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Abstract

It is shown that Bessel capacities in reflexive Orlicz spaces are non in-
creasing under orthogonal projection of sets. This is used to get a continuity of
potentials on some subspaces. The obtained results generalize those of Meyers
and Reshetnyak in the case of Lebesgue classes.

Introduction

In [3, 4, 2] we have introduced a theory of capacities in Orlicz spaces and began to
study potentials in these spaces.

In this paper we continue to study some properties of potentials in Orlicz spaces.
Hence we prove in theorem 1 that the capacities in reflexive Orlicz spaces are non
increasing under orthogonal projection of sets. This allows us to describe sets for
which the potentials are continuous. In particular, for Bessel potentials, we have
more information about their differentiability. On the other hand for some special
Lipschitzian maps, T , we show the following:

B′
m,A[T (X)] ≤ CB′

m,A(X) (for diam X ≤ ρ).

Hence the null sets (for B′
m,A) are conserved by T . We show also, as in the case of

Lebesgue classes the following

B′
m,A(PGHX) ≤ CB′

m,A(X)

for X such that diam PGHX ≤ ρ.
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Here we define PGH as the projection of R
N onto G, parallel to H, when R

N is
the affine direct sum of G and H.

All the results obtained generalize those of Meyers in [11] and Reshetnyak [13]
in the case of Lebesgue spaces.

1. Preliminaries

Let a be a function defined in [0,+∞[ and satisfying the following:
i) a(0) = 0, a(t) > 0 if t > 0 and limt→∞ a(t) = +∞
ii) a is right continuous on [0, +∞[
iii) a is increasing in [0, +∞[.
For t ∈ R, set:

A(t) =
∫ |t|

0

a(x)dx.

Then A is called N -function. Define a∗ in [0, +∞[ as

a∗(s) = sup{t : a(t) ≤ s}.

a∗ verifies also i), ii) and iii). One associates to a∗ the N -function A∗ defined, for
all t ∈ R, by:

A∗(t) =
∫ |t|

0

a∗(x)dx.

A∗ is called the N -function conjugate to A. Let A be an N -function and Ω an open
set in R

N . We note LA(Ω) the set of measurable functions f , on Ω, such that

∫
Ω

A(f(x))dx <∞.

This set is called an Orlicz class. We put

ρ(f,A,Ω) =
∫

Ω

A(f(x))dx

and if Ω = R
N ,

ρ(f,A) =
∫

RN

A(f(x))dx.
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Let A and A∗ be two conjugateN -functions and f a measurable function defined
almost everywhere in Ω. The number ‖f‖A,Ω, or ‖f‖A if there is no confusion,
defined by

‖f‖A = sup
{ ∫

Ω

|f(x)g(x)|dx : g ∈ LA∗(Ω) and ρ(g,A∗,Ω) ≤ 1
}

is called the Orlicz norm of f .
The set LA(Ω) of measurable functions f , such that ‖f‖A < ∞ is called an

Orlicz space. When Ω = R
N , we set LA in place of LA(RN ).

The Luxemburg norm |||f |||A,Ω, or |||f |||A if there is no confusion, is defined in
LA(Ω) by:

|||f |||A = inf
{
s > 0 :

∫
Ω

A

[
f(x)
s

]
dx ≤ 1

}
.

Let A be an N -function. We say that A verifies the ∆2 condition if there exists
a constant C > 0 such that A(2t) ≤ C A(t) for all t ≥ 0.

Recall that A verifies the ∆2 condition if and only if LA = LA. Moreover LA

is reflexive if and only if A and A∗ satisfy the ∆2 condition.
Let k be a positive and measurable function in R

N , k is called a kernel. Let A
be an N -function. For X ⊂ R

N , we define

Ck,A(X) = inf{A(|||f |||A) : f ∈ L+
A and k ∗ f ≥ 1 on X}

C ′
k,A(X) = inf{|||f |||A : f ∈ L+

A and k ∗ f ≥ 1 on X}

where k ∗ f is the usual convolution. The sign + deals with positive elements in the
considered space. Then C ′

k,A is a capacity in the ordinary sense and Ck,A = A0C
′
k,A

is called A-capacity.
If a statement holds except on a set X where Ck,A(X) = 0, then we say that the

statement holds Ck,A-quasi everywhere (abbreviated Ck,A-q.e or (k,A)-q.e if there
is no confusion).

