Collect. Math. 47, 1 (1996), 35-46
(c) 1996 Universitat de Barcelona

On the structure of tensor norms related to (p, σ)-absolutely continuous operators ${ }^{(*)}$

Enrique A. SÁnchez-Pérez
E.T.S. Ingenieros Agrónomos, Camino de Vera, 46071 Valencia, Spain

Received December 19, 1994. Revised June 13, 1995

Abstract

We define an interpolation norm on tensor products of p-integrable function spaces and Banach spaces which satisfies intermediate properties between the Bochner norm and the injective norm. We obtain substitutes of the Chevet - Persson - Saphar inequalities for this case. We also use the calculus of traced tensor norms in order to obtain a tensor product description of the tensor norm associated to the interpolated ideal of (p, σ)-absolutely continuous operators defined by Jarchow and Matter. As an application we find the largest tensor norm less than or equal to our interpolation norm.

The operator ideals $\mathfrak{P}_{p, \sigma}$ of (p, σ)-absolutely continuous operators were defined by U. Matter in [5] just by applying an interpolative procedure to the ideals \mathfrak{P}_{p} of p-absolutely summing operators (see the paper [3] of Jarchow and Matter for a description of the interpolation method). These ideals are larger than the ideals \mathfrak{P}_{p} but they preserve some properties of \mathfrak{P}_{p}. In this paper we show that the tensor norms associated to these operator ideals - which we have characterized in [4] - can be constructed as in the classical case of \mathfrak{P}_{p} using the calculus of traced tensor norms given in [1]. In order to do this we define a special "pointwise interpolation norm"

[^0]on $L_{p /(1-\sigma)}(\mu) \otimes E$ - which we denote by $\Delta_{p, \sigma}$ - satisfying intermediate properties between the natural norm Δ_{p} and the injective norm ε. We adapt in this way the description of the Saphar tensor norm $d_{p}[6]$ - which is related to the classical p absolutely summing operators - to the interpolation case. More precisely, we obtain the formula $d_{p, \sigma}=\Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p^{\prime}, \sigma}^{t}$ where $\bar{p}=\left(\frac{p^{\prime}}{1-\sigma}\right)^{\prime}$ and $1 \leq p \leq \infty$. This is the interpolation version of the formula $d_{p}=\Delta_{p} \otimes_{\ell_{p}} \varepsilon$.

In section 2 we give the main result. It is an adaptation of the Chevet-PerssonSaphar inequalities $d_{p} \leq \Delta_{p} \leq d_{p^{\prime}}^{\prime}$ on $L_{p}(\mu) \otimes E$ for the interpolated norm $\Delta_{p, \sigma}$. In particular, we obtain a tensor norm $b_{p, \sigma}$ satisfying

$$
b_{p, \sigma} \leq \Delta_{p, \sigma} \leq b_{p^{\prime}, \sigma}^{\prime} \quad \text { on } \quad L_{\frac{p}{1-\sigma}}(\mu) \otimes E .
$$

As an application we show that $b_{p, \sigma}$ is the largest tensor norm less than or equal to $\Delta_{p, \sigma}$ on $L_{p /(1-\theta)}(\mu) \otimes E$ extending in this way a classical result of Gordon and Saphar about the relation between Δ_{p} and $d_{p}([2],[1])$.

0. Background and notation

Throughout this paper we use standard Banach space notation. The class of all Banach spaces is denoted by BAN. If $E \in \mathrm{BAN}, B_{E}$ is the closed unit ball and $\stackrel{\circ}{B}_{E}$ the open unit ball of E. We denote by $i d_{L_{p}(\mu)}$ the identity map on a Lebesgue function space $L_{p}(\mu)$. If A is a measurable set on the measure space $(\Omega, \mu), \chi_{A}$ denotes the characteristic function of A. If $1 \leq p \leq \infty, p^{\prime}$ is the real number satisfying $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. We use the same notation for a tensor $z=\sum_{i=1}^{n} f_{i} \otimes x_{i} \in L_{p}(\mu) \otimes E$ and for the associated Bochner integrable function $z(\omega)=\sum_{i=1}^{n} f_{i}(\omega) x_{i} \in L_{p}(\mu, E)$. If $\left(x_{i}\right) \in E^{\mathbb{N}}$, we define

$$
\pi_{p}\left(\left(x_{i}\right)\right):=\left(\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{p}\right)^{1 / p}, w_{p}\left(\left(x_{i}\right)\right):=\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\sum_{i=1}^{\infty}\left|\left\langle x_{i}, x^{\prime}\right\rangle\right|^{p}\right)^{1 / p}
$$

and

$$
\delta_{p, \sigma}\left(\left(x_{i}\right)\right):=\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\sum_{i=1}^{\infty}\left(\left|\left\langle x_{i}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|x_{i}\right\|^{\sigma}\right)^{p /(1-\sigma)}\right)^{(1-\sigma) / p} .
$$

