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Abstract

In this work we define and study wavelets and continuous wavelet transform on
semisimple Lie groups G of real rank �. We prove for this transform Plancherel
and inversion formulas. Next using the Abel transform A on G and its dual
A∗, we give relations between the continuous wavelet transform on G and
the classical continuous wavelet transform on R

�, and we deduce the formulas
which give the inverse operators of the operators A and A∗.

Introduction

Wavelets were introduced by J. Morlet, a French petroleum engineer at ELF-Aqui-
taine, in connection with the study, of seismic traces. The Mathematical foundations
were given in a paper by A. Grossmann and J. Morlet [7]. The harmonic analyst
Y. Meyer and many other mathematician became aware of this theory and they
recognized many classical results inside it. (See [10], [16], [18], [21]).

Wavelets have wide applications, ranging from signal analysis in geophysics and
acoustics to quantum theory and pure mathematics. (See [6], [17], [21], [22]).

The continuous wavelet transform and its Plancherel and inversion Formulas
admit a group theoretic interpretation in connection with the ax + b group (group
of affine transformations of the real line), the Heisenberg group and in greater
generality with locally compact group admitting square integrable representations
(See [8], [9], [16], [24]).
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It is a natural question to ask, whether there exist wavelets and continuous
wavelet transform on real semisimple Lie groups of real rank �.

In this paper we use Harmonic Analysis on G to define and study wavelets
and continuous wavelet transform on G. We have find difficulty with groups G

because they do not possess dilations, which are fundamental in the classical theory
of wavelets on R

�.
We have introduced dilations for G on the level of the spherical Fourier trans-

form on G. We establish a Plancherel and inversion formulas for the continuous
wavelet transform on G. Next using the Abel transform A on G and its dual A∗ we
give relations between these transforms and the classical continuous wavelet trans-
form on R

�, and we deduce the formulas which give the inverse operators of the
operators A and A∗.

This paper is arranged as follow.
In the first section we recall some basic results on the structure of real semisimple

Lie groups of real rank �, on spherical functions and on the spherical Schwartz space
C(K\G/K).

We study in the second and third sections the spherical Fourier transform, the
Abel transform and the convolution on G.

In the fourth section we define wavelets on G and we study their properties.
Next we prove that the Abel transform on G relates these wavelets and classical
wavelets on R

�.
We define in the fifth section continuous wavelet transform on G and we esta-

blish Plancherel and inversion formulas for this transform.
In the sixth section we give inversion formulas for the Abel transform A on G

and its dual A∗, using wavelets on G.

I. Preliminaries

In this section we recall some basic results on real semisimple Lie groups. (See [12],
[13]).

1. Structure of real semisimple Lie groups

Let G be a noncompact connected real semisimple Lie group with finite center, G
the Lie algebra of G. Let θ be a Cartan involution of G, G = K+p the corresponding
Cartan decomposition and K the analytic subgroup of G with Lie algebra K. Let
a ⊂ p be a maximal abelian subspace, a∗ its (real) dual, a∗

C
the complexification

of a∗.
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The Killing form of G, induces a scalar product on a and hence on a∗. We
denote by 〈. , .〉 its C-bilinear extension to a∗

C
.

The � = dim a is called the real rank of G. Let e1, . . . , e� be an orthonormal
basis of a and e∗1, . . . , e

∗
� the dual basis of a∗

C
. Then every λ in a∗

C
is uniquely written

in the form
λ = z1e

∗
1 + . . . + z�e

∗
� , zj ∈ C, j = 1, 2, . . . , � .

Using the basis e1, . . . , e� we can identify a with R
�.

For λ in a∗ put Gλ = {X ∈ G/[H,X] = λ(H)X , for all H ∈ a}. If λ 
= 0
and dim Gλ 
= 0 then λ is called a (restricted) root and mλ = dimGλ is called its
multiplicity. The set of restricted roots will be denoted by

∑
. If λ, µ are in a∗ let

Hλ in a be determined by λ(H) = 〈Hλ, H〉 for H in a, and put 〈λ, µ〉 = 〈Hλ, Hµ〉.
Let W be the Weyl group associated with

∑
and |W | is cardinality.

Fix a Weyl chamber a+ in a and let a+ be its closure. We call a root positive if
it is positive on a+. The corresponding Weyl chamber in a∗ will be denoted by a∗+
and let a∗+ its closure. Let

∑+ be the set of positive roots. Put ρ = 1
2

∑
α∈

∑+ mαα .

Let
∑

0 = {α ∈ / 1
2α 
∈ ∑} and put

∑+
0 =

∑+ ∩∑
0. Let N =

⊕
α∈

∑+ Gα,

N = θN .
Let A be the analytic subgroup of G with Lie algebra a. The exponential map

is an isomorphism from a (considered as an abelian Lie group) onto A. We put
A+ = exp a+. Its closure in G is A+ = exp a+. Let N (resp N) be the analytic
subgroup of G with Lie algebra N (resp N ).

Let x+ be the a+-component of x ∈ G in the Cartan decomposition G =
K exp a+K and let |x| = ‖x+‖. Viewed on G/K (or K\G), | · | is the distance to
the origin 0 = {K}.

Let H : G → a be the Iwasawa projection according to the Iwasawa decom-
position G = KAN, i.e. if g ∈ G then H(g) is the unique element in a such that
g ∈ K expH(g)N.

We normalize the Lebesgue measures dH and dλ on a and a∗ such that for the
Fourier transform

(I.1) F0(f)(λ) =
∫

a

f(H)e−iλ(H)dH , λ ∈ a
∗

we have the inversion formula

(I.2) F−1
0 (g)(H) =

∫
a∗

g(λ)eiλ(H)dλ , H ∈ a , g ∈ S(a∗)

Here S(a∗) denotes the space of C∞-functions on a∗ which are rapidly decreasing
as their derivatives. On the compact group K the Haar measure dk is normalized
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such that the total measure is 1. The Haar measure of nilpotent groups N,N are
normalized such that θ(dn) = dn and∫

N

e−2ρ(H(n))dn = 1 .

In the Iwasawa decomposition, the Haar measure dx on G is given by∫
G

f(x)dx =
∫
K

∫
a

∫
N

f
(
k(expH)n

)
e2ρ(H)dkdHdn , f ∈ D(G) .

Here D(G) denotes the space of C∞-functions on G with compact support (See [12]
p. 273). In the Cartan decomposition, the Haar measure dx of G is given by∫

G

f(x)dx =
∫
K

∫
a+

∫
K

f
(
k1(expH)k2

)
δ(H)dk1dHdk2 , f ∈ D(G)

where

(I.3) δ(H) =
∏

α∈
∑+

[2shα(H)]mα .

(See [20] p. 268).
We have the following estimate for the density δ(H):

(I.4) 0 ≤ δ(H) ≤ e2ρ(H) , (H ∈ a+)

Remark. If G has rank one then, for some α in a∗,
∑

is equal to {α,−α} or
{α,−α, 2α,−2α}. Let H1 in a be such that α(H1) = 1 and write G±1,G±2 instead
of G±α G±2α with dimension m±1,m±2 respectively. Choose the ordering on a∗ such
that α is positive, then ρ = 1

2 (m1 + 2m2).
The Haar measure on G satisfies∫

G

f(x)dx =
∫ ∞

0

f
(
exp tH1

)
A(t)dt, f ∈ D

(
K\G/K) .

Here D(K\G/K) denotes the space of C∞-functions on G which are bi-invariant
under K and with compact support, and

A(t) = 22ρ(sht)2α+1(cht)2β+1

with
α =

1
2
(
m1 + m2 − 1

)
, β =

1
2
(
m2 − 1

)
, ρ = α + β + 1 .

(See [15] p. 14–16 and p. 27).
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2. Spherical functions

The spherical functions on G are the functions

ϕλ(x) =
∫
K

e(iλ−ρ)(H(xk))dk, x ∈ G , λ ∈ a
∗
C .

We collect now some properties of the spherical functions.

i) The function ϕλ(x) is bi-invariant under K in x ∈ G and W -invariant in
λ ∈ a∗

C
.

ii) The function ϕλ(x) is a C∞-function in x and a holomorphic function in λ.
iii) We have

− ϕλ(e) = 1 , ϕλ(x) = ϕ−λ

(
x−1

)
; ϕ−λ(x) = ϕλ(x)

− ϕλ ≡ ϕλ′ , if and only if λ′ = Sλ for some S ∈ W .

iv) We have the product formula

(I.5) ∀x, y ∈ G, ϕλ(x)ϕλ(y) =
∫
K

ϕλ(xky)dk

v) We have
∆ϕλ = −

(
‖λ‖2 + ‖ρ‖2

)
ϕλ

where ∆ is the Laplacian on G/K.

vi) We have

(I.6) e−ρ(H) ≤ ϕ0

(
expH

)
≤ Const.

