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ABSTRACT
In this paper, we introduce the concept of W M point and obtain the criterion

of W M points for Orlicz function spaces endowed with Orlicz norm and the
criterion of W M property for Orlicz space.

§ 1. Introduction

In 1975, while discussing the expansibility of local uniformly rotundity, B.B. Panda
and O.P. Kappor [1] introduced the concept of WM property. Afterwards, F. Sul-
livan [2] introduced the idea of local k uniformly rotundity, and Nan Chaoxun and
Wang Jianhua [3] introduced the notion of local k rotundity. They both are related
to local uniformly rotundity. By making use of WM property, Wang Jianhua and
Wang Musan [4] worked out the relationships among the local uniformly rotundity
and obtained:

(1) Let X be a Banach space. X is local uniformly rotund if and only if X is
strictly convex local k uniformly rotund and has WM property.

(2) Let X be a Banach space. X is local uniformly rotund if and only if X is
local k£ rotund and has W M property.

WM point is a kind of pointwise description of WM property. Obviously,
local uniformly convex points and weakly local uniformly convex points are all W M
points.

() Supported by the NSF of China.
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For a Banach space X, let B(X), S(X) be the unit ball and unit sphere of X,
respectively z € S(X) is called a WM point if z,, € B(X), ||z, + x| — 2 imply that
there is a supporting functional f of z, satisfying f(z,) — 1. If all points of S(X)
are W M points, then X has WM property.

Let M(u), N(v) be a pair of N-functions, p_(u) and p(u) denote the derivatives
of M(u) from the left and from the right, respectively [a, b] where a < b is called an
affine segment of M (u), if M (u) is linear in [a,b], but not on [a — &,b] or [a,b + €]
for all € > 0. We denote Sy = R\ U2, [a;, b;] where [a;,b;],7 € N are the family
of all affine segments of M (u). M (u) is said to satisfy As-condition (M € As) if
there is a constant K such that M(2u) < KM (u) for large u, M € V4 if and only
if N € Ay. Let (G, X, 1) be a nonatomic finite measurable space, and let X be the
set of all 3-measurable real scalar functions defined over G. For x € X, we denote
the modular of x by pas(x) = [, M (x(t))dp. The family

Ly = {x(t) € X: forsome A>0, py(Ax)= /GM()\x(t)) dp < oo}

is a linear set, and when it is endowed with Orlicz norm

o o1
Joll* = ju 1 (14 pas(ho) = sup [ et
k>0 k pn(w)<tJe

or Luxemburg norm

||| = inf {c >0: pM<§> < 1}
c
forms a Banach space, called Orlicz space and denoted by LS, Ly respectively. We
know that ([8]) for any  # 0, ||z]|° = £ (1 + pa(k)) if and only if

k€ K(z)= [k}, k}*], where £k} =inf{k>0:pn(p(kz)) > 1}
k" =sup {k>0:py(p(kz)) <1}.

§ 2. Preparatory lemmas

For the sake of reading, we first give several Lemmas.
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Lemma 1 [9].
For arbitrary 0 < \,6,\' < 1, there exists 0 < ¢’ < 6 such that for all u,v > 0
with M (Au+ (1 — X)v) < (1 = 6)(AM (u) + (1 — N\)M(v)), we have that
MNu+ 1 -XN)w) <1 =8 \NMwu)+ (1 —-XN)M(@)).
Lemma 2 [8].

For 0 # z € L}, f = y + ¢ is a supporting functional of x if and only if for all
(or some) k € K(x), where y € LY, ¢ is a singular function.

() () + 6] =1
(i) 8] = ola)
(iii) z(t)y(t) =0 and p_(klz(t)]) < [y(®)] < p(klz@®)]) (1—a.e.).
Lemma 3 [5].
Assume M € V. If [a,b] is an affine segment of M (u), then for any € > 0, and
a € (O,%), there is 6 > 0 such that if A\ € [a,1 — a],v € [a,b] and \M (u) + (1 —
MM (v) — M(Mu) — M((1— Av) <6 thenu € [a—e,b+¢].
Lemma 4

Assume M € Vg, x € S(LY,) is a WM point if and only if for x, € B(LY,),
if ||z, + z||° — 2, then there is a supporting functional y € Ly of x satisfying

(Tn,y) — 1.