If α is a tensor norm, we denote by α^{t} the transposed tensor norm, by α^{\prime} the dual tensor norm and by $\overleftarrow{\alpha}$ the cofinite hull of α. If \mathfrak{U} is an operator ideal, we write $\mathfrak{U}{ }^{*}$ for the adjoint ideal (see [1] for more details).

Let $\left(\mathfrak{P}, \Pi_{p}\right)$ be the ideal of p-absolutely summing operators and $1 \leq p \leq \infty$. The following definition is due to Matter ([5]):

Definition 0.1. Let $0 \leq \sigma<1$ and $E, F \in$ BAN. We say that $T \in \mathcal{L}(E, F)$ is a (p, σ)-absolutely continuous operator if there exist $G \in$ BAN and an operator $S \in \mathfrak{P}_{p}(E, G)$ such that

$$
\begin{equation*}
\|T x\| \leq\|x\|^{\sigma}\|S x\|^{1-\sigma} \forall x \in E . \tag{1}
\end{equation*}
$$

In such case, we put $\Pi_{p, \sigma}(T)=\inf \Pi_{p}(S)^{1-\sigma}$, taking the infimum over all G and $S \in \mathfrak{P}_{p}(E, G)$ such that (1) holds. We denote by $\left(\mathfrak{P}_{p, \sigma}, \Pi_{p, \sigma}\right)$ the injective normed ideal of (p, σ)-absolutely continuous operators in BAN.

Theorem 0.2 (Matter [5])
For every operator $T: E \longrightarrow F$, the following are equivalent:
(i) $T \in \mathfrak{P}_{p, \sigma}(E, F)$.
(ii) There is a constant $C>0$ and a probability measure μ on $B_{E^{\prime}}$, such that

$$
\|T x\| \leq C\left(\int_{B_{E^{\prime}}}\left(\left|\left\langle x, x^{\prime}\right\rangle\right|^{1-\sigma}\|x\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\left(x^{\prime}\right)\right)^{(1-\sigma) / p} \forall x \in E
$$

(iii) There exists a constant $C>0$ such that for every finite sequence x_{1}, \ldots, x_{n} in $E, \pi_{p /(1-\sigma)}\left(\left(T x_{i}\right)\right) \leq C \delta_{p, \sigma}\left(\left(x_{i}\right)\right)$.

In addition, $\pi_{p, \sigma}(T)$ is the smallest number C for which (ii) and (iii) hold.
The ideal $\mathfrak{P}_{p, \sigma}$ is a particular case of a family $\mathfrak{D}_{p, \sigma, q, v}$ of operator ideals introduced in [4] which generalizes the classical ideal $\mathfrak{D}_{p, q}$ of (p, q)-dominated operators. The following result is a characterization of the ideal $\left(\mathfrak{D}_{p, \sigma, q, \nu}, D_{p, \sigma, q, \nu}\right)$ of (p, σ, q, ν) dominated operators (see [4]).

Theorem 0.3

Let $E, F \in \operatorname{BAN}, T \in \mathcal{L}(E, F), 1 \leq r, p, q \leq \infty$ and $0 \leq \sigma, \nu<1$ such that $\frac{1}{r}+\frac{1-\sigma}{p}+\frac{1-\nu}{q}=1$. The following assertions are equivalent.