(
1 + ‖H‖

)a
e−ρ(H) ,

(
H ∈ a+

)
For some constant a > 0.

vii) We have

− O < ϕ−iλ(expH) ≤ eλ(H)ϕ0(expH) ,
(
H ∈ a+ , λ ∈ a∗+

)
− |ϕλ(x)| ≤ ϕiImλ(x) ,

(
x ∈ G , λ ∈ a

∗
C) .(I.7)

Remark. If G has rank one, it follows from [15] p. 27, that the set of all spherical
functions for (G,K) are

ϕλ(at) = ϕ
(α,β)
λ (t) , at ∈ A, t ∈ R
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where
α =

1
2
(
m1 + m2 − 1

)
, β =

1
2
(
m2 − 1

)
and ϕ

(α,β)
λ the Jacobi function

ϕ
(α,β)
λ (t) = 2F1

(1
2
(
α + β + 1 − iλ

)
,

1
2
(
α + β + 1 + iλ

)
; α + 1 ;−sh2t

)
2F1 being the Gaussian hypergeometric function.

3. The spherical Schwartz space C(K\G/K)

Let U(G) be the universal enveloping algebra of G. The elements of U(G) act
on C∞(G) (the space of C∞-functions on G), as differential operators, on both
sides. Following Harish-Chandra we shall write f(a;x; b) for the action of (a, b) ∈
U(G) × U(G) on f in C∞(G) at x ∈ G. Explicitly,

f(a ; x ; b) =
( ∂

∂s1
. . .

∂

∂sd

∂

∂t1
. . .

∂

∂te

)/
s1=...=sd=t1=...=te=0

× f
(
(exp s1X1) . . . (exp sdXd)x(exp t1Y1) . . . (exp teYe)

)
if a = X1 . . . Xd , b = Y1 . . . Ye ,

(
X1, . . . , Xd, Y1, . . . , Ye ∈ G

)
.

The spherical Schwartz space C(K\G/K) is the space of all functions f in
C∞(K\G/K) (the subspace of C∞(G) consisting of functions bi-invariant under K)
which satisfy

µa,b,r(f) = sup
x∈G

(
1 + |x|

)r
ϕ−1

0 (x)
∣∣f(a ;x ; b)

∣∣ < +∞

for any a, b ∈ U(G) and any integer r ≥ 0.
We topologize C(K\G/K) by means of the semi-norms µa,b,r.
The space C(K\G/K) has the following properties

i) C(K\G/K) is a Fréchet space.
ii) D(K\G/K) is a dense subspace of C(K\G/K).

(See [12] p. 252–257 and [1] p. 338).
iii) We denote by Lp(K\G/K) , p ∈ [1,+∞] , the space of functions f on G,

bi-invariant under K, measurable and such that.

‖f‖p =
(∫

G

|f(x)|pdx
)1/p

< +∞ , if p ∈ [1,+∞[

‖f‖∞ = ess sup
x∈G

|f(x)| < +∞ .
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From [1] p. 338, the space C(K\G/K) is a dense subspace of Lq(K\G/K) for 2 ≤
q < +∞ , while it is not contained in Lq(K\G/K) for 1 ≤ q < 2 .

II. The spherical Fourier transform and the Abel transform

1. The Harish-Chandra’s c-function

The Harish-Chandra’s c-function is defined by

(II.1) c(λ) = γ
∏

α∈
∑+

0

c(α)(λ)

where c(α)(λ) is the c-function for the rank one space associated with α and

γ =
∏

α∈
∑+

0

[
c(α)(iρ)

]−1
.

Moreover

(II.2) c(α)(λ) =
[
I(α)(iρ(α))

]−1
I(α)(λ)

where
ρ(α) =

1
2
(
mα + 2m2α

)
α

and

(II.3) I(α)(λ) =
Γ
(
〈iλ, α0〉

)
Γ
(

1
4mα + 1

2 〈iλ, α0〉
)

Γ
(

1
2mα + 〈iλ, α0〉

)
Γ
(

1
4mα + 1

2m2α + 1
2 〈iλ, α0〉

)

with α0 = α
〈α , α〉 and Γ the classical gamma function. (See [12] Theorem 4.7.5,

p. 175).
The function c(λ) has the following properties

i) c(−λ) = c(λ), (λ ∈ a∗)
ii) |c(λ)| is W -invariant on a∗

iii) The function λ → c(λ)−1c(−λ)−1 is analytic and nonnegative on a∗.

(See [12] Proposition 4.7.14, p. 182, and Theorem 6.3.4, p. 272).
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To rewrite |c(α)(λ)|−2 we use the well known formulas for the gamma function

Γ(z)Γ(−z) = −π(z sinπz)−1; Γ
(1

2
+ z

)
Γ
(1

2
− z

)
= π(cosπz)−1;

Γ(2z) = π−1/222z−1Γ(z)Γ
(1

2
+ z

)
.

According to the possibilities for the multiplicities mα and m2α of a root α ∈ ∑+
0

we distinguish four cases (See [4] p. 11–12). We give in each case the explicit form
of |c(α)(λ)|−2. We put Λ = 〈λ, α0〉.

i) If m2α = 0 , mα even
(II.4)∣∣c(α)(λ)

∣∣−2 =
[
I(α)(iρ(α))

]2((mα

2
− 1

)2

+ Λ2

)((mα

2
− 2

)2

+ Λ2

)
. . . (1 + Λ2)Λ2

ii) If m2α = 0 , mα odd

∣∣c(α)(λ)
∣∣−2 =

[
I(α)(iρ(α))

]2((mα

2
− 1

)2

+ Λ2

)
(II.5)

×
((mα

2
− 2

)2

+ Λ2

)
. . .

(1
4

+ Λ2
)
ΛthπΛ

iii) If m2α odd, 1
4mα ∈ Z

∣∣c(α)(λ)
∣∣−2 = 2mα+1

[
I(α)(iρ(α))

]2((mα

4
− 1

2

)2

+
Λ2

4

)
(II.6)

×
((mα

4
− 3

2

)2

+
Λ2

4

)
. . .

(1
4

+
Λ2

4

)

×
((mα

4
+

m2α

2
− 1

)2

+
Λ2

4

)

×
((mα

4
+

m2α

2
− 2

)2

+
Λ2

4

)
. . .

(1
4

+
Λ2

4

)
Λthπ

Λ
2

iv) If m2α odd, 1
4mα ∈ Z + 1

2

∣∣c(α)(λ)
∣∣−2 = 2mα−1

[
I(α)(iρ(α))

]2((mα

4
− 1

2

)2

+
Λ2

4

)
(II.7)
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×
((mα

4
− 3

2

)2

+
Λ2

4

)
. . .

(
1 +

Λ2

4

)

×
((mα

4
+

m2α−1

2
− 1

2

)2

+
Λ2

4

)

×
((mα

4
+

m2α−1

2
− 3

2

)2

+
Λ2

4

)
. . .

(
1 +

Λ2

4

)
Λ3cothπ

Λ
2

Remark. We deduce from relations (II.4), . . . ,(II.7) the following estimate

(II.8)
∣∣c(λ)

∣∣−2 ≤ const.(1 + ‖λ‖)b , (λ ∈ a
∗)

for some constant b > 0. (See also [12] Proposition 4.7.15, p. 183).

2. The spherical Fourier transform

Notations. We denote by

– P(a∗
C
)W the space of entire functions on a∗

C
, which are W -invariant of exponen-

tial type and rapidly decreasing.
– S(a∗)W the space of C∞-functions on a∗, which are W -invariant and rapidly

decreasing as their derivatives.
– Lp(a∗, |c(λ)|−2

|W | dλ)W , p ∈ [1,+∞], the space of functions f on a∗, W -invariant,
measurable and such that

‖f‖Lp =
(

1
|W |

∫
a∗

∣∣f(λ)
∣∣p∣∣c(λ)

∣∣−2
dλ

)1/p

< +∞, p ∈ [1,+∞[

‖f‖L∞ = ess sup
λ∈a

∗ |f(λ)| < +∞ .