Proof. Sufficiency is trivial.
Necessity. For the cutting function [x(t)], = x(¢), if |x(¢t)] < n;=0if |z(¢)| >
n, it holds that z,, - .
For x,, € B(LS,), ||lxn + z||° — 2, take [z,]n, such that
p{t s 2] > N} =0, [[walw, +all° — 2.
Since = is a W M point, there is a supporting functional f = y+ ¢ of x satisfying

f([zn]n,) = {(zn]nN,,y) — 1. Hence |ly||y > 1. Moreover, by Lemma 2, we deduce
that pn(y) <1, so0 |ly]| < 1. Thus ||y|| = 1. By M € Vy, it follows that lim(z,,,y) =
n

lim([zn]n, ., y) =1. O

Lemma 5
For x,x, € S(LY,), if ||z, + z||° — 2, then for any n > 0
kky,
i >
nh—{%o sup py (p((l + n)k TE (x + xn)>> >1 (1)
kky,
L B <
Jim - inf py (p((l Ny o (2 +xn))) <1 (2)

where k € K(z), ky, € K(xy,).
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Proof. By the definition of Orlicz norm and the convexity of M (u),
0 =2l + [lznll® = l|lzn + 2|°

> (Ut (k) + 1 (14 par(on)) = © (1 +on (o +xn>))

Kk,
kA ke [k
T Tkk, |kt kM

k kk,,
>
(kx) + P kan(knxn) pM(k o (x + xn)>] >0,

ie. %(1+pM(hn(x+xn))) |z, + z||° — 0, where h, ng <k.

If (1) fails, then for some 7y > 0, and 6y > 0, and for a subsequence of (z,,), still
denoted by (), pv (p((1 4 10)hn(z +21))) < 1— 6y which leads to a contradiction:

1
0«— h—(l—l—pM(hn(sc—i-xn))) — @ + 2||°

hi(1+pM(hn(x+xn))) _ (14 par (1 + 10)hn (& + )

1
(1 +770)hn

1 (1+n0)hn‘x+xn|
_ M 1_ﬂ/ (/ p(sms)du
(1 + 770)hn Tlo G hon|z+T5|

+ paa (14 10) o ( + fcn))}

Mo 1+T]0/
> <1 1+ hp(x + zp hon|x + x,|d
(1+770)hn{ o GP(( 170) P ( ))770 | |dp

+ paa (14 10) o (2 + %))}

o
m{l —pN((1+770)hn(1:+xn))}
Tlo 1000
2 oy, 17 00} 2 s

For (2), the argument is similar to that of (1). O

Lemma 6

Forl = [lz[° = ¢ (14+par(ka)); 1 = |znll® = - (14 par(knan)) if k = sup &y <
00, ||z + @,[|° — 2, then kyz, — kx = 0 over G, where G, = {t € G : k|z(t)| €
Su\({a} U{b})},{a} and {b} are the sets of left and right extreme points of affine
segments of M (u), respectively.
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Proof. Otherwise, for some ¢ > 0 and ¢ > 0, there exists a subsequence of {z,},
still denoted by {z,,}, such that p{t € Gy : [knz,(t) — kz(t)] > e} > 0.

From k > k, > py(knxn) > M(D)p{t : |knz,(t)] > D}, take D large enough
such that p{t : klz(t)| > D} < § and p{t : kp|z,(t)| > D} < 5.

Denote {a} and {b} as ¢1,ca2,c3,... Since t € Gy, kx(t) # c; for all ¢, then we
can take open segments v; 3 ¢y, so that u{t € G;;kx(t) € v;} < ;% . Hence

o g
: e < —
u{deGr \kx(t)| e le} <5

=1

Denote
G, = {t € Gyt |knwy(t) — ka(t)] > & |kz(t)|, |knzn(t)| < D, kx(t) € Sar\ U vi} .
i=1

Then puG, > 7. For the bounded closed subset of R3

o 1 k
Sy — ol > < : _—
{w,v,A) u U’£a\“|7|v|DaUESM\ZUlv“)‘E[l—i—k’lJrk]}’

because M (u) is strictly convex on Sy, there is 6,0 < 6 < 1, such that for any
element (u,v,\) of the above bounded closed subset,

M(Au+(1=Xv) < (1=8)(AM(u)+ (1 —A\)M(v)) .
Thus, for t € G,,,

M <k’f7]‘€n ((t) + mn(t))> <(1-9) <k inan(km(t)) "% fan(k”:E”(t))) '