Let f and the elements of the sequence (fi)i be real valued functions which are
finite Ck,A-q.e. We say that (fi)i converges Ck,A quasi uniformly to f (in abbreviated
fi → f Ck,A-q.u) if:

∀ ε > 0, ∃X : Ck,A (X) < ε and fi → f uniformly on cX.

We call a function f in L+
A such that k∗f ≥ 1 on X, a test function for C ′

k,A(X).
Moreover, a test function, say f , for C ′

k,A(X) such that C ′
k,A(X) = |||f |||A is called a

C ′
k,A-capacitary distribution of X and k ∗ f a C ′

k,A-capacitary potential of X.
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For the properties of C ′
k,A and Ck,A, see [3], and for the existence and uniqueness

of a C ′
k,A-capacitary distribution of a set, see [4].
M denotes the vector space of Radon measures. M1 is the Banach space of

measures, equipped with the norm ‖µ‖ = total variation of µ < ∞.
F will stand for the σ-field of sets which are µ-measurable for all µ ∈M+

1 .
If µ ∈M+

1 , we say that µ is concentrated on X if µ(Y ) = 0 for all sets Y which
are µ-measurable and such that Y ⊂cX.

Let A and A∗ be two conjugate N -functions. For X ∈ F , we define

Dk,A(X) = sup{‖µ‖ : µ ∈M+
1 , µ concentrated on X and ‖k ∗ µ‖A∗ ≤ 1}

where k ∗ µ is the convolution of k and µ defined by:

(k ∗ µ) (x) =
∫
k(x− y) dµ(y).

A measure µ ∈ M+
1 such that µ is concentrated on X and ‖k ∗ µ‖A∗ ≤ 1 is

called a test measure for Dk,A (X). If in addition Dk,A(X) = ‖µ‖, we say that µ is
a Dk,A-capacitary distribution and k ∗µ is called a Dk,A-capacitary potential for X.

For the properties of Dk,A, see [3,4].
Bessel kernel is of principal interest in this paper. As classical references, see

[5,6,14].
For m > 0, the Bessel kernel, gm, is most easily defined through its Fourier

transform F (gm) as:

[F (gm)] (x) = (2π)−N/2(1 + |x|2)−m/2,

where
[F (f)] (x) = (2π)−N/2

∫
f(y) e−ixy dy for f ∈ L1.

gm is positive, in L1 and verifies the equality

gr+s = gr ∗ gs.

In addition, we put

Bm,A = Cgm,A
and B′

m,A = C ′
gm,A

.

If X is a locally compact set in R
N and X̃ = X ∪ {x̃} its one point compacti-

fication, then we denote by C0(X) the Banach space of real continuous functions f
on X normed by supx |f(x)|, and such that limx→x̃ f(x) = 0.
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Cc(X) will be the subspace of compact support functions in C0(X).

2. Continuity of potentials

Theorem 1

Let A be an N -function such that A and A∗ satisfy the ∆2 condition. Let k be

a kernel on R
N which is spherically symmetric and non-increasing as |x| increases.

If S is an affine subspace of R
N and X a subspace of R

N , then

Ck,A(PSX) ≤ Ck,A(X).

Proof. We begin by proving the theorem in the case when X is a compact set. Let
ν be a test measure for Dk,A(PSX), ν is carried by PS X. By the Hahn-Banach
theorem there exists µ ∈M+(X) such that

PSµ = ν.

Hence
‖µ‖ = ‖ν‖.