We topologize these spaces with the classical topology.

Definition II.1. The spherical Fourier transform F (sometimes called the Harish-
Chandra transform) is defined by

F(f)(λ) =
∫
G

f(x)ϕ−λ(x)dx , f ∈ D(K\G/K) .

Remark. If G has rank one the spherical Fourier transform can be written in the
from

F(f)(λ) =
∫ ∞

0

f(at)ϕ
(α,β)
λ (t)A(t)dt , f ∈ D(K\G/K)
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we put
f(at) = f [t] , at ∈ A , t ∈ R

the function f [t] belongs to the space D∗(R) of C∞-functions on R, even and with
compact support.

Using this notation we have

(II.9) F(f)(λ) =
∫ ∞

0

f [t]ϕ(α,β)
λ (t)A(t)dt , f ∈ D∗(R)

then the spherical Fourier transform of f [t] is the Jacobi transform (See [15] p. 27).

Theorem II.1

i) The transform F is an isomorphism between D(K\G/K) and P(a∗
C
)W .

ii) More precisely, f has support in the ball {x ∈ G/|x| ≤ R} if and only if F(f) is

of exponential type R.

iii) The inverse transform F−1 is given by

(II.10) F−1(h)(x) =
1

|W |

∫
a∗

h(λ)ϕλ(x)|c(λ)|−2dλ , (x ∈ G) .

(See [13] p. 450 and 454; [1] p. 332).

From [5], 22.9.4 iii), p. 78, we deduce the following result.

Corollary II.1

Let f be a function on G satisfying

– f is continuous and bounded

– f belongs to L1(K\G/K)
– F(f) belongs to L1

(
a∗, |c(λ)|−2

|W | dλ
)W

then we have the inversion formula for the transform F :

(II.11) f(x) =
1

|W |

∫
a∗

F(f)(λ)ϕλ(x)|c(λ)|−2dλ , (x ∈ G) .

Theorem II.2

The spherical Fourier transform F is a topological isomorphism between

C(K\G/K) and S(a∗)W . The inverse transform F−1 is given by the relation (II.10).

(See [13] Theorem 6.4.1, p. 273; [1] Theorem 1, p. 331–332).
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Theorem II.3

i) Plancherel formula for F
For all f in C(K\G/K) we have

(II.12)
∫
G

|f(x)|2dx =
1

|W |

∫
a∗

∣∣F(f)(λ)
∣∣2∣∣c(λ)

∣∣−2
dλ .

ii) Plancherel theorem for F
The transform F extends uniquely to a unitary isomorphism of L2(K\G/K)

onto L2
(
a∗, |c(λ)|−2

|W | dλ
)W

.

(See [13] p. 454; [12] Theorem 6.4.2, p. 274; [1] p. 337).

3. The Abel transform

Notations. We denote by

– D(a)W the space of C∞-functions on a, which are W -invariant and with compact

support.

– S(a)W the space of C∞-functions on a, which are W -invariant and rapidly

decreasing as their derivatives.

We topologize these spaces with the classical topology.

Definition II.2. The Abel transform A is defined on D(K\G/K) by

(II.13) ∀H ∈ a, A(f)(H) = eρ(H)

∫
N

f
(
(expH)n

)
dn

(See [13] p. 450; [12] Proposition 3.3.1, p. 107; [1] p. 337).

Proposition II.1

For f in D(K\G/K) we have

(II.14) F(f) = F0 ◦ A(f)

where F0 is the classical Fourier transform given by the relation (I.1).

(See [12] Proposition 3.3.1, 3.3.2, p. 107–108; [1] p. 337–338).

Theorem II.4

i) The transform A is a topological isomorphism between D(K\G/K) and D(a)W .

ii) More precisely, f has support in the ball {x ∈ G/|x| ≤ R} if and only if A(f)
has support in the ball {H ∈ a/‖H‖ ≤ R}.

(See [13] Corollary 7.4, p. 454; [12] Proposition 3.3.2, p. 107; [1] Proposition 5,

p. 338).
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Theorem II.5

For any f in C(K\G/K) the function A(f) defined by the relation (II.13) lies in

S(a)W and the map A is a topological isomorphism between C(K\G/K) and S(a)W

and we have the relation (II.14).

(See [12] Theorem 6.2.4, the relation (6.2.16) p. 264–265; [1] p. 348).

Remark. In the rank one case an explicit inversion formula for the Abel transform
as a Weyl fractional integral has been obtained by T.H. Koornwinder [15]. For other
groups see [23], [2], [3], [19].

III. Convolution

1. Generalized translation operators on G

Definition III.1. Let f be a function in D(K\G/K). For x, y ∈ G. We put

(III.1) Tx(f)(y) =
∫
K

f(xky)dk .

The operators Tx, x ∈ G, are called generalized translation operators on G.

Properties
i) The function Tx(f)(y) is bi-invariant under K with respect to x and y.
ii) For f in D(K\G/K) and x, y ∈ G

Te(f)(x) = f(x); Tx(f)(y) = Ty(f)(x)

iii) For x, y ∈ G.

(III.2) Tx(ϕλ)(y) = ϕλ(x)ϕλ(y) .

Theorem III.1

i) Let f be in D(K\G/K) (resp. C(K\G/K)). For all x ∈ G, the function Tx(f)
belongs to D(K\G/K) (resp. C(K\G/K)) and we have

(III.3) ∀λ ∈ a
∗, F

(
Tx(f)

)
(λ) = ϕλ(x)F(f)(λ) .

(See [12] Theorem 6.2.2, p. 262).
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ii) Let f be in Lp(K\G/K), p ∈ [1,+∞]. For all x ∈ G, the function Tx(f) belongs

to Lp(K\G/K), p ∈ [1,+∞], and we have

(III.4) ‖Tx(f)‖p ≤ ‖f‖p

Theorem III.2

i) For f in D(K\G/K) (resp. C(K\G/K)), the map (x, y) → Tx(f)(y) is continuous

on G × G.

ii) For f in Lp(K\G/K), p ∈ [1,+∞[, the map x → Tx(f) is continuous from G into

Lp(K\G/K), p ∈ [1,+∞[.

Proof. i) We deduce the result from the definition III.1
ii) It is sufficient to consider the case where f is in D(K\G/K). For all x0 ∈ G,

there exists r > 0 such that for all x ∈ G satisfying |xx−1
0 | ≤ 1 , we have

‖Tx(f) − Tx0(f)‖p ≤
(∫

B

dy

)1/p

sup
y∈B

∣∣Tx(f)(y) − Tx0(f)(y)
∣∣

where B = {y ∈ G/|y| < r} .

From this inequality and the i) we deduce

lim
x→x0

‖Tx(f) − Tx0(f)‖p = 0 . �

Remark. In the rank one case the expression and the properties of the generalized
translation operators are given by T.H. Koornwinder [15].

2. Convolution

Definition III.2. The convolution of f and g in D(K\G/K) is the function f ∗ g

defined by

f ∗ g(x) =
∫
G

f(y)g
(
y−1x

)
dy

This relation can also be written in the form

f ∗ g(x) =
∫
G

f(y)Ty−1(g)(x)dy
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Theorem III.3

i) The spaces D(K\G/K), C(K\G/K), L1(K\G/K) are commutative convolution

algebras and we have

F(f ∗ g) = F(f) · F(g)

(See [12] Theorem 6.1.10, p. 255, Theorem 6.2.2, p. 262).

ii) For f in Lp(K\G/K) and g in Lq(K\G/K) with p, q ∈ [1,+∞], the function f ∗g

belongs to Lr(K\G/K) with r ∈ [1,+∞] such that 1
p + 1

q − 1 = 1
r and we have

‖f ∗ g‖r ≤ ‖f‖p‖g‖q .

Theorem III.4

Let f be in L2(K\G/K) and g in Lp(K\G/K), p ∈ [1, 2[, then

i) The function f ∗ g belongs to L2(K\G/K) and we have

‖f ∗ g‖2 ≤ ‖ϕ0‖q| |f‖2| |g‖p

with q ∈]2,+∞[, such that 1
p + 1

q = 1 .

ii) We have

F(f ∗ g) = F(f).F(g) .

