Banach spaces, N,.(X,Y) (IL,(X,Y)) will be the space of r-nuclear
(r-summing) operators from X into Y. If T': X — Y is a finite rank operator, its
finite r-nuclear norm is defined by

ve(T) = inf Y [z lllynll
n=1

where the infimum is taken over all finite representations 7= Y""_ 2} Q@ y,. If X
or Y is finitedimensional, then the r-nuclear norm and the finite r—nuclear norm
are equal [7].

As usual, ¢ (X) stands for the Banach space of all sequences (z,,) in X such
that [|(z,)[lr = (3 lza]")* < +oo(1 < 7 < +00).

DEFINITION 2. Let 1 < r < +o0. P(r) will denote the class of all Banach spaces X
such that the operator (1) is s-nuclear whenever (z,,) € £5(X), (r~ ' +s7 1 =1).
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Remark 3. If X € P(r), we can consider the natural linear map
T=(zn) €L35(X) = 5 e Ny(£r, X).

Since this map has closed graph, it follows that X € P(r) if and only if there exists
a constant ¢ > 0 such that

m m 1/s
Vs (Zefl@xn:&nﬁ)ﬁj SC(Z \J:n”s) (2)

*
n

for every finite subset {z1,..,zm} of X ({e
of 4s).
The next Proposition contains some properties of the class P(r).

: n € N} denotes the canonical basis

Proposition 4

i) L*(u) € P(r) for every extended positive measure fu.
ii) If X** € P(r), then X € P(r).
iii) If X € P(r), then Z € P(r) for every quotient Z of X.

Proof. i) Since L*(u) is an L£—space it suffices to prove that ¢4 belongs to P(r).
So, let (z,) be a sequence in ¢, such that > ||z,||$ < 4+o00. Define an operator
T:¢,—{; by

T(ay,) = Z anxy, for any (ay,) € 4, .

n=1

By [7, Proposition 9.8], we have

0o 1/s
vs(T) < (Z !T*(en)\|§> :

where {ey} is the unit vector basis of ¢,. But the last sum is equal to Y ||z, [|3. In
fact, we have

DT Eealz=D" > Kem, T (ea)l* =D > (T(em) en)l®
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ii) If X** € P(r), then there exists a constant ¢ > 0 such that

m m 1/s
v (Z et @l — X**) <c (Z Hm:;*HS>
n=1 n=1

for every finite subset {z}*,.., 25"} of X**. Then we have

rYm

m m 1/s
(Sancn—x) <o (i)
n=1 n=1

for every finite set {z, }7* C X. If T denotes the operator > e* @ x,, : £, — X,

n=1"%"n
we have to prove that

vs(T) = vs(T7). 3)

For this, we consider the operator T}, : £7* — X defined by T}, () = D1 | any,
for all (a,,)7* € €. It is easy to prove that vs(T) = vs(T),) and vs((1),)**) =
vs(T**). Hence, it suffices to prove that (3) also holds changing T' by T,,. But, as
mentioned earlier, the norm s-nuclear and the norm finite s-nuclear are equal if the
operator is defined on a finitedimensional space. So, (3) follows from the equality
vo(T) = v2((Thn)*) [1, Proposition 17.3].

iii) If X € P(r), there exists a constant ¢ > 0 such that (2) holds for every finite
subset {x1,.., 2, } of X. Given ¢ > 0 and {Z,}; C Z, choose z,, € T,, such that
|znl] < e+ ||Tp| for all n < m. If ¢ : X — Z is the canonical surjection, we have

Vs (Zei@fn:&«ﬁZ> < |lo|| vs (Zei@xn:ETHX>

n=1 n=1

<c [Z(H@H +e)°

n=1

1/s

The statement follows letting € tend to zero. [

Now we are ready for the main Theorem.

Theorem 5

Let X be a Banach space and let 1 < r < +oo. X € P(r) if and only if X* is
isomorphic to a subspace of an L"(u)-space.
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Proof. If X € P(r), we consider the continuous linear map
U:%=(zn) €Lo(X) = T>e Ns(£r, X).

Since with the trace duality IT,. (X, ¢,.) (resp. £7(X*)) can be isometrically identified
to the dual space of N (£, X) (resp. £5(X)) [2], in a standard way we obtain

U* : T e IL(X, ) — (T*(e)) € €7(X7).

So, there is a constant ¢ > 0 such that

m 1/r m
<Z |x;;||7"> <ecmy (Zx;®enzx—>er> (4)

n=1 n=1

for every finite subset {z7, ..,z } of X*. To prove that X* is isometric to a subspace
of an L"(p)-space, we will use the well known characterization of J. Lindenstrauss
and A. Pelczynski [3]: A Banach space X is isomorphic to a subspace of an L (u)-
space if and only if there exists a constant p > 0 such that

1/r

m 1/T n
(zuxi@ <o (Sl
i=1 j=1

whenever . .
DNz a)” < Y yg, 2
i=1 j=1
for all z* € X*. If {x}}]", and {y}}"_, are finite subsets of X* so that
m n
>l x| < [,y for alle € X (5)
i=1 j=1

we can define two linear operators 1" and S from X into ¢, by

m n

T =Y (z,2})e; and Sz = (z,y)e;

i=1 j=1

for all z € X. From (5) it follows that m,.(T") < m,.(S). This and (4) yields

m 1/r
(Z IIw;‘!V) <em(T) < emp(S) < cvp(9).
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As mentioned earlier, v,.(S) < (Z?:l Hy}“ll”)% Hence, X* is isomorphic to a sub-
space of an L"(u)-space.

Conversely, if X* is isomorphic to a subspace of an L"-space, then X** is
isomorphic to a quotient of an L*-space. Proposition 4 assures us that X € P(r). O

Remark 6. a) It is clear that, for every sequence (z,) belonging to ¢, (X™*), the
operator T': x € X — ((x,z},)) € ¢, is r-nuclear with

00 1/r
o (T) < (Z HwZW) .

Hence, the linear map (z) € ¢, (X*) — T € N, (X, ¢,) is continuous and injective.
On the other hand, if X™* is isomorphic to a subspace of an L"-space, it follows from
the proof of Theorem 5 that the map

T eIl (X, 0,) — (T(e;)) € €1(X™)
is continuous. Hence, in an obvious sense, we have the equalities
(X, 4,) = No.(X, 4,) = 00(X7),

whenever X* is isomorphic to a subspace of an L"-space.

b) By analyzing the proofs it is easy to obtain a quantitative version of Theo-
rem b:

Let X be a Banach space and let 1 < r < 4+o00. Let ¢ > 0. The following
statements are equivalent:

i) There are a measure p and a subspace H of L™ () with d(X*, H) < c.

it) For any finite subset {x1,..,xym} of X, the inequality

m m 1/s
3 (ze;;mn - X) < <Z Hxnus>
n=1

n=1

holds.
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