We must show that µ is a test measure for Dk,A(X). From [8], if f ∈ LA, then

‖f‖A = inf
β>0

{
β−1

[
1 +

∫
A(βf(x))dx

]}
.

Let β > 0 and φβ the function defined on [0,∞] by: φβ(x) = A∗(βx).
We remark that φβ satisfies the conditions of [11, theorem 2]. Applying this theorem,
we get ∫

A∗[β(k ∗ µ)](x)dx ≤
∫
A∗[β(k ∗ PSµ)](x)dx.

Hence

∀β > 0, β−1

[
1 +

∫
A∗[β(k ∗ µ)](x)dx

]
≤ β−1

[
1 +

∫
A∗[β(k ∗ PSµ)](x)dx

]
.

This implies
‖k ∗ µ‖A∗ ≤ ‖k ∗ PSµ‖A∗ ≤ 1.

Then µ is a test measure for Dk,A(X) and

‖µ‖ = ‖ν‖ ≤ Dk,A(X).
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Hence

Dk,A(PSX) ≤ Dk,A(X).

However, from [2], we have for analytic sets,

Dk,A = C ′
k,A.

Whence

Ck,A(PSX) ≤ Ck,A(X).

Now we consider the case when X is a countable union of compact sets. Then
there exists an increasing sequence of compact sets, (Ki)i such that

X = ∪iKi.

Therefore

PSX = ∪iPSKi.

From [2] we deduce

lim
i
Ck,A(Ki) = Ck,A(X) and lim

i
Ck,A(PSKi) = Ck,A(PSX).

Hence

Ck,A(PSX) ≤ Ck,A(X).

Now we treat the general case. Let O be an open set containing X. Then

Ck,A(PSX) ≤ Ck,A(PSO) ≤ Ck,A(O).

Since Ck,A is an outer capacity, (see [3, théorème 2]), we get

Ck,A(PSX) ≤ Ck,A(X).

The proof is finished. �
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Theorem 2

Let A be an N -function such that A and A∗ satisfy the ∆2 condition. Let k be

a kernel on R
N which is spherically symmetric and non-increasing as |x| increases.

Further, suppose that k is locally Lebesgue integrable with lim|x|→∞ k(x) = 0. Let

S be an affine subspace of R
N . Then

1) For f ∈ LA and ε > 0, there exists a closed set F ⊂ S such that

Ck,A(S − F ) < ε and k ∗ f ∈ C0(F + S⊥).

Hence

k ∗ f ∈ C0(x+ S⊥) Ck,A-q.e in S.

2) Let (fi)i be a sequence convergent to f in LA. Then there is a subsequence

(fi′)i′ , such that given ε > 0, there exists a closed set F ⊂ S with the property

Ck,A(S − F ) < ε and k ∗ fi′ → k ∗ f in C0(F + S⊥).

Hence

k ∗ fi′ → k ∗ f in C0(x+ S⊥)Ck,A-q.e in S.

Proof. 1) There exists a sequence (fi)i in Cc(RN ) such that fi → f in LA.
It is clear that

k ∗ fi ∈ C0(RN ).

From [3, théorème 4] there is a subsequence (fi′)i′ such that

k ∗ fi′ → k ∗ f Ck,A-q.u.

Since Ck,A is an outer capacity, (see [3, théorème 2]), there is an open set O
such that

Ck,A(O) < ε and k ∗ fi′ → k ∗ f uniformly on cO.

We define
F = S − PSO.

Then 1) follows from theorem 1.
Part 2) is proved by practically the same argument. �
We apply theorem 2 to Bessel kernels and more precisely to their derivatives.

Lemma 1

Let A be an N -function and r, s two real numbers such that 0 < r < s. Then

for all X,

Br,A(X) ≤ Bs,A(X).
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Proof. Let f be a test function for Bs,A(X). Then

gs ∗ f ≥ 1 on X.

This implies
gr∗(gs−r ∗ f) ≥ 1 on X.

From [7 or 12] we have

|||gs−r ∗ f |||A ≤ |||f |||A ‖gs−r‖1.