Proof. i) Let f, g in D(K\G/K), then by Theorem II.3

‖f ∗ g‖2
2 = ‖F(f).F(g)‖2

L2 ≤ ‖F(g)‖2
L∞‖F(f)‖2

L2

but from Hölder’s inequality we have

∀λ ∈ a
∗,

∣∣F(g)(λ)
∣∣ ≤ ‖ϕ0‖q‖g‖p

then
‖f ∗ g‖2

2 ≤ ‖ϕ0‖2
q‖g‖2

p‖f‖2
2

since D(K\G/K) is dense in L2(K\G/K) and Lp(K\G/K) the result follows.
ii) The result is clear. �

Theorem III.5

Let f and g be in L2(K\G/K). Then the function f ∗g belongs to Lq(K\G/K),
q ∈]2,+∞[, and we have

‖f ∗ g‖q ≤ ‖ϕ0‖q‖f‖2‖g‖2
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Proof. Let h be in Lp(K\G/K) with p ∈ [1, 2[, such that 1
p + 1

q = 1 and f, g in
D(K\G/K), then from the theorem III.4∣∣∣∣

∫
G

f ∗ g(x)h(x)dx
∣∣∣∣ ≤

∫
G

|g(x)|
(
|h| ∗ |f |

)
(x)dx

≤ ‖g‖2‖(|h| ∗ |f |)‖2 ≤ ‖ϕ0‖q‖f‖2‖g‖2‖h‖p

taking supremum over {h ∈ Lp(K\G/K)/‖h‖p ≤ 1} we get

‖f ∗ g‖q ≤ ‖ϕ0‖q‖f‖2‖g‖2. �

Theorem III.6

For f and g in D(K\G/K) (resp. C(K\G/K) we have

A(f ∗ g) = A(f) ∗0 A(g)

where ∗0 is the convolution on a.

(See [13 ] Corollary 7.4, p. 454; [12] Proposition 3.3.2, p. 107; [1] p. 348).

IV. Wavelets on G

Definition IV.1. We say that a function g on G, measurable, bi-invariant under
K, is a wavelet on G if there is a constant Cg with the property that 0 < Cg < +∞
and, for λ almost every where on a∗,

Cg =
∫ ∞

0

∣∣F(g)(aλ)
∣∣2 da

a

Proposition IV.1

i) Let t ∈]0,+∞[. There exists a function βt in C(K\G/K) such that

∀λ ∈ a
∗ , F(βt)(λ) = exp

[
− t(‖λ‖2 + ‖ρ‖2)

]
ii) The function

g(x) = − d

dt
βt(x) − ‖ρ‖2βt(x)
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is a wavelet on G which belongs to C(K\G/K) and we have

Cg =
e−2t‖ρ‖2

8t2

Proof. We deduce the results from the theorem II.2 and the definition IV.1. �

Remark. The properties of the function βt have been studied by R. Gangolli [11].

If G has rank one, the definition IV.1 can be written more simply as follows:
A function g on G measurable, bi-invariant under K, is a wavelet on G if the even
function g[t] on R given by

g(at) = g[t] , at ∈ A , t ∈ R

satisfies the condition

(IV.1) 0 < Cg =
∫ ∞

0

∣∣F(g)(a)
∣∣2 da

a
< +∞

where F is the Jacobi transform defined by the relation (II.9).

Proposition IV.2

For the rank one case, we consider an even non zero function g, on R in

L2
(
[0,+∞[, A(t)dt

)
(the space of square integrable functions on [0,+∞[ with

respect to the measure A(t)dt) satisfying

(∗) ∃α > 0 such that F(g)(λ) −F(g)(0) = 0
(
|λ|α

)
, as λ → 0 .

Then the condition (IV.1) is equivalent to

F(g)(0) = 0 .

Proof.

We assume that the condition (IV.1) is satisfied. If F(g)(0) 
= 0, then there are
positive η and M such that

∣∣F(g)(λ)
∣∣ ≥ M , for λ ∈ [0, η]

thus the integral in (IV.1) would be equal to +∞.
We assume that

F(g)(0) = 0
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since g 
= 0, we deduce from the theorem II.3 that the first inequality in (IV.1) will
hold.

From the condition (*) there are positive δ and ε such that

∣∣F(g)(λ)
∣∣ ≥ ελα , for λ ∈ [0, δ]

we deduce from this inequality, relations (II.4),. . . ,(II.7), and the fact that the func-
tion |c(λ)|−2 is increasing on [0,+∞[ that

∫ ∞

0

∣∣F(g)(a)
∣∣2 da

a
≤ ε

∫ δ

0

da

a1−α
+

|c(δ)|2
δ

∫ +∞

δ

∣∣F(g)(a)
∣∣2∣∣c(a)|−2da

using the theorem II.3 we obtain
∫ ∞

0

∣∣F(g)(a)
∣∣2 da

a
≤ εδα

α
+

1
δ

∣∣c(δ)∣∣2‖g‖2
2

thus the integral in (IV.1) is finite. �

Remark. The relation
F(g)(0) = 0 .

can be equivalently written as
∫ ∞

0

g[t]ϕ(α,β)
0 (t)A(t)dt = 0 .

Proposition IV.3

For arbitrary rank, we consider for α ∈ ∑+
0 the function kα(a) defined on

]0,+∞[ by

kα(a) = sup
λ∈a∗\{0}

|c(α)
(
λ
a

)∣∣−2∣∣c(α)(λ)
∣∣−2

where c(α) is the function given by the relation (II.2).

Then we have

kα(a) =

{
a−2 , if a ≥ 1

a−(mα+m2α) , if 0 < a < 1

Proof. We deduce the result from relations (II.4),. . . ,(II.7). �
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Proposition IV.4

i) The function k(a) defined on ]0,+∞[ by

k(a) = sup
λ∈a∗\{0}

∣∣c(λ
a

)∣∣−2∣∣c(λ)
∣∣−2

where c is the function given by the relation (II.1), satisfies the relation

k(a) =
∏

α∈
∑+

0

kα(a)

and we have

k(a) =


 a−2card

∑+

0 , if a ≥ 1

a− dimN , if 0 < a < 1

ii) When G has a complex structure we have

k(a) = a−2card
∑+

0 , for all a > 0 .

Proof. i) We deduce the results from relations (II.1), (II.4),. . . ,(II.7) and the propo-
sition IV.3.

ii) We obtain the result from the fact that in this case we have

(IV.2) ∀λ ∈ a
∗ ,

∣∣c(λ)
∣∣−2 =

∣∣π(iλ)
∣∣2π(ρ)−2

where

(IV.3) π(λ) =
∑

α∈
∑+

0

〈λ, α〉

(See [13] Theorem 5.7, p. 432). �

Theorem IV.1

Let g be a wavelet on G in L2(K\G/K) and a ∈]0,+∞[. Then

i) The function λ → F(g)(aλ) belongs to L2
(
a∗, |c(λ)|−2

|W | dλ
)W

and we have

‖F(g)(a.)‖L2 ≤
(

k(a)
a�

)1/2

‖g‖2
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ii) There exists a function ga in L2(K\G/K) such that

∀λ ∈ a
∗, F(ga)(λ) = F(g)(aλ)

and we have

(IV.4) ‖ga‖2 ≤
(

k(a)
a�

)1/2

‖g‖2

Proof. i) By change of variables we have

1
|W |

∫
a∗

∣∣F(g)(aλ)
∣∣2∣∣c(λ)

∣∣−2
dλ =

1
a�|W |

∫
a∗

∣∣F(g)(Λ)
∣∣2∣∣∣c(Λ

a

)∣∣∣−2

dΛ

but we have∫
a∗

∣∣F(g)(Λ)
∣∣2∣∣∣c(Λ

a

)∣∣∣−2

dΛ ≤ k(a)
∫

a∗

∣∣F(g)(Λ)
∣∣2∣∣c(Λ)

∣∣−2
dΛ

we deduce the result from these relations and the theorem II.3.
ii) The theorem II.3 gives the result. �

Theorem IV.2

i) Let a ∈]0,+∞[ and g a wavelet on G in D(K\G/K) with support in the ball

{x ∈ G/|x| ≤ R}. There exists a function ga in D(K\G/K) with support in the ball

{x ∈ G/|x| ≤ aR) such that

∀λ ∈ a
∗, F(ga)(λ) = F(g)(aλ) .

ii) Let a ∈]0,+∞[ and g a wavelet on G in C(K\G/K). Then there exists a function

ga in C(K\G/K) such that

∀λ ∈ a
∗, F(ga)(λ) = F(g)(aλ) .