1) $T \in \mathfrak{D}_{p, \sigma, q, \nu}(E, F)$.
2) There exist a constant $C>0$ and regular probabilities μ and τ on $B_{E^{\prime}}$ and $B_{F^{\prime \prime}}$ respectively, such that for every $x \in E$ and $y^{\prime} \in F^{\prime}$ the following inequality holds

$$
\begin{aligned}
\left|\left\langle T x, y^{\prime}\right\rangle\right| \leq C & \left(\int_{B_{E^{\prime}}}\left(\left|\left\langle x, x^{\prime}\right\rangle\right|^{1-\sigma}\|x\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\left(x^{\prime}\right)\right)^{(1-\sigma) / p} \\
& \times\left(\int_{B_{F^{\prime \prime}}}\left(\left|\left\langle y^{\prime}, y^{\prime \prime}\right\rangle\right|^{1-\nu}\left\|y^{\prime}\right\|^{\nu}\right)^{q /(1-\nu)} d \tau\left(y^{\prime \prime}\right)\right)^{(1-\nu) / q} .
\end{aligned}
$$

3) There exists a constant $C>0$ such that for every $\left(x_{i}\right)_{i=1}^{n} \subset E$ and $\left(y_{i}^{\prime}\right)_{i=1}^{n} \subset F^{\prime}$ the inequality $\pi_{r^{\prime}}\left(\left(\left\langle T x_{i}, y_{i}^{\prime}\right\rangle\right)_{i=1}^{n}\right) \leq C \delta_{p, \sigma}\left(\left(x_{i}\right)_{i=1}^{n}\right) \delta_{q, \nu}\left(\left(y_{i}^{\prime}\right)_{i=1}^{n}\right)$ holds.
4) There are a Banach space G and operators $A \in \mathfrak{P}_{p, \sigma}(E, G)$ and $B \in \mathfrak{P}_{q, \nu}^{\text {dual }} G, F$ such that $T=B A$.

Moreover, the norm on $\mathfrak{D}_{p, \sigma, q, \nu}$ is $D_{p, \sigma, q, \nu}(T)=\inf C$, where the infimum in calculated over all "C" on 2) and 3).

1. The tensor product description of the tensor norm associated to the ideal of (p, σ)-absolutely continuous operators

Definition 1.1. Let μ be a measure on Ω, the function space $L_{p /(1-\sigma)}(\Omega, \mu), E \in$ BAN, $1 \leq p<\infty$. and $0 \leq \sigma \leq 1$. For every $z \in L_{p /(1-\sigma)}(\mu) \otimes E$, we define

$$
\begin{aligned}
& \Delta_{p, \sigma}(z):=\inf \{ \sum_{i=1}^{n} \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{i}(\omega), x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{i}(\omega)\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu(\omega)\right)^{(1-\sigma) / p}: \\
&\text { where } \left.\quad z=\sum_{i=1}^{n} z_{i}, z_{i} \in L_{p /(1-\sigma)}(\mu) \otimes E \quad \forall 1 \leq i \leq n\right\}
\end{aligned}
$$

Proposition 1.2

For every $z \in L_{p /(1-\sigma)}(\mu) \otimes E, \varepsilon(z) \leq \Delta_{p, \sigma}(z) \leq \Delta_{p /(1-\sigma)}(z)$.
The proof is standard and left to the reader.

Corollary 1.3

$\Delta_{p, \sigma}$ is a norm on $L_{p /(1-\sigma)}(\mu) \otimes E$.

Proof. If $\Delta_{p, \sigma}(z)=0$, then $\varepsilon(z)=0$ and hence $z=0$. The triangle inequality holds easily.

The following proposition gives us some information about the intermediate properties of the tensor product $L_{p /(1-\sigma)}(\mu) \otimes_{\Delta_{p, \sigma}} E$ in relation to the couple $\left(L_{p /(1-\sigma)}(\mu) \otimes_{\Delta_{p /(1-\sigma)}} E, L_{p /(1-\sigma)}(\mu) \otimes_{\varepsilon} E\right)$.

Proposition 1.4

For every $z \in L_{p /(1-\sigma)}(\mu) \otimes E, \Delta_{p, \sigma}(z) \leq \Delta_{p /(1-\sigma)}(z)^{\sigma} \varepsilon(z)^{1-\sigma}$.

Proof.

$$
\begin{aligned}
\Delta_{p, \sigma}(z) & \leq \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z(\omega), x^{\prime}\right\rangle\right|^{1-\sigma}\|z(\omega)\|^{\sigma}\right)^{p /(1-\sigma)} d \mu(\omega)\right)^{(1-\sigma) / p} \\
& \leq \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left|\left\langle z(\omega), x^{\prime}\right\rangle\right|^{p /(1-\sigma)} d \mu\right)^{(1-\sigma)^{2} / p}\left(\int_{\Omega}\|z(\omega)\|^{p /(1-\sigma)} d \mu\right)^{\sigma(1-\sigma) / p} \\
& \leq \Delta_{p /(1-\sigma)}(z)^{\sigma} \varepsilon(z)^{1-\sigma}
\end{aligned}
$$

where the second inequality is obtained just by applying Hölder's inequality with indexes $1 / \sigma$ and $1 /(1-\sigma)$.