Hence gs−r ∗ f is a test function for Br,A(X) and since ‖gs−r‖1 = 1, we get

Br,A(X) ≤ A(|||f |||A).

Whence
Br,A(X) ≤ Bs,A(X).

The proof is finished. �

Theorem 3

Let A be an N -function such that A and A∗ satisfy the ∆2 condition. Let S be

an affine subspace of R
N and 0 ≤ s < m. Then

1) For f ∈ LA and ε > 0, there exists a closed set F ⊂ S such that

Bm−s,A(S − F ) < ε

and

Dj(gm ∗ f) ∈ C0(F + S⊥) for all j, |j| ≤ s.

Hence for such j,

Dj(gm ∗ f) ∈ C0(x+ S⊥) Bm−s,A-q.e in S.

2) Let (fi)i be a sequence convergent to f in LA. Then there is a subsequence

(fi′)i′ such that given ε > 0, there exists a closed set F ⊂ S with the property

Bm−s,A(S − F ) < ε

and

Dj(gm ∗ fi′) → Dj(gm ∗ f) in C0(F + S⊥) for all j, |j| ≤ s.



On the continuity of Bessel potentials in Orlicz spaces 85

Hence for such j,

Dj(gm ∗ fi′) → Dj(gm ∗ f) in C0(x+ S⊥)Bm−s,A-q.e in S.

Proof. Let S(RN ) be the Schwartz space of rapidly decreasing C∞ functions and
f ∈ S(RN ). For j such that |j| < m, we have

F [Dj(gm ∗ f)] = Cyj(1 + |y|2)−|j|/2(1 + |y|2)−(m−|j|)/2F (f)

where C is a constant. We define

f j = Dj(g|j| ∗ f).

From [7], the map φj : g → gj is continuous from LA into LA because A and
A∗ verify the ∆2 condition. Furthermore (see [7])

Dj(gm ∗ f) = gm−|j| ∗ f j .

Now, let f ∈ LA. Then there is a sequence (fi)i in S(RN ) such that

|fi − f | → 0 in LA.

Theorem 4 in [3] gives
gm ∗ |fi − f | → 0 Bm,A-q.e.

And from lemma 1, we get

gm ∗ |fi − f | → 0 Bm−|j|,A-q.e.

Another application of [3, théorème 4] gives

gm−|j| ∗ |fi − f | → 0 Bm−|j|,A-q.e.

On the other hand, from [5 or 6], there are constants C1 and C2 such that

|Dj [gm ∗ (|fi − f |)]| ≤ |Djgm| ∗ |fi − f | ≤ C1(gm ∗ |fi − f |) + C2(gm−|j| ∗ |fi − f |).

Hence
Dj [gm ∗ (|fi − f |)] → 0 Bm−|j|,A-q.e.
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Theorem 4 in [3] and the continuity of φj imply

gm−|j| ∗ f ji → gm−|j| ∗ f j Bm−|j|,A-q.e.

But
gm−|j| ∗ f ji = Dj(gm ∗ fi) → Dj(gm ∗ f) Bm−|j|,A-q.e.

Hence
Dj(gm ∗ f) = gm−|j| ∗ f j Bm−|j|,A-q.e.

From lemma 1 we get that if |j| ≤ s, then

Dj(gm ∗ f) = gm−|j| ∗ f j Bm−s,A-q.e.

The theorem follows by an application of theorem 2 to the kernel gm−|j|. �
Theorem 4

Let A be an N -function and T be a one to one map of R
N onto itself. Suppose

that T and its inverse T−1 satisfy a Lipschitz condition. Let ρ, 0 < ρ < ∞, and

X ⊂ R
N such that diam X ≤ ρ. Then there exists a constant C, independent of X

such that

B′
m,A[T (X)] ≤ C B′

m,A(X).

Proof. Let x0 be a fixed point inX. Since the capacity is invariant under translation,
we can take x0 = 0. Hence

X ⊂ B(0, ρ).