Proof. We deduce these results from theorems II.1, II.2. �

Theorem IV.3

Let g be a wavelet on G in D(K\G/K) (resp. C(K\G/K)) and ga, a ∈]0,+∞[,
the function given by the theorem IV.2. Then

(IV.5) ∀x ∈ G , ga(x) = A−1 ◦ Ha ◦ A(g)(x)
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where A is the Abel transform and Ha the operator defined by

(IV.6) ∀H ∈ a, Ha(f)(H) =
1
a�

f
(H

a

)
Proof. From the proposition II.1 and the theorem II.5 we have

∀λ ∈ a
∗, F0 ◦ A(ga)(λ) = F0 ◦ A(g)(aλ) .

By change of variables we obtain

∀λ ∈ a
∗, F0 ◦ A(ga)(λ) = F0

[
Ha ◦ A(g)

]
(λ)

we deduce the result from the injectivity of the Fourier transform F0 and
theorems II.4, II.5. �

Remark. Let g0 be a function defined on R
�. We put for a ∈]0,+∞[:

(IV.7) ∀H ∈ R
�, g0

a(H) =
1
a�

g0
(H

a

)
= Ha(g0)(H) .

Using this notation, the relation (IV.5) can also be written in the form

(IV.8) ∀H ∈ a, A(ga)(H) =
(
A(g)

)
a
(H) .

Theorem IV.4

We suppose that G has complex structure. If g is a wavelet on G in D(K\G/K)
we have for all a > 0:

∀H ∈ a, ga(expH) = a−(�+card
∑+

0
) δ0

(
H
a

)
δ0(H)

g
(

exp
H

a

)

where

(IV.9) ∀H ∈ a, δ0(H) =
∏

α∈
∑+

0

2shα(H) .

Proof. When G has complex structure and considered as a real Lie group, we have
mα = 2 and m2α = 0 for α ∈ ∑+. In this case the spherical function ϕλ has the
following form

ϕλ(exp H) = π(ρ)π(iλ)−1δ0(H)−1
∑
s∈W

(dets)eisλ(H), λ ∈ a
∗
C, H ∈ a
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where δ0(·) and π(·) the functions given by relations (IV.9), (IV.3).
(See [23] p. 287–289 and [13] Theorem 5.7, p. 432).

Using these relations and (IV.2) we obtain for all a > 0, λ ∈ a∗ and H ∈ a:

(IV.10) ϕλ/a(exp H)
∣∣∣c(λ

a

)∣∣∣−2

= a−card
∑+

0
δ0

(
H
a

)
δ0(H)

∣∣c(λ)
∣∣−2

ϕλ

(
exp

H

a

)
.

Let g be a wavelet on G in D(K\G/K). From the Theorem II.1, the function
ga, a ∈]0,+∞[, is given by

∀H ∈ a, ga (expH) =
1

|W |

∫
a∗

F(g)(aλ)ϕλ(exp H)
∣∣c(λ)|−2dλ

making a change of variables and using the relation (IV.10) we obtain

∀H ∈ a, ga(exp H) = a−(�+card
∑+

0
) δ0

(
H
a

)
δ0(H)

g
(

exp
H

a

)
. �

Remark. From the Theorem II.3. i) and the relation (IV.2) we deduce

‖ga‖2 = a−
(

�
2+card

∑+

0

)
‖g‖2

then the inequality (IV.4) is an equality in this case.

Example: Let G denote the group SO0(1, 3). For this group we have the following
results.

– The spherical function ϕλ and the function |c(λ)|−2 are

ϕλ(x) =
sin λx

λ shx
, x ∈ R\{0}, λ ∈ C\{0}

|c(λ)|−2 = λ2, λ ∈ R .

(See [15] p. 14–16 and p. 27).
– The spherical Fourier transform and its inverse are

F(f)(λ) = 4
∫ ∞

0

f(x)ϕλ(x)sh2x dx, f ∈ D∗(R)

F−1(h)(x) =
1
2π

∫ ∞

0

h(λ)ϕλ(x)λ2dλ .

(See [15] p. 27).
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For this group we have

k(a) =
1
a2

, a ∈]0,+∞[ .

Let g be a wavelet on G = SO0(1, 3) in D∗(R). The function ga, a ∈]0,+∞[, is
given for x ∈ R\{0} by

(IV.11) ga(x) =
1
a2

shx
a

shx
g
(x

a

)
we see that ga is in D∗(R) and in S∗(R) (the space of C∞-functions on R, even and
such that for all p, k ∈ N, supx∈R (1 + x2)p ϕ−1

0 (x)
∣∣f (k)(x)

∣∣ < +∞).
We have the relation

‖ga‖2 =
1

a3/2
‖g‖2

then the inequality (IV.4) is also an equality in this case.
We remark that when g is in L1([0,+∞[, 4sh2xdx) (the space of integrable

functions on [0,+∞[ with respect to the measure 4sh2xdx) the function ga, a ∈
]1,+∞[, given by the relation (IV.11) does not belong to L1([0,+∞[, 4sh2xdx).

Proposition IV.5

Let g be a wavelet on G in D(K\G/K)(resp. C(K\G/K))(resp. L2(K\G/K))
and ga, a ∈]0,+∞[, the function given by theorems IV.1, IV.2. Then the map a → ga
is continuous from ]0,+∞[ into D(K\G/K)(resp. C(K\G/K))(resp. L2(K\G/K)).

Proof. For g in D(K\G/K) (resp. C(K\G/K)) we deduce the result from the
theorem IV.3.

Let g be in L2(K\G/K). For all ε > 0, there exists g0 in C(K\G/K) such that

‖g − g0‖2 < ε .

Let a, a0 ∈]0,+∞[. From the theorem II.3 we have∫
G

|g0
a(x) − g0

a0
(x)

∣∣2dx =
1

|W |

∫
a∗

∣∣F(g0)(aλ) −F(g0)(a0λ)
∣∣2∣∣c(λ)

∣∣−2
dλ

we deduce from this relation and the dominated convergence theorem that the map
a → g0

a is continuous from ]0,+∞[ into L2(K\G/K).
We have

‖ga − ga0‖2 ≤ ‖ga − g0
a‖2 + ‖g0

a − g0
a0
‖2 + ‖g0

a0
− ga0‖2
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but from the relation (IV.2) we have

‖ga − g0
a‖2 ≤

(
k(a)
a�

)1/2

‖g − g0‖2

then

‖ga − ga0‖2 ≤
[(k(a)

a�

)1/2

+
(k(a0)

a�0

)1/2
]
‖g − g0‖2 + ‖g0

a − g0
a0
‖2

we deduce the result from this inequality, the first result and the continuity of the
function k(a) on ]0,+∞[. �
Example: Let g be a wavelet on G = SO0(1, 3) in D∗(R) (resp. S2

∗(R)) (resp.
L2([0,+∞[, 4sh2xdx)) and ga, a ∈]0,+∞[, the function given by the relation (IV.11).
Then the map a → ga is continuous from ]0,+∞[ into D∗(R) (resp. S2

∗(R)) (resp.
L2([0,+∞[, 4sh2xdx)).

Definition IV.2. Let g be a wavelet on G in D(K\G/K) (resp. C(K\G/K)) (resp.
L2(K\G/K)) and ga, a ∈]0,+∞[, the function given by theorems IV.1, IV.2. We
define the family of wavelets ga,x, (a, x) ∈]0,+∞[×G, on G by

∀ y ∈ G, ga,x(y) =
(

k(a)
a�

)−1/2

Tx(ga)(y)

where Tx, x ∈ G, are generalized translation operators on G given by the defini-
tion III.1.

Proposition IV.6

Let g be a wavelet on G in L2(K\G/K). Then the map (a, x) → ga,x is
continuous from ]0,+∞[×G into L2(K\G/K).

Proof. Let (a, x), (a0, x0) be in ]0,+∞[×G. From the theorem III.1. ii) we deduce

‖Tx(ga) − Tx0(ga0)‖2 ≤ ‖ga − ga0‖2 + ‖Tx(ga0) − Tx0(ga0)‖2

we obtain the result from the proposition IV.5, the theorem III.2. ii) and the conti-
nuity of k(a). �
Example: The generalized translation operators associated with the group G =
SO0(1, 3) are given for x, y ∈ R\{0}, by

Tx(f)(y) =
1√
π

∫ x+y

|x−y|
f(t)

sh t

shx sh y
dt , f ∈ D∗(R) .