It leads to a contradiction, since

0 = [l2]|° + [lznll® = llzn + 2|°

>k ljkfn /G L; f_”an(kx(t)H - f M (i (1))~ klfzn (2(t) +xn(t))>] du
Sk - fn cn[k‘ _’i”kn M (k1)) + M ()~ kTZn (x(t)+xn(t)))] d
> k;}ff"é/gn[kf_”an(kx(t)) + kfan(k:nxn(t))] dj

(3 o =
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In the following, we still use {a} and {b} to denote the subsets of left and
right extreme points of affine segment [a,b] of M (u) for which p_(a) < p(a) and

p—(b) < p(b).

§ 3. The main result

Theorem

Forz € S(LY,). k € K(x), let G, = {t : k|z(t)| € {a}}, Gy = {t : k|z(t)| € {b}}.
Then x is a WM point if and only if

(1) M e VQ )
(i) pn(p(kz)) =1,
(iii) pn(p(kz)) > 1= N (p(kx(t)))dp +/ N (p—(kx(t)))dp > 1,
G\Gy Gy
ol (k) <1= [ N(p-(ka))du+ [ N(plhe(0))dn <1,
G\Ga Ga

(iv) pn(pkz)) =1=puGy=0 or py (p(ll“_—xT)) < oo for some T > 0,

(v) for any e > 0, there is 6 > 0 such that for ally € B(LS,) with ||z +y||° >2—-6
and for all e C G with pe < 6, we have pyr(kyle) < e, where k € K (y).

Proof. Necessity. Without loss of generality, we can assume x(t) > 0.

(i) M € V.

We first take y, € Ly, pn(yn) = 1 and /G:L‘(t)yn(t)d,u >1- % and d > 0 so
that uE = p{t € G : kx(t) < d} > 0.

If MEV,, there exists v, T oo with N(lfﬁ) > 2nN(v,). Take G,, C E
so that N(v,)uG, = 1. Define z,(t) = vylg,. Since pn(z,) = 1 < 1 and
pN(lfﬁ) > 2nN(vp)pGn, = 2, 1 > Jzn|| > 1 — % By [8], there exists

Tn(t) = unla,, ||,]|° = 1 such that (z,, 2,) = upv, Gy = ||2n]| > 1 — L. Set

0 = (1= ) Dlcra, + = (0)la,)
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then pn(gn) < (1 — %) (1 + %) =1- # < 1. Hence

|z +2n)|° > (T + 20, gn)

(1 %) </G\an(t)yn(t)du+/g x(t)vndu+/Gn unvndu>

n

(1- %) < /G 2 )ym ()t — /G 2 )yn (O)dp + / 2 ondp + unvnan>

n Gn
1 1 . . 1
> (1= ) (1= 2 = llele.I° = llala, I+ 1= —) —2.
n n n

For any supporting functional y € Ly of z, noticing that y(¢) < p(kx(t)) < p(d)
whenever t € G,,, we deduce that

(s ) = /G (Ot < zall® 9l |y — 0

a contradiction with that x is WM point by Lemma 4.

(ii) pn(p(kz)) > 1, otherwise, py (p(kz)) < 1. By Lemma 2, 2 does not have
any supporting functional in Ly, then by Lemma 2, we deduce that x is not a WM
point, a contradiction.

(iii) pn(p(kz)) > 1= N (p(kx(t)))dp —I—/ N (p—(kz(t)))dp > 1
G\Gb Gb
pn (p—(kz)) <1 = N (p—(kx(t)))dp +/ N(p(kx(t))du < 1.
G\Ga Ga

Denote {b} = {b,}32,,G, ={t € G : kz(t) = b, }, and assume uG,, > 0.
If the first statement is not true, then

/G\U N(p(kac(t)))du+/ _ N(p(k‘x(t)))d#

20:1 Gn Un:1 c.
_ /G\Uf_l . Nlptka(e))dn -+ ;N(p(bn))an .

and

/G\ U N (p(kx(t)))dp + ; N(p— (b)) G < 1.

n=1
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For each n, take different subsets G|, # G, G, G C G, so that uG), = pG’ and
N (p(ka(6))) du + WG\ + NpB)G,] =1, (3)
foe o N0 > [¥ |

