
Collect. Math. 47, 1 (1996), 55–62

c© 1996 Universitat de Barcelona

Four-term recurrence relations for hypergeometric
functions of the second order. I

Harold Exton

“Nyuggel”, Lunabister, Dunrossness, Shetland, ZE2 95H United Kingdom

Received April 4, 1995

Abstract

Four-term recurrence relations for hypergeometric functions of the second order
are deduced from generating functions involving elementary functions. Gene-
ralisations are indicated and an example is given of a five-term recurrence for
the confluent hypergeometric function.

1. Introduction

It has recently been pointed out by Yáñez, Dehesa and Zarzo (1994) that recur-
rence relations for hypergeometric functions of the second order are incompletely
known except for certain three-term recurrence relations associated with orthogo-
nality properties. This is all the more remarkable in view of the fact that these
functions are of importance in many applications including mathematical physics.

The authors cited above have discussed certain four-term recurrence relations
for these functions from the point of view of their associated differential equations.
In this study, this matter is taken up beginning with certain generating functions
which yield higher-order functions from which the required recurrences are deduced.
If the higher-order functions are suitably selected, then they may be specialised to
give the second-order functions concerned, and, in turn, the recurrences sought. The
analysis used in this paper involves, in the main, the elementary manipulation of
series.
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The following functions occur in the subsequent analysis: The hypergeometric
function of general order,

AFB

(
a1, . . . , aA; b1, . . . , bB ;x

)
= AFB

(
(a); (b);x

)
=

∑ (
(a),m

)
xm(

(b),m
)
m!

, (1.1)

the Kampé de Fériet function,

FA:B;B′

C:D;D′


 (a) : (b); (b′);

x, y
(c) : (d); (d′);


 =

∑ (
(a),m + n

)(
(b),m

)(
(b′), n

)
xmyn(

(c),m + n
)(

(d),m
)(

(d′), n
)
m!n!

, (1.2)

the Humbert function,

Φ2(a, b; c;x, y) =
∑ (a,m)(b, n)xmyn

(c,m + n)m!n!
(1.3)

and the first Appell function

F1

(
a, b, b′; c;x, y

)
=

∑ (a,m + n)(b,m)(b′, n)xmyn

(c,m + n)m!n!
. (1.4)

See such works as Appell et Kampé de Fériet (1926), Erdélyi (1953), Slater (1966)
and Exton (1976), for example, where hypergeometric functions are discussed in
great depth.

All indices of summation run over all of the non-negative integers unless other-
wise stated. Any values of parameters for which any expression does not make sense
are tacitly excluded. As usual, the Pochhammer symbol (a, n) is given by

(a, n) = a(a + 1) . . . (a + n− 1) = Γ(a + n)/Γ(a); (a, 0) = 1 . (1.5)

The symbol ((a), n) represents the sequence (a1, n) . . . (aA, n) .

2. Four-term recurrences for the Gauss functions 2F1

We begin by considering the generating function

V = (1 − xt)−a(1 − yt)−b(1 − zt)−c =
∑

tnFn . (2.1)
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The product of three binomial functions is developed in powers of t, namely

(1 − xt)−a(1 − yt)−b(1 − zt)−c =
∑ (a, p)(b, q)(c, r)

p! q! r!
xpyqzrtp+q+r . (2.2)

On replacing p by n− q − r, the series on the right becomes

∑ (a, n− q − r)(b, q)(c, r)
p! q! r!

xn−q−ryqzrtn . (2.3)

Within its domain of absolute convergence, this triple series can be re-arranged in
the form

∑
tn

[
(a, n)
n!

xn
∑ (−n, q + r)(b, q)(c, r)

(1 − a− n, q + r) q! r!
(
y/x

)q(
z/x

)r]
. (2.4)

Hence, by comparison with (2.1) and using (1.4), it is clear that

Fn = Fn(x, y, z) = Fn(a, b, c;x, y, z)

=
(a, n)
n!

xn F1

(
− n, b, c; 1 − a− n; y/x, z/x

)
. (2.5)

This type of elementary manipulation of series has been used by many authors over
a long time. See, for example, Watson (1944), Chapter 2, where an application to
the theory of Bessel coefficients is cited.