(See [15] p. 56–60).
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Let g be a wavelet on G = SO0(1, 3) and ga, a ∈]0,+∞[, the function given by
the relation (IV.11). We have

∀ y ∈ R, ga,x(y) = a3/2Tx(ga)(y)

and the map (a, x) → ga,x is continuous from ]0,+∞[×R into L2([0,+∞[, 4sh2xdx).

V. Continuous wavelet transform on G

Definition V.1. Let g be a wavelet on G in D(K\G/K). We define the continuous
wavelet transform on G for f in D(K\G/K) by

Φg(f)(a, y) =
∫
G

f(x)ga,y(x) dx , for all y ∈ G .

This relation can also be written in the form

Φg(f)(a, y) =
(k(a)

a�

)−1/2

f ∗ ga(y
−1)

where * is the convolution given by the definition III.2.

Proposition V.1

i) Let g be a wavelet on G in D(K\G/K)(resp. C(K\G/K)). Then for all a ∈]0,+∞[
and for all f in D(K\G/K)(resp. C(K\G/K)), the map y → Φg(f)(a, y) belongs to

D(K\G/K)(resp. C(K\G/K)).
ii) Let g be a wavelet on G in (Lp ∩ L2)(K\G/K), p ∈ [1, 2[, such that for all

a ∈]0,+∞[, the function ga belongs to Lp(K\G/K), p ∈ [1, 2[. Then for all f in

Lq(K\G/K), q ∈ [1,+∞], the map y → Φg(f)(a, y) belongs to Lr(K\G/K) with

r ∈ [1,+∞] satisfying 1
p + 1

q − 1 = 1
r .

Proof. We deduce the result from theorems IV.2, III.1. i), III.3. �

Proposition V.2

Let g be a wavelet on G in L2(K\G/K) and let f be a function in L2(K\G/K).
Then

i) We have

∀ (a, y) ∈]0,+∞[×G,
∣∣Φg(f)(a, y)

∣∣ ≤ ‖f‖2‖g‖2

ii) The map (a, y) → Φg(f)(a, y) is continuous on ]0,+∞[×G.
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iii) For all a ∈]0,+∞[ we have

lim
|y|→+∞

Φg(f)(a, y) = 0 .

Proof. i) From the definition V.1 we have

∀ (a, y) ∈]0,+∞[×G,
∣∣Φg(f)(a, y)

∣∣ ≤ (k(a)
a�

)−1/2

‖f‖2‖ga‖2

but from the relation (IV.3) we have

‖ga‖2 ≤
(k(a)

a�

)1/2

‖g‖2

thus
∀ (a, y) ∈]0,+∞[×G ,

∣∣Φg(f)(a, y)
∣∣ ≤ ‖f‖2‖g‖2

ii) We deduce the result from the definition V.1 and the proposition IV.6.
iii) α) Let g0 be in C(K\G/K) and let f0 be a function of D(K\G/K) which

has its support in the ball B = {x ∈ G/|x| ≤ R}.
We have

Φg0(f0)(a, y) =
(k(a)

a�

)−1/2
∫
B

f0(x)g0
a(y

−1x)dx

then ∣∣Φg0(f0)(a, y)
∣∣ ≤ (k(a)

a�

)−1/2

‖f0‖2

(∫
B

∣∣g0
a(y

−1x)
∣∣2dx)1/2

≤
(k(a)

a�

)−1/2

‖f0‖2

(∫
y−1B

∣∣g0
a(t)

∣∣2dt)1/2

but from the theorem IV.2 ii) the function g0
a, a ∈]0,+∞[, belongs to C(K\G/K),

then from the dominated convergence theorem

lim
|y|→+∞

∫
y−1B

∣∣g0
a(t)

∣∣2dt = 0

thus for all a ∈]0,+∞[
lim

|y|→+∞
Φg0(f0)(a, y) = 0 .
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β) We suppose that g and f belong to L2(K\G/K). From the density of the
spaces D(K\G/K) and C(K\G/K) in L2(K\G/K), for all ε > 0 there are a function
g0 in D(K\G/K) and a function f0 in C(K\G/K) such that

‖g − g0‖2 < ε and ‖f − f0‖2 < ε .

We have

∣∣Φg(f)(a, y)
∣∣ ≤ ∣∣Φg0(f0)(a, y)

∣∣ +
∣∣Φg(f)(a, y) − Φg0(f0)(a, y)

∣∣
using the i) we obtain

∣∣Φg(f)(a, y)−Φg0(f0)(a, y)
∣∣ ≤ ‖g‖2‖f − f0‖2 + ‖f‖2‖g− g0‖2 + ‖f − f0‖2‖g− g0‖2

hence we deduce the result. �

Proposition V.3

Let g be a wavelet on G in L2(K\G/K). Then

i) For all a ∈]0,+∞[ and for all f in Lp(K\G/K), p ∈ [1, 2[, the map y → Φg(f)(a, y)
belongs to L2(K\G/K).
ii) For all a ∈]0,+∞[ and for all f in L2(K\G/K) the map y → Φg(f)(a, y) belongs

to Lq(K\G/K), q ∈]2,+∞[.

Proof. We obtain these results from theorems IV.1, III.4, III.5. �

Proposition V.4

Let p ∈ [1, 2[ and let g be a wavelet on G in (Lp ∩ L2)(K\G/K), such that for

all a ∈]0,+∞[, the function ga is in Lp(K\G/K), then for all f in L2(K\G/K) the

map y → Φg(f)(a, y) belongs to L2(K\G/K).

Proof. The theorems IV.1, III.4 give the result. �

The following theorems are Plancherel and Parseval formulas for the continuous
wavelet transform on G.

Theorem V.1

Let p ∈ [1, 2[ and let g be a wavelet on G in (Lp ∩ L2)(K\G/K), such that for

all a ∈]0,+∞[, the function ga is in Lp(K\G/K).
i) Plancherel formula for Φg
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For all f in L2(K\G/K) we have

‖f‖2
2 =

1
Cg

∫ ∞

0

∫
G

∣∣Φg(f)(a, y)
∣∣2 k(a)

a�+1
dady

ii) Parseval formula for Φg

For all f1, f2 in L2(K\G/K) we have

∫
G

f1(x)f2(x)dx =
1
Cg

∫ ∞

0

∫
G

Φg(f1)(a, y)Φg(f2)(a, y)
k(a)
a�+1

dady

Proof. i) From the definition V.1 and Fubini-Tonelli’s theorem we have

1
Cg

∫ ∞

0

∫
G

∣∣Φg(f)(a, y)
∣∣2 k(a)

a�+1
dady =

1
Cg

∫ ∞

0

( ∫
G

|f ∗ ga(y
−1)|2dy

)da

a

=
1
Cg

∫ ∞

0

( ∫
G

|f ∗ ga(y)|2dy
)da

a

we deduce from theorems II.3, III.4

1
Cg

∫ ∞

0

∫
G

∣∣Φg(f)(a, y)
∣∣2 k(a)

a�+1
dady

=
1
Cg

∫ ∞

0

(
1

|W |

∫
a∗

|F(f)(λ)|2|F(ga)(λ)|2|c(λ)|−2dλ

)
da

a

then from Fubini-Tonelli’s theorem we have

1
Cg

∫ ∞

0

∫
G

∣∣Φg(f)(a, y)
∣∣2 k(a)

a�+1
dady

=
(

1
|W |

∫
a∗

|F(f)(λ)|2|c(λ)|−2dλ

) (
1
Cg

∫ ∞

0

|F(ga)(λ)|2 da

a

)

the result follows from theorems II.3, IV.1 and definition IV.1.
ii) We deduce the result from the i). �

The same proof as for theorem V.1 gives the following results.

Theorem V.2

Let p ∈ [1, 2[ and let g be a wavelet on G in L2(K\G/K).
i) Plancherel formula for Φg
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For all f in (Lp ∩ L2)(K\G/K), we have

‖f‖2
2 =

1
Cg

∫ ∞

0

∫
G

|Φg(f)(a, y)|2 k(a)
a�+1

dady

ii) Parseval formula for Φg

For all f1, f2 in (Lp ∩ L2)(K\G/K), we have

∫
G

f1(x)f2(x)dx =
1
Cg

∫ ∞

0

∫
G

Φg(f1)(a, y)Φg(f2)(a, y)
k(a)
a�+1

dady

Corollary V.1

Let p ∈ [1, 2[ and let g be a wavelet on G in (Lp ∩ L2)(K\G/K), such that

for all a ∈]0,+∞[, the function ga is in Lp(K\G/K) and positive, then for all f in

L2(K\G/K) we have the inversion formula for the transform Φg:

f(·) =
1
Cg

∫ ∞

0

∫
G

Φg(f)(a, y)ga,y(·)
k(a)
a�+1

dady

weakly in L2(K\G/K).