/G\U;T_IGHN( el +Z (G \G7) + N(p(ba))nGr] = 1. (4)

Take ¢, < bp, p- (Cn) = p(cn) =DP- (bn) < p(bn) , and set

.
)

From (3) and (4), we get that k € K(z1),k € K(z2). And by Lemma 2, we deduce
that x1 and x5 have their unique supporting functionals:

= n bn
21(t) = 20|y = g, + 2 (Flona, + 1
n=t n=1

G n bn
$2(t) = SC(t)}G\ U°° Gn + Z (%’Gn\ag{ + ?
n=t n=1

yi(t) = p(ka(t))] g U=, et > [P—(bn)] g\ +P(0)l g, ]
y(t) = p(ke(®)) gy = @, > -0l g g + P00 6]

n=1

ie., <H;$ , y1> =1, <”;’#, y2> = 1. By Lemma 2, it also follows that y1,ys

are supporting functionals of x, i.e, <W,y1> =1, <H wll" , y2> = 1. Thus <ac +
[e]
||m1||°’yl>_2 <x+ IImzllo’ y2>—2 SO ° =92 and = 2.
Define z,, with z; = z3 = ”I” = oz » then ]zn +z|]° =
2. Since x is a WM point, there is a supporting functlonal y € Ly such that

<Znay>‘_> 1. Hence <”;# ) y>: 1= <”xmﬁ ) y1>7 <||xr# ) y> : 1= <”;# ) y2> By
the uniqueness of the supporting functionals of x1 and xo, it yields that y; = y = yo,

X
+ Tl
EE 9 = Z4 =

a contradiction.
We can make the similar argument for

p (p—(kz)) < 1= N(p—(kx(t)))dwr/ N(p(kx(t))du < 1.
G\G. Ga

(iv) pn(p(kx)) =1 = puGy, = 0 or pN<p(1k_—’”T)> < oo for some 7 > 0.
If (iv) fails, then for some b € {b}, uE = pu{t € G : kz(t) = b} > 0 and for all
e >0, pn(p((1+e)kx)) =oc0.
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Take ¢ < b, p_(c) = p(c) = p—(b) < p(b). Set

C

o'(t) = 2(t)| g\ s + E'E

then py (p(ka’)) < pn (p(kz))) =1, and for alln > 0, py (p((14+n)kz’)) > pn (p((1+

Mkz|e\p)) = . Thus k € K(a'), so k' = k|ja'|]° € K(” uo) Clearly k' < k. From

PN (”(%(” ﬁ))) =PN (p<ki/k’kw+ kfk:kx» < pn(plkz)) =

/ /

o (p(@ o (o4 1)) ) = (el kel ) = o

it follows that *%_ ¢ K(x + B ,”O> Hence

kz+k:’
¥ _ k4 kle! o
— (1
H =1° K’ ( +pM<k:—|—k’(x+Hx/H°>>>
kot & K k
= {1+pM(kx\G\E)+M<k+k,b+k+k,c>,uE]
k+k/ !

k k
= {1 + pu (kx| g) + (mM(b) + mM(c))yE}

:%(1+PM(]€$)) ; <1+pM<k/H /IH )> .

Since pn(p(kx)) = 1, we get that = has the unique supporting functional y =
p(k(x(t))) in Ly. From ep(b) < M(c) + N(p(b)),

!

V() = ) = | Rtk (0)d + | vty

< pu(kzlo\r) + oy (p(kzlo\E)) + M(c)pE + N( (0))nE

=1+ pur(kalonp) + M(Q)pE = 1+pM<k’H T ):k’

SO <ﬁ, y> < 1, a contradiction with = is aW M point.

(v) For any € > 0, thereis 6 > 0 such that for ally € B(L,) with ||[z+y||° > 2—6
and all e C G with pe < 6, we have pyr(kyl.) < € where k € K(y).

If there exist x, € B(LY,) and e, C G, |z, + z|° — 2, pe, — 0, but
pu (knxyle,) > € for some € > 0.
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Since x is WM point, and M € Vs, there is a supporting functional y €
S(Ln) = S(Ey) such that (x,,y) — 1. Hence

(1+ prr(knzy)) = ki(ﬂN(y) + pur (knn))

L [lan]|* =

[pN(y‘G\en) + pM(knxn|G\en + pN (y|€n) + pM(knxn‘en)]

v

- /G y(t)en () dpt — / )+ <

9
= (@ y) = ol lyle. v + =

g
—>1—|—:7
k

a contradiction.
Sufficiency. For 1 = ||z,||° = k%(l + pm (kny)), |l2n + z[|° — 2, we shall
consider three cases.