The proof of the following proposition is standard.

Proposition 1.5

Let $E, F \in \operatorname{BAN}$ and $T \in \mathcal{L}(E, F)$. Then for each $L_{p /(1-\sigma)}(\mu)$ the map $i d_{L_{p /(1-\sigma)}(\mu)} \otimes T: L_{p /(1-\sigma)}(\mu) \otimes_{\Delta_{p, \sigma}} E \longrightarrow L_{p /(1-\sigma)}(\mu) \otimes_{\Delta_{p, \sigma}} F$ is continuous and $\left\|i d_{L_{p /(1-\sigma)}} \otimes T\right\| \leq\|T\|$.

Remark 1.6. Following the definition given at [1], proposition 1.2 and 1.5 mean that $\Delta_{p, \sigma}$ is a right tensor norm, just like Δ_{p}. Moreover, $\Delta_{p, \sigma}$ is by definition a finitely generated right tensor norm.
Remark 1.7. Let $\Omega=\mathbb{N}$ and ν the measure satisfying $L_{p /(1-\sigma)}(\Omega, \nu)=\ell_{p /(1-\sigma)}$. Then for every $\left(\lambda_{i}\right)$ the associated function $f: \mathbb{N} \longrightarrow \mathbb{K}$ is given by $f(i)=\lambda_{i}$. If $x \in E$, consider the usual representation $f(n) \otimes x=\left(\lambda_{i}\right) \otimes x=\left(\lambda_{i} x\right) \in E^{\mathbb{N}}$. Then for every $\sum_{j=1}^{n} f_{j}(n) \otimes x_{j}=\left(\sum_{j=1}^{n} \lambda_{i}^{j} x_{j}\right) \in \ell_{p /(1-\sigma)} \otimes E$ the following equalities hold.

$$
\begin{aligned}
& \left.\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\mathbb{N}}\left(\left|\left\langle\sum_{j=1}^{n} f_{j}(n) x_{j}, x^{\prime}\right\rangle\right|^{1-\sigma} \| \sum_{j=1}^{n} f_{j}(n) x_{j}\right) \|^{\sigma}\right)^{p /(1-\sigma)} d \nu(n)\right)^{(1-\sigma) / p} \\
& \left.=\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\sum_{i=1}^{\infty}\left(\left|\left\langle\sum_{j=1}^{n} \lambda_{i}^{j} x_{j}, x^{\prime}\right\rangle\right|^{1-\sigma} \| \sum_{j=1}^{n} \lambda_{i}^{j} x_{j}\right) \|^{\sigma}\right)^{p /(1-\sigma)}\right)^{(1-\sigma) / p}=\delta_{p, \sigma}\left(\left(\sum_{j=1}^{n} \lambda_{i}^{j} x_{j}\right)\right) .
\end{aligned}
$$

Thus, if $z \in \ell_{p /(1-\sigma)} \otimes E$ then $\Delta_{p, \sigma}(z)=\inf \left\{\sum_{j=1}^{n} \delta_{p, \sigma}\left(\left(x_{i}^{j}\right)\right) \mid z=\sum_{j=1}^{n}\left(x_{i}^{j}\right)\right\}$.
Remark 1.8. As in the case of the injective tensor norm ε, the completion $\ell_{p /(1-\sigma)} \hat{\otimes}_{\Delta_{p, \sigma}} E$ can be represented as the set $\left\{\left(x_{i}\right) \in E^{\mathbb{N}} \mid \Delta_{p, \sigma}\left(\left(x_{i}\right)_{n=\mathbb{N}}^{\infty}\right) \longrightarrow 0\right\}$. The proof is standard and left to the reader.