Proof. From the theorem V.1. ii) and the definition V.1 we have for all h in
L2(K\G/K):

∫
G

f(x)h(x)dx =
1
Cg

∫ ∞

0

∫
G

Φg(f)(a, y)
(∫

G

h(x)ga,y(x)dx
)

k(a)
a�+1

dady

but from Fubini-Tonelli’s theorem and the theorem V.2. ii) we have

∫ ∞

0

∫
G

∫
G

∣∣Φg(f)(a, y)‖h(x)
∣∣ga,y(x)

k(a)
a�+1

dadydx

≤
∫ ∞

0

∫
G

Φg(|f |)(a, y)Φg(|h|)(a, y)
k(a)
a�+1

dady < +∞ .

Then from Fubini’s theorem we deduce∫
G

f(x)h(x)dx =
∫
G

(
1
Cg

∫ ∞

0

∫
G

Φg(f)(a, y)ga,y(x)
k(a)
a�+1

dady

)
h(x)dx

and the result follows. �
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By theorem V.1 the continuous wavelet transform Φg on G is an isometry of
the Hilbert space L2(K\G/K) into the Hilbert space L2(]0,+∞[×G, k(a)

a�+1Cg
dady)

(the space of functions on ]0,+∞[×G, bi-invariant under K with respect to the
second variable, and square integrable on ]0,+∞[×G with respect to the measure
k(a)

a�+1Cg
dady). For the characterization of the image of Φg we interpret the vectors

ga,x, (a, x) ∈]0,+∞[×G, as a set of coherent states in the Hilbert space L2(K\G/K).
(See [14] section I.2; [16] p. 37–38).

Definition V.2. A set of coherent states in a Hilbert space H is a subset {g�}�∈L
of H such that
i) L is a locally compact topological space and the mapping � → g� : L → H is
continuous.
ii) There is a positive Borel measure d� on L such that, for f in H,

‖f‖2 =
∫
L
|(f, g�)|2d� .

Theorem V.3

Let {g�}�∈L be a set of coherent states in a Hilbert space H. Define the isometry

Φ of H into L2(L, d�) by

Φ(f)(�) = (f, g�) , f ∈ H .

Let F be in L2(L, d�). Then F belongs to Φ(H) if and only if

F (�) =
∫
L

F (�′)
(
g�′ , g�

)
d�′ .

Let now H = L2(K\G/K), L =]0,+∞[×G. Choose a wavelet g on G satisfying

the assumptions of the theorem V.1, and let g� = ga,x be given by the definition IV.2

if � = (a, x) ∈ L. Then we have a set of coherent states. Indeed, the i) of the

definition V.2 is satisfied because of proposition IV.6 and the ii) of definition V.2 is

satisfied for the measure k(a)
a�+1Cg

dady on ]0,+∞[×G(See theorem V.1. i)).

Theorem V.4

Let Φg be the continuous wavelet transform on G, with g a wavelet on G satis-

fying the assumptions of the theorem V.1. Let F be in L2(]0,+∞[×G, k(a)
a�+1Cg

dady).
Then there exists a function f in L2(K\G/K) such that

F = Φg(f)
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if and only if

F (a, x) =
1
Cg

∫ ∞

0

∫
G

F (a′, x′)
(∫

G

ga′,x′(y)ga,x(y)dy
)

k(a′)
(a′)�+1

da′dx′

Proof. Apply theorem V.3 with H = L2(K\G/K), L =]0,+∞[×G, coherent states
ga,x and measure d� given by k(a)

a�+1Cg
dadx. �

I give now an other inversion formula for the continuous wavelet transform Φg

on G.

Theorem V.5

Let g be a wavelet on G in L2(K\G/K). If f is a function defined on G satisfying

– f is continuous and bounded

– f belongs to L1(K\G/K)
– F(f) belongs to L1

(
a∗, |c(λ)|2

|W | dλ
)W

then we have

(V.1) f(x) =
1
Cg

∫ ∞

0

(∫
G

Φg(f)(a, y)ga,y(x)dy
)

k(a)
a�+1

da.

Where, for each x ∈ G, both the inner integral and the outer integral are absolutely

convergent, but possible not the double integral.

Proof. Fix x ∈ G. From the definition IV.1 and the inversion formula for the
spherical Fourier transform (Corollary II.1), together with Fubini’s theorem we get

f(x) =
1
Cg

∫ ∞

0

(
1

|W |

∫
a∗

∣∣F(ga)(λ)
∣∣2F(f)(λ)ϕλ(x)

∣∣c(λ)
∣∣−2

dλ

)
da

a

where the inner integral on the right hand side is absolutely convergent for all
a ∈]0,+∞[, since from the theorem IV.1, F(ga) is in L2

(
a∗, |c(λ)|2

|W | dλ
)W

, F(f) is
bounded, and

∀x ∈ G , ∀λ ∈ a
∗, |ϕλ(x)| ≤ ϕ0(x) .

What remains to be proved is that, for all a ∈]0,+∞[, and x ∈ G ,

(V.2)
1

|W |

∫
a∗

|F(ga)(λ)|2F(f)(λ)ϕλ(x)|c(λ)|−2dλ =
k(a)
a�

∫
G

Φg(f)(a, y)ga,y(x)dy

with absolutely convergent integral on the right hand side. This absolute conver-
gence follows because from the proposition V.3. ii) the function y → Φg(f)(a, y)



Continuous wavelet transform on semisimple Lie groups 261

is in L2(K\G/K), while from the definition IV.2 the function y → ga,y is also in
L2(K\G/K).

We can write (V.2) as

(V.3)
1

|W |

∫
a∗

F(ga)(λ)F(ga)(λ)F(f)(λ)ϕλ(x)|c(λ)|−2dλ = ga ∗ (f ∗ ga)(x) .

Now this relation follows because both of its sides are equal to

1
|W |

∫
a∗

F(ga)(λ)F(f ∗ ga)(λ)ϕλ(x)|c(λ)|−2dλ

for the left hand side of (V.3) this is clear from the fact that ga belongs to
L2(K\G/K), while this follows for the right hand side of (V.3) by an application of
the Parseval formula for the spherical Fourier transform. �

The same proof as for the theorem V.5 gives the following result.

Theorem V.6

Let g be a wavelet on G in (L1 ∩L2)(K\G/K) such that for all a ∈]0,+∞[, the

function ga belongs to L1(K\G/K). If f is a function in C(K\G/K), then we have

the inversion formula (V.1).

Remark. i) We can also obtain the inversion formula (V.1) if we take in the
theorem V.5 the function f in D(K\G/K).

ii) The inversion formula (V.1) is also true for g and f in C(K\G/K).

VI. Inversion of the Abel transform and its dual using wavelets on G

1. Classical wavelets on R
�

We define for regular functions on R
�, the classical continuous wavelet transform

S on R
� by

Sg0(f)(a, y) =
∫

R�

f(x)g0
a,y(x)dx , for all y ∈ R

�

where g0
a,y, a ∈]0,+∞[, y ∈ R

�, is given by

g0
a,y(x) = a�/2τx(g0

a)(−y)
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with τx is the translation operator defined by

τx(h)(y) = h(x + y)

and

g0
a(x) =

1
a�

g0
(x

a

)
the function g0 is a classical wavelet on R

�, i.e. a function on R
�, satisfying the

condition: there exists a constant Cg0 such that
– 0 < Cg0 < +∞ .

– For λ almost everywhere on R
� we have

Cg0 =
∫ ∞

0

∣∣F0(g0)(aλ)
∣∣2 da

a
.

The results obtained for the transform S are proved in [16]. In particular we
have the following inversion formula:

For g0 square integrable on R
� with respect to the Lebesgue measure dx we

have

(VI.1) f(x) =
1

Cg0

∫ ∞

0

(∫
R�

Sg0(f)(a, y)g0
a,x(y)dy

)
da

a�+1
, a.e.

when f and F0(f) are integrable on R
� with respect to the Lebesgue measure dx.

We remark that in this formula, for each x ∈ R
�, both the inner integral and

the outer integral are absolutely convergent, but possible not the double integral.