@M. pn(p-(kz)) <1< pn(p(kz)).
At first, by (v), we have

lim sup par(knznle) =0. (%)
pe—0 p

By (iii) it follows that

/ N(plhe(®))d+ [ N(plhke(®))dn+ [ N(p-(ka()dp = 1.
G\(GaUGH) Ga Gy

/ N (heO)dn+ [ N(p(ka())d+ [ N(p-(ha0)dn < 1.
G\(GaUGy) Ga Gy

Thus for v(t) satisfying that v(t) = p(kx(t)) if t € G, v(t) = p_(kx(t)) if
t € Gp;p—(kz(t)) <wv(t) < p(kz(t)) if t € G\(Go UGp) and pn(v) = 1, clearly, v is
a supporting functional of z, we shall show (x,,,v) — 1.

Denote E; = {t € G : kx(t) € [a;,b;]} (i = 1,2,...), and Ey = G\U;~, E;
where [a;,b;],7 = 1,2,3,... is the set of affine segments of M (u). For any € > 0, by
(%), there exist d > 0,e C G such that pe < d and

o (knznle) <&, pum(kzle) <e, pn(vle) <e.
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Since Y oo, uE; < uG < oo, choose m so that M(U?; Ez> < %l. Since u €
[a;, bi], up(a;) = M(u)+ N(p(a;)), there is § > 0 such that for all u € [a; — 3, b;+
ﬁ](z = 1727"'7m)7
up(aq) > M(u) + N(p(a)) <. 6
By Lemma 3, there is 6 > 0 such that for all X € [14%%’ HLE} , U E [ag, b, if
AM (u)+(1=N)M(v)—M (Au+(1—X)v) < 6, thenu € [a;—8,b;4+0] (i=1,2,...,m).
As in (++), it is not difficult to prove that on |J.~, E;

k K,

fu(t) = k+an(kn$n(t)) + k+ K,

kk,
k+ k,

M (ka(t)) — M( (2 (t) + x(t))) 0.

Denote F,, = {t e UL, Ei; fu(t) > 6}, then for n large enough, uF, < d.
Hence, for all ¢ € J*| E;\F,, we have kx(t) € [a;,b;] .

Combine with HLE < ﬁ, k_’mn < HLE’ knxn(t) € [a; — B,b; + B]. Thus,
from (5), it yields

Enxzn(t)p(a;) > M(kpx,(t)) + N(p(a;)) — €. (6)

Noticing that if kx(t) = a;;v(t) = p(kxz(t)) = pla;); if kx(t) = b;, v(t) =

p—(kx(t)) = p—(bi) = plai), if a; < kx(t) < by, v(t) = p(kx(t)) = p-(kz(t)) = p(ai),
from (6), we get that for t € | J;; E;\F, ,

knan (D)0(t) > M(kpan(t)) + N(v(t)) — . (7)

By Lemma 6, it yields that k,x, — kz £, 0o0n Ey, so there is Iy C Ey with
uEy < d such that for all t € Ey\ Fo,

|kpan(t) — kz(t)| <e, |M(kpan(t)) — M(kz(t)| <e.
Thus for ¢t € Ey\ Fp,

knn(t)o(t) > (kz(t) — e)v(t) = M(ka(t)) + N(v(t)) — ev(t)
> M(knvn(t)) + N(v(t)) — & — ev(t) (8)
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By the boundedness of {k,}, (7) and (8), it follows that

Ui, 0) = / + / + / e ()0 ()t
Ur, BaFn JE\Fy  JF.0(VismBE:) UR

> (M (knzn(t)) + N(v(t)) — €)dp

N ENF,

i=1

+/ (M(knmn(t) + N(v(t)) —E—EU(t))du
Eo\Fo

_ / (M (knzn (1)) + N (v(t))) dp
FrU(UismE;)UFy

= (/ B +/ ) [M (knzn(t) + N(v(t)]dp + 0(e)
E;\F, Eo\Fy

i=1

_ /G [M (ke (1)) + N (0(8))]dpt + 0(e)
=14 pym(knzy) +0(e) =k, +0(¢) .