Let f be a test function for B′
m,A(X) such that

|||f |||A ≤ 2B′
m,A[B(0, ρ)].

Let θ be such that θ > 1. θ will be fixed later. We pose

E(θ, ρ) = {y : |y| ≥ θρ} and gm(. , x) = gm(x− .).

Hölder inequality in Orlicz spaces gives
∫
E(θ−1,ρ)

gm(x− y)f(y)dy ≤ 2|||f |||A |||gm(. , x)|||A∗,E(θ−1,ρ).

Let S = 8B′
m,A[B(0, ρ)] and estimate the integral

I =
∫
E(θ−1,ρ)

A∗[Sgm(x− y)]dy, for x ∈ X.
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We remark that
I ≤

∫
E(θ,ρ)

A∗[Sgm(y)] dy.

Using the following behavior of gm near ∞, (see [14]),

Sgm(t) ∼ C ′|t|(m−N−1)/2 e−|t|,

we can find y0 such that for |y| ≥ y0,

Sgm(y) ≤ |y|−N−1.

On the other hand, since limt→0 A
∗(t)/t = 0, there is y1 such that for |y| ≥ y1,

A∗(y−N−1) ≤ |y|−N−1.

Choose θ > 1 such that θρ ≥ sup(y0, y1). Then

I ≤ Cm

∫ ∞

θρ

A∗[Sgm(y)]yN−1dy ≤ C ′′
∫ ∞

θρ

y−2dy = C ′′(θρ)−1.

If we take θρ ≥ C ′′, we get
I ≤ 1.

So
|||gm(. , x)|||A∗,E(θ−1,ρ) ≤ S−1.

This implies ∫
E(θ−1,ρ)

gm(x− y)f(y)dy ≤ 1/2 for x ∈ X.

Hence ∫
B(0,(θ+1)ρ)

gm(x− y)2f(y)dy ≤ 1 for x ∈ X.

Set h = 2χf , where χ is the indicator function of B(0, (θ + 1)ρ). Then

gm ∗ h ≥ 1 on X,

and thus
gm ∗ h(T−1(x)) ≥ 1 for x ∈ T (X).

By a change of variables in the convolution we get
∫
gm[(LT )−1(x− z)] h(T−1z) JT−1(z)dz ≥ 1 for x ∈ T (X)
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where LT is the Lipschitz constant for T and JT−1 is the Jacobean of T−1.
Since h(T−1z) = 0 for z �∈ B(0, (θ + 1)ρ), we will consider, for x ∈ T (X), for

the above integral, only points z such that

|x− z| ≤ LT (θ + 2)ρ.

An asymptotic behavior of gm in the neighborhood of zero (see [5] section 2)
gives

gm[(LT )−1x] ≤ κgm(x) for |x| ≤ LT (θ + 2)ρ,

where κ is a constant independent of x.
This implies that the function

z → κh(T−1z)JT−1(z)

is a test function for B′
m,A[T (X)] and we get

B′
m,A[T (X)] ≤ κ′|||f |||A

where κ′ is a constant independent of x.
Hence there exists a constant C, independent of X such that

B′
m,A[T (X)] ≤ C B′

m,A(X).

The theorem is proved. �

If R
N is the affine direct sum of G and H, we define PGH as the projection of

R
N onto G, parallel to H.

Theorem 5

Let A be an N -function such that A and A∗ satisfy the ∆2 condition. Let

ρ, 0 < ρ < ∞ and X ⊂ R
N such that diam PGHX ≤ ρ. Then there exists a

constant C, independent of X such that

B′
m,A(PGHX) ≤ C B′

m,A(X).

Proof. The proof es identical with the Meyers one in [11]. For completeness, we give
it.

The projection PH⊥ restricted to G has an affine extension to T , mapping R
N

onto itself. Hence PGH = T PH⊥ . Applying successively theorem 4 and theorem 1,
we obtain the result. �
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