Proposition VI.1

Let g be a wavelet on G in D(K\G/K)(resp. C(K\G/K)) and ga, a ∈]0,+∞[,
the function given by the theorem IV.2. Then

i) We have the relation

∀H ∈ a, A(ga)(H) =
1
a�

A(g)
(H

a

)
.

ii) The function A(g) is a classical wavelet on R
�.
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Proof. We deduce these results from the theorem IV.3. �

2. The dual Abel transform

Notations. We denote by
– E(a) the space of C∞-functions on a. We topologize this space with the

classical topology.
– S0(a∗)W the subspace of S(a∗) consisting of functions f such that

∀α ∈ N
� ,

∂|α|

∂λα1
1 . . . ∂λα�

�

f(λ)/λ=0 = 0 .

– S0(a)W (resp. C0(K\G/K)) the subspace of S(a)W (resp. C(K\G/K)) con-
sisting of functions f such that the function F0(f) (resp. F(f)) belongs to S0(a∗)W .

Definition VI.1. The dual Abel transform A∗ is defined on E(a) by

∀x ∈ G, A∗(f)(x) =
∫
K

f(H(xk))e−ρ(H(xk))dk .

Proposition VI.2
i) The operator A∗ is linear and continuous from E(a) into C∞(K\G/K) .
ii) We have

∀x ∈ G, ∀λ ∈ a
∗
C, ϕλ(x) = A∗(eiλ(·))(x) .

Proposition VI.3
i) The Fourier transform F0 is a topological isomorphism from S0(a)W onto S0(a∗)W .
ii) The spherical Fourier transform F is a topological isomorphism from C0(K\G/K)
onto S0(a∗)W .
iii) The Abel transform A is a topological isomorphism from C0(K\G/K) onto
S0(a∗)W .

Proof. We deduce the results from the properties of the Fourier transform F0 and
the theorems II.2, II.5. �

Proposition VI.4
The operator K0(resp. K1) defined on S0(a)W (resp. C0(K\G/K)) by

∀H ∈ a, K0(f)(H) = F−1
0

[ |c(λ)|−2

|W | F0(f)
]

(H)(
resp.∀x ∈ G, K1(f)(x) = F−1

[ |c(λ)|−2

|W | F(f)
]

(x)
)

is a topological isomorphism from S0(a)W (resp. C0(K\G/K)) onto itself.
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Proof. The relations (II.4),. . .,(II.7) and the proposition VI.3 give the results. �

Theorem VI.1

The operator A∗ is a topological isomorphism from S0(a)W onto C0(K\G/K)
and we have the inversion formulas.

– For f in C0(K\G/K), f = A∗K0A(f), f = K1A∗A(f) .

– For f in S0(a)W , f = AK1A∗(f), f = K0AA∗(f) .

Proof. We obtain the relation

(VI.2) f = A∗K0A(f), f ∈ C0(K\G/K)

from the inversion formula (II.10) of the spherical Fourier transform F and the
propositions VI.2. ii), VI.3 and VI.4.

We deduce the relation

f = AK1A∗(f), f ∈ S0(a)W

from the relations (VI.3) and (II.14).
The other relations and results are clear. �

Theorem VI.2

Let g be a wavelet on G in C0(K\G/K).
i) For all f in C0(K\G/K) we have for y ∈ G.

Φg(f)(a, y) =
(
k(a)

)−1/2A−1
[
SA(g)

(
A(f)

)
(a, .)

]
(y) .

ii) For all f in S0(a)W we have for H ∈ a

SA(g)(f)(a,H) =
(
k(a)

)1/2(A∗)−1
[
Φg

(
A∗(f)

)
(a, .)

]
(H) .

Proof. i) We have for all a ∈]0,+∞[

∀ y ∈ G, Φg(f)(a, y) =
(k(a)

a�

)−1/2

f ∗ ga(y
−1)

then

∀λ ∈ a
∗, F

[
Φg(f)(a, .)

]
(λ) =

(k(a)
a�

)−1/2

F(f)(λ)F(ga)(λ) .
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From propositions II.1, V.1. i) and theorems II.4, II.5, III.6 we deduce

∀H ∈ a, A
[
Φg(f)(a, .)

]
(H) =

(k(a)
a�

)−1/2

A(f) ∗ 0A(ga)(H)

but from the relation (IV.8) we have

∀H ∈ a, A(ga)(H) =
(
A(g)

)
a
(H)

then

∀H ∈ a, A
[
Φg(f)(a, .)

]
(H) =

(k(a)
a�

)−1/2

A(f) ∗0

(
A(g)

)
a
(H)

=
(
k(a)

)−1/2[
a�/2A(f) ∗0

(
A(g)

)
a

]
(H)

=
(
k(a)

)−1/2[
SA(g)(A(f))(a,H)

]
.

where S is the classical continuous wavelet transform on R
�. Thus

∀ y ∈ G , Φg(f)(a, y) =
(
k(a)

)−1/2A−1
[
SA(g)(A(f))(a, .)

]
(y) .

ii) We deduce the result from the i) and the theorem VI.1. �

Theorem VI.3

Let g be a wavelet on G in C0(K\G/K).
i) For all f in C0(K\G/K) we have for y ∈ G

Φg(f)(a, y) =
(
k(a)

)−1/2A∗[S̃K0(A(g)a)(A(f))
]
(y)

ii) For all f in S0(a)W we have for H ∈ a

SA(g)(f)(a,H) =
(
k(a)

)1/2A
[
Φ̃K1(ga)(A∗(f))

]
(H)

where S̃K0(Ga) and Φ̃K1(Ga) are the operators defined by

∀H ∈ a, S̃K0(Ga)(F )(H) = a�/2F ∗0 K0(Ga)(H)

∀ y ∈ G, Φ̃K1(Ga)(F )(y) =
(k(a)

a�

)−1/2

F ∗ K1(Ga)(y−1) .

Proof. i) From theorems VI.1, VI.2, i) we have for y ∈ G:

Φg(f)(a, y) =
(k(a)

a�

)−1/2

A−1
[
A(f) ∗0 A(g)a

]
(y)

=
(k(a)

a�

)−1/2

A∗K0

[
A(f) ∗0 A(g)a

]
(y)
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but the definition of the operator K0 gives
K0

[
A(f) ∗0 A(g)a

]
= A(f) ∗0 K0(A(g)a)

thus
Φg(f)(a, y) =

(
k(a)

)−1/2A∗[S̃K0(A(g)a)(A(f))
]
(y) .

ii) Using theorems VI.1, VI.2. ii) we obtain for H ∈ a:

SA(g)(f)(a,H) = a�/2(A∗)−1
[
A∗(f) ∗ ga

]
(H)

= a�/2AK1

[
A∗(f) ∗ ga

]
(H)

but from the definition of the operators K1 we obtain
K1

[
A∗(f) ∗ ga

]
= A∗(f) ∗ K1(ga)

thus
SA(g)(f)(a,H) =

(
k(a)

)1/2A
[
Φ̃K1(ga)(A∗(f))

]
(H) . �

Remark. The transform S̃K0(Ga) (resp. Φ̃K1(Ga)) is not necessarily a classical
continuous wavelet transform on R

� (resp. a continuous wavelet transform on G),
because in general we have not

K0(Ga) = h0(a)K0(G)a(
resp. K1(Ga) = h1(a)K1(G)a

)
where h0 (resp. h1) is a function on ]0,+∞[ .

Theorem VI.4
Let g be a wavelet on G in C0(K\G/K). Then for all f in S0(a)W we have the

following relation which gives the inverse operator of the operator A: For all x ∈ G

A−1(f)(x) =
1
Cg

∫ ∞

0

(∫
G

A∗[S̃K0(A(g)a)(f)
]
(y)ga,x(y)dy

)
(k(a))1/2

a�+1
da

Proof. The theorem VI.3 i) and the last remark of the section V give the result. �

Theorem VI.5
Let g be a wavelet on G in C0(K\G/K). Then for all f in C0(K\G/K) we have

the following relation which gives the inverse operator of the operator A∗: For all
H ′ ∈ a

(A∗)−1(f)(H ′) =
1

CA(g)

∫ ∞

0

(∫
a

A
[
Φ̃K1(ga)(f)

]
(H)ga,H′(H)dH

)
(k(a))1/2

a�+1
da .

Proof. We deduce the result from the theorem VI.3 ii) and the relation (VI.1). �
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