Since ¢ is arbitrary, we conclude that (z,,v) — 1 and so = is a WM point.

A1). pn(p-(kz)) <1 =pn(p(kz)).

In this case, v(t) = p(kz(t)) is the unique supporting functional of z in Ly. By
(iv), pGp =0 or pn (p(lk_—ﬂ)) < oo for some 7 > 0. (If kx(¢) is a left extreme point
of an affine segment of M (u), it is also a right extreme point of another segment.
Let t € Gy).

If uGp = 0. Using the argument similar to that of (I), it follows that (z,,, v)tol,

i.e x is aW M point.

If uGp > 0, and py (p(f%)) < oo for some 7 > 0.

We only need to show that k,z, — kz —— 0 on Gp. Then, similarly to (1),
(xp,v) — 1.
We first show that for some 0 < 6 < 1,

limO sup pn <p<(1 +6) klff;;n (x + xn|e))> =0. (%)

pe—0 n

Observe that for 0 < 0 < 1,

M(u) > /(1“_6) p(t)dp > p((1 = 0)u)bu = %(1 — O)up((1 — O)u)

> LN (p((1 - 0)u)
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from limo sup pas(knzn) =0, we get
pe—0 p

lim0 sup pn (p(1 4 0)knzyle)) = 0.

pne—=u n

ka(t)

T—r/3 then

On the other hand, for 6 small enough, if |k, z,(t)| <

kx(t) < kx(t)

(14 0) 5 la(t) + 28] < (1 +0) 75 < 770,

k+ ky,

kx(t)

T—r /3" then

and if |k, 2z, (t)| >

kk.,

149
L+ 0)

lz(t) + zn (1) < (14 6) <1 - - Tk,

m) kptn < (1= 0)knan(t).

From

PN (p<(1 +0) kkf;;n (z + wn)\e>) < pn (p(lli k)) +on(P(1=0)knz0le)) — 0,

we conclude that (sx) holds.
Noticing that b is the right extreme point of an affine segment of M (u), not left
one, analogously with the proof of Lemma 6, we can deduce that

lim sup ky, @, (t) < ka(t) (¢ € Gy, p— a.e.).

n—oo

Hence

liTILILsolip k:]f;::n (z(t) + zn(t)) < ka(t) (te Gy, p—ae.). 9)

For any € > 0, by Lebesgue Theorem, there is > 0 so that py (p((l +77)k3:)) <
pn(p(kx)) 4+ € =1+ €. For such € and 7, by (xx), there is d > 0, when pe < d,

sup o (pl(1+ W) (o)) ) <. (10)

n

Since knpxy, — kx = 0 on Ej, k’ff (x + x,) — kz +,00n Ey.

Take Fy C Fy, uFy < d so that

lim  sup [kkf::n (z(t) + zn(t)) — ka?(t)] =0. (11)

N0 te B\ Fo
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Take m so that ,u( U EZ) < d, and h small enough

>m

u{G{tGEi\Gb:k:x(t) >b,—h}} <d

i=1

Take ¢’ small enough, so that k+k (b +¢') + k-ﬁcn (bi—h) < b —% (i =
1,2,...,m).
By Lemma 3, it follows that there is 6 > 0 so that if kz(t) € E; and

Folt) = e M U (0) + 2 M st = M (2 (o0 (0 ) 2 0

then k,x,(t) € [a; —€',b; +€'] (i=1,2,3,...,m).

Since f,(t) -~ 0 on U, E;, for n large enough, uF, = p{t € G : f,(t) >
6} < d. Denote E! = {t € E;\Gy : kx(t) > b; — h} (i = 1,2,...,m). Then for n
large enough, k,x,,(t) < b; + ¢’ whenever ¢t € |J.*; E/\F, . Thus

kky, kn, k

Et iy @O+ an(t) < (b= B+ e (b )
gbﬁg (i=1,2,...,m, t € E\Fy,).
Take n <7 so that (1—1—77’)<bi— %) §bi—% (i=1,2,...,m), then

(1 +n/)klf’;n (z(t) +2n(t) <b;— - (i=1,2,...,m, t € E\F,)  (12)

w| >

Combining the nondecrease and right-continuity of p(u), from (9), (10) and (12),
we have that for all 7 < 7/,

n—0o0

lim sup N (p((l —l—ﬁ)klfzn (x(t) + :L‘n(t))>)
< N(p((1 +7)kz(t))) (t € Gy U (Eo\Fy U U ENE,)) )

Noticing that for Fy, Ui E;, Fy, and |~ (E;\Gy\ E.), their measures can be arbi-
trarily small, by (11), we have that for all 7 < #’, and all T,, C G,

(x + xn)\T)> < limsuppN(((l +ﬁ)k]}’Tﬂ)> +4e.