A number of functional relations involving Fn may be obtained from (2.1) by
taking partial derivatives in a judicious manner. In the present context, we take
partial derivatives with respect to t, when it follows that

∂V

∂t
= ax(1 − xt)−a−1(1 − yt)−b(1 − zt)−c + by(1 − xt)−a(1 − yt)−b−1(1 − zt)−c

+ cz(1 − xt)−a(1 − yt)−b(1 − zt)−c−1

=
∑

ntn−1Fn . (2.6)

Re-arranging, we have
[
ax(1 − yt)(1 − zt) + by(1 − xt)(1 − zt) + cz(1 − xt)(1 − yt)

]∑
tn Fn

− (1 − xt)(1 − yt)(1 − zt)
∑

ntn−1Fn = 0 . (2.7)

Equate coefficients of tn, and obtain the four-term recurrence relation

(n + 1)Fn+1 =
[
ax + by + cz + (x + y + z)n

]
Fn

−
[
(a+b−1)xy+(a+c−1)xz+(b+c−1)yz+(xy + xz + yz)n

]
Fn−1

+ (a + b + c− 2 + n)xyzFn−2 . (2.8)
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The relation (2.8) may be made applicable to the Gauss function 2F1 by observing
that

FA:1;1
C:0;0


 (a) : b; b′;

x, x
(c) : −;−;


 = A+1FC

(
(a), b + b′; (c);x

)
, (2.9)

as given by Srivastava and Karlsson (1985), page 28, for example. It follows now
that, replacing b + c by b and putting z = y,

Fn =
(a, n)xn

n! 2F1

(
− n,−1, b; 1 − a− n; y/x

)
. (2.10)

With this specialisation, (2.8) may be written as

(a + n)(a + n− 1)(a + n− 2)x3
2F1(−n− 1, b;−a− n; y/x)

=
[
ax + by + (x + 2y)n

]
(a + n− 1)(a + n− 2)x2

2F1

(
− n, b; 1 − a− n; y/x

)
−

[
(2a+b− 2)xy+(b− 1)y2+y(2x + y)n

]
(a+n− 2)nx 2F1

(
1 − n, b; 2−a−n; y/x

)
+ (a + b− 2 + n)xy2n(n− 1) 2F1

(
2 − n, b; 3 − a− n; y/x

)
. (2.11)

The bilateral generating function

V1 =
(
1 − x/t

)−a(1 − y/t)−b
(
1 − zt)−c =

∞∑
n=−∞

tn Gn (2.12)

generates a non-polynomial form of the Appell function F1. Proceeding as above, it
is found that

Gn =
(c, n)
n!

znF1

(
c + n, a, b; 1 + n;xz, yz

)
, (2.13)

and by taking the partial derivative of (2.12) with respect to t[
− axt−2(1 − y/t)(1 − zt) − byt−2

(
1 − x/t

)
(1 − zt) + cz

(
1 − x/t

)(
1 − y/t

)]

×
∞∑

n=−∞
tn Gn

=
(
1 − x/t

)(
1 − y/t

)
(1 − zt)

∞∑
n=−∞

ntn−1Gn . (2.14)

If the powers of t are collected, and coefficients of tn equated, we have

czGn =
[
cy(x + z) − z(ax + by)

]
Gn+1 +

[
ax + by + (a + b− c)xyz

]
Gn+2

− (a + b)xyGn+3 +
[
1 + z(x + y)

]
(n + 1)Gn+1

− (x + y + xyz)(n + 2)Gn+2

+ xy(n + 3)Gn+3 . (2.15)
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Put y = x and replace a + b by a, when Gn reduces to

(c, n)
n!

zn 2F1(c + n, a; 1 + n;xz) . (2.16)

After some algebra, (2.15) yields a second four-term recurrence relation for a Gauss
function 2F1. This is

c(n + 1)(n + 2)(n + 3) 2F1(c + n, a; 1 + n;xz)

+
[
cx(x + z) + 2(1 − a)xz + 1 + (1 + 2xz)n

]
× (c + n)(n + 2)(n + 3) 2F1(c + n + 1, a; 2 + n;xz)

+
[
(a− 4)x + (a− c− 2)x2z − 2x(2 + xz)n

]
(c + n)(c + n + 1)(n + 3)z

× 2F1(c + n + 2, a; 3 + n;xz)

+ (3 − a + n)x2(c + n)(c + n + 1)(c + n + 2)z2

× 2F1(c + n + 3, a; 4 + n;xz) = 0 . (2.17)

3. Recurrence relations for confluent hypergeometric functions

Methods along the same lines as those applied in the previous section may be used
to obtain four-term recurrence relations connecting certain contiguous confluent hy-
pergeometric functions.