. . kky,
lim sup pn <p((1 +1) 7 "y
(13)

n—o0o n
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n n
If k,z, — kx -/~ 0 on G}, then k’ff,:n (x + x,) — kx -/ 0 over Gy, . From (9),

for some 0 > 0,0 > 0 and a right extreme point b,

kk,
k+k,

,an:,u{tGGb:kx(t):b, (x(t)ern(t))ng}Za.

Take n” <7’ so that (14 n”)(b—60) <b— % . From (13) and Lemma 5

kky,
1 < limsup py (p((l )@ :I:n))>

+ 4e

n—oo

< limsup [/G\Hn pN (p((l + n”)kx(t)))du + N(p(b - g))an

= lim sup ! /G PN (p((l + n”)kx(t)))du + (p(b)) uH,

— (N(p(b)) — N(p- (b)))an + 4e

< pn (p((l + n”)k:c)) - (N(p(b)) — N(p,(b)))a +4e

<1 (N(p®) = N(p-(8)) )o + 5.

Since ¢ is arbitrary, it leads to a contradiction, which show k,x, — kz 5 00n
Ghp.

(IID). pn(p—(kz)) =1.

In this case, v(t) = p— (kx(t)) is the unique supporting functional of = in L.
We only need to show that k,x, — kx .0 on Gy, then similar to (I), the proof is
completed.

Since a is the left extreme point of an affine segment of M (u), not right one,
similarly to Lemma 6, we can deduce that

liminf &k, 2, (t) > kx(t) (t € Gy, p—ae.).

n—oo

Thus

lim inf k:kf}:: (z(t) + z, (1)) = ka(2), (t€Gaypp—ace.). (14)

For any € > 0, take d > 0 so that for all e C G with pe < d, then

pn (p—(kzle)) <e. (15)
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Take n > 0 so that py (p— ((1 — n)kz))pn (p—(kz)) —e =1 — . Since knzy, —
kx -5 0 on EO’k—i—k (x4 2n) — kx -5 0 on Ej.
Choose Fy C Ey, uFy < d so that

(z(t) + 2, (1)) — kz(t)| =0. (16)

lim sup
n—=0 te By\ Fo

kky,
k4 ky,

Take m so that ,u( U, EfL) < d, and h small enough, then

uU{teE\G kx(t) < a; +h} <d.

Take ¢ > 0 small enough so that k+k (a; —€') + ki’,;n (a; +h) >a;+ 4 (i=
1,2,...,m).

By Lemma 3, there is 6 > 0 so that if f,,(¢) < 6 and kx(t) € E;, then k,z,(t) €
[a; — ', b +€'] (i=1,2,...,m).

Since f,(t) - 0, for n large enough we get that pF, = ,u{t € G: fult) >
o} < d. DenoteE’—{tEE\G kx(t) > a; + h} (i = 1,2,...,m). Then for n
large enough, k,z,(t) > a; + &’ whenever te UL, E\F,.

Take " < n so that (1—77’)<ai+%> >a;+ 2% (i=1,2,...,m), then

kky,
1—n
( )k—l—k

((0) + 20(t)) = 0+ 5 (t € BIVR,). (17)

Combining the nondecrease and left continuity of p_(u), from (14), (16)
and (17), we deduce that for all 7 < 7/,

lim sup N <p<1 ) (o) + xn<t>)) > N(p (1 - mke(t)))
(t € G U (EO\FO U ( 6 E;\Fn))> .

Similarly to the above, from (15), we can show that for all T,, C G,

it o (- (1= 25 e+ o)l ) )
> liminf py (p— ((1 = Mkalz,)) — 4. (18)
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I "
If suppose that k,x,, — kx /- 0 on G,, then k’ffgn (x +x,) — kx /> 0 on G,.

From (14), it follows that for some 6 > 0, ¢ > 0 and a left extreme point of an
affine segment of M (u),

,an:,u{tGGa tkz(t) = a, (z(t) + 2, (1)) 2a+0} >o0.

Take 7 < 7' so that (1 —n")(a+6) > a+ 4. From (18) and Lemma 5 we have

1> liminf py (p_ ((1 — n”)klfz (x+ xn)>>

n—oo

> lim inf /G\Hn N(p,((l - ﬂ’)k::z(t)))d,u + N(p, (a+ g))uﬂn] —4e

> lim inf /G\H N(p—((l - n”)kw(t))>du + N(p(a))an] —4e

= lim inf / N(p_ (1- n/’)kx(t)))d,u + N(p—(a))uH,

+ (N(pla) - N <a>))uﬂn] e
> pN (pf ((1- n’/)kﬂf)) + (N(p(a)) — N(pf(a)))a —de

>1- (N(p(a)) - N(p,(a)))a —be.

By the arbitrariness of ¢, it leads a contradiction, which shows k,z., — kz —— 0 on
G,. O

Corollary

LS, possesses a WM property if and only if M € Ay N V3 and all extreme
points of the affine segments of M (u) are continuous points of p(u).

Proof. Sufficiency. Let x € S(L,).

First, (i) holds. Then by M € A N Vg, (ii) holds. Since there is not any
extreme point of affine segment of M (u) which is not any continuous point of p(u),
it follows that uG, = 0 and puGjp = 0, thus (iii) and (iv) hold.

If (v) fails, then there exist 1 = ||z,|° = é(l + pu (k) ||z + 20> — 2,
and e, C G, pe, — 0, but pM(k:na:n|en) > ¢ for some o > 0.
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For any € > 0, since M € V4 and

kk,, k kn, =
n) | < k kx) =k
pm <k+kn($+$ )> S fg gy P the) g, ey (k)
for n large enough,

kky, ( + )| < ﬂ ‘ +e
PM k’+k‘n X Tn)le, | = PM k’+k’nxn en

and for some 0 < ¢ < 1, it holds

M< Rk u) < (1= 6)— M (k).

k+kn k+k,
Hence
kky, k
nj)le S 1_6 kn nie
(ol ) < (0 parlbural,) o
bo
< kn nlen) — N .

which leads to a contradiction:

k+ k, Kk,
2= fim ol = i S (1 () )

. k4 k, kk, Kk,
. Kl [1+pM(k+kn($+$n’G\en)+PM<k+kn(.%'+xn)’en)):|
+ K N
< li k Kk kv
< Jm T  arge (Relene,) e ou (B o, )
k oo
kn ni|e - — 2
g Py (nale,) = = 4 2
1 1 oo
< lim —(1 knxy, —(1 kx)) — 22 19
< Jim o= (Ut par(bnn)) + (14 par (k) = = 4 2¢
=2- 60_4—25.
1+k

The contradiction shows (v) holds. So x is a WM point.

Necessity. Clearly M € Va. If MEAy, by [7], there is z € S(L%,) with
pn (p(kz)) < 1, (ii) fails, which contradicts that = is a WM point.
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If for some [a, b] with p_(b) < p(b) and [a, b] is an affine segment of M (u), then
take disjoint subsets £, D C G, a < ¢ < b and d > 0 such that

N@©) £ N@®) o N(p(d))uD =1.

Set
_bls+dp
r = ——————

’ where k= ||blg + ¢|p]||°-

Take disjoint A, B C E with uA = uB = JuE, set
v=p(b)|a+plc)s+pdlp,

then py(v) = 1. Hence

1> (z,v) = = (bp(b)pA + bp(c) B + dp(d)uD)

- (M(b),uE L Ne©) ; N(p(®) WE + M(d)uD + N(p(d)),w)

ol

(1 + par (k) = ||z]° =1

=

and k € K(z). But on the other hand,
pn (p(kx)) = N (p(b)) nE + N (p(d)) uD > 1

and

N(p-(b))pE + N(p(d))uD = N (p(c))uE + N (p(d)) uD < 1

which shows that (iii) fails. So z is not a WM point, a contradiction.
Analogously, we can show that all a € {a} of left extreme points of affine

segments of M (u) are continuous points of p(u). O
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