Beginning with the generating function

V2 = (1 − xt)−a(1 − yt)−b exp(zt) =
∑

tnKn , (3.1)

it may readily established that

Kn =
∑ (a, p)(b, p)(−n, p + q)

p! q!n!
(−x/z)p(−y/z)qzn

=
zn

n!
F 1:1;1

0:0;0


−n : a; b;

−x/z,−y/z
− : −;−;


 . (3.2)

This last polynomial may be regarded as a two variable generalisation of the Charlier
polynomial. Compare Erdélyi (1953) Vol. II page 226.

Again, taking partial derivatives of (3.1) with respect to t, we have

[
ax/(1 − xt) + by/(1 − yt) + z

]
V2 =

∑
ntn−1Kn . (3.3)
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Proceeding in a fashion precisely parallel to that of Section 2, we have eventually,
after some algebra,

(n+1)Kn+1 = (ax+z+2xn)Kn−
[
(a−1)x2−2zx+x2n

]
Kn−1 +zx2 Kn−2 , (3.4)

after letting y = x and replacing a + b by a.

Interpreting (3.4) in terms of the function 2F0, it follows that

z2
2F0

(
− n− 1, a;−;−x/z

)
= (ax + z + 2xn)z 2F0

(
− n, a;−;−x/z

)
−

[
(a− 1)x2 − 2xz + x2

]
n 2F0

(
− n + 1, a;−;−x/z

)
+ x2n(n− 1) 2F0

(
− n + 2, a;−;−x/z

)
. (3.5)

The terminating series 2F0(−n, a;−; y) can be reversed to give

(a, n)(−y)n 1F1

(
− n; 1 − a− n;−1/y

)
, (3.6)

which is more easily recognisable as being of confluent hypergeometric form.
From the generating function

V3 =
(
1 − x/t

)−a(1 − y/t)−b exp(zt) =
∞∑

n=−∞
tn Mn , (3.7)

it is found that
Mn =

zn

n!
Φ2

(
a, b; 1 + n;xz, yz

)
. (3.8)

Proceeding as above, taking the special case y = x, and replacing a+ b by a, so that

Mn =
zn

n! 1F1(a; 1 + n;xz) , (3.9)

we see that

zMn−2+(1−2xz−n)Mn−1+
(
x2z−ax+2xz

)
Mn+(a−1−n)x2Mn+1 = 0 . (3.10)

This last expression may be written in the following confluent hypergeometric form:

(n− 1)n(n + 1) 1F1(a;n− 1;xz) + (1 − 2xz − n)n(n + 1) 1F1(a;n;xz)

+ (xz − a + 2n)(n + 1)xz 1F1(a; 1 + n;xz)

+ (a− 1 − n)x2x2
1F1(a; 2 + n;xz) = 0. (3.11)
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4. Generalisations and conclusion

The expressions deduced in the previous sections may readily be generalised to
give recurrence relations of any number of terms greater than two by employing
generating functions with any given number of binomial factors. It must be pointed
out, however, that the complexity of the algebra involved increases rapidly as the
number of terms rises.

As an example, we discuss a generalisation of (3.7), namely,

V4 =
(
1 − x1/t

)−a1
. . .

(
1 − xm/t

)−am exp(zt) =
∞∑

n=−∞
tn mMn

=
∑ (a1, p1) . . .

(
am, pm

)
xp1

1 . . . xpm
m zr

p1! . . . pm! r!
tr−p1−...−pm . (4.1)

Put r = n + p1 + . . . + pm, when we see that the previous series becomes

∑ (
a1, p1) . . .

(
am, pm

)
xp1

1 . . . xpm
m zn+p1+...+pm

p1! . . . pm!
(
n + p1 + . . . + pm

)
!

, (4.2)

and it is clear that

mMn =
zn

n!
Φ(m)

2

(
a1, . . . , am; 1 + n;x1z, . . . , xmz

)
. (4.3)

The multiple confluent hypergeometric is given by

Φ(n)
2

(
a1, . . . , an; b;x1, . . . , xn

)
=

∑ (
a1, r1

)
. . .

(
an, rn

)
xr1

1 . . . xrn
n(

b, r1 + . . . + rn
)
r1! . . . rn!

. (4.4)

see Exton (1976) page 42, for example.
By a multiple application of (2.9), it will be seen that

Φ(n)
2

(
a1, . . . , an; b;x, . . . , x

)
= 1F1

(
a1 + . . . + an; b;x

)
. (4.5)

Proceeding as in the previous sections, a recurrence relation for the confluent func-
tion involving m+2 terms may now be obtained after a great deal of algebra. Similar
generalisations for the other results given in Sections 2 and 3 may be developed. It
must be stressed that other recurrences for the hypergeometric functions exist. It is
hoped to discuss such results in subsequent work.
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