Definition 1.9. Let $1 \leq p, q, r \leq \infty$ and $0 \leq \sigma, \nu<1$ verifying $\frac{1}{r}+\frac{1-\sigma}{p^{\prime}}+\frac{1-\nu}{q^{\prime}}=1$, and $E, F \in$ BAN. We define on $E \otimes F$ the function

$$
\alpha_{p, \sigma, q, \nu}(z):=\inf \left\{\pi_{r}\left(\left(\lambda_{i}\right)\right) \delta_{q^{\prime}, \nu}\left(\left(x_{i}\right)\right) \delta_{p^{\prime}, \sigma}\left(\left(y_{i}\right)\right) \mid z=\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}\right\} .
$$

We have proved on [4] that this expression defines a tensor norm and that $\alpha_{p, \sigma, q, \nu}^{\prime}$ is the associated tensor norm to the maximal operator ideal $\mathfrak{D}_{q^{\prime}, \nu, p^{\prime}, \sigma^{\prime}}$ of $\left(q^{\prime}, \nu, p^{\prime}, \sigma\right)$ dominated operators.

Definition 1.10. Let $1 \leq p \leq \infty, 0 \leq \sigma<1, E, F \in \operatorname{BAN}$ and denote $\bar{p}=\left(\frac{p^{\prime}}{1-\sigma}\right)^{\prime}$. We define on $E \otimes F$ the function

$$
d_{p, \sigma}(z):=\inf \left\{\delta_{p^{\prime}, \sigma}\left(\left(x_{i}\right)\right) \pi_{\bar{p}}\left(\left(y_{i}\right)\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

Note that $d_{p, \sigma}(z)$ can also be written as

$$
\begin{aligned}
d_{p, \sigma} & =\inf \left\{\Delta_{p^{\prime}, \sigma}\left(\left(x_{i}\right)\right) \pi_{\bar{p}}\left(\left(y_{i}\right)\right)| | z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& =\inf \left\{\Delta_{p^{\prime}, \sigma}^{t}\left(\sum_{i=1}^{n} x_{i} \otimes e_{i}\right) \Delta_{\bar{p}}\left(\sum_{i=1}^{n} e_{i} \otimes y_{i}\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
\end{aligned}
$$

where $\sum_{i=1}^{n} x_{i} \otimes e_{i} \in E \otimes \ell_{p^{\prime} /(1-\sigma)}$ and $\sum_{i=1}^{n} e_{i} \otimes y_{i} \in \ell_{\bar{p}} \otimes F$.
It is easy to prove that $\alpha_{1,0, p, \sigma}=d_{p, \sigma}$. Thus, $d_{p, \sigma}^{\prime}$ is the associated tensor norm to the maximal injective operator ideal $\left(\mathfrak{P}_{p^{\prime}, \sigma}, \pi_{p^{\prime}, \sigma}\right)$. We can define also $g_{p, \sigma}:=d_{p, \sigma}^{t}=\alpha_{p, \sigma, 1,0}$.

Theorem 1.11

$$
d_{p, \sigma}=\Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p^{\prime}, \sigma}^{t} .
$$

Proof. We apply the calculus of traced tensor norms. Following the lines of 12.9 [1], we only need to prove that the tensor contraction

$$
\hat{C}:\left(E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}} \ell_{p^{\prime} /(1-\sigma)}\right) \otimes_{\pi}\left(\ell_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow E \otimes_{d_{p, \sigma}} F
$$

is a metric surjection.

Let $S_{p^{\prime} /(1-\sigma)}$ and $S_{\bar{p}}$ the subspaces of $\ell_{p^{\prime} /(1-\sigma)}$ and $\ell_{\bar{p}}$ respectively of finite sequences endowed with the induced topology. Consider the map

$$
D:\left(E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}} S_{p^{\prime} /(1-\sigma)}\right) \times\left(S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow E \otimes_{d_{p, \sigma}} F
$$

given by $D\left(\sum_{i=1}^{n} x_{i} \otimes e_{i}, \sum_{i=1}^{n} e_{i} \otimes y_{i}\right)=\sum_{i=1}^{n} x_{i} \otimes y_{i}$. Let $z \in E \otimes_{d_{p, \sigma}} F$ such that $d_{p, \sigma}(z)<1$. Then there is a representation of $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ such that $\delta_{p^{\prime}, \sigma}\left(\left(x_{i}\right)\right)<1$ and $\pi_{\bar{p}}\left(\left(y_{i}\right)\right)<1$. Just by taking $z_{0}=\sum_{i=1}^{n} x_{i} \otimes e_{i} \in E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}}$ $S_{p^{\prime} /(1-\sigma)}$ and $z_{1}=\sum_{i=1}^{n} e_{i} \otimes y_{i} \in S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F$ we obtain that $D\left(z_{1}, z_{2}\right)=z$ and then
 This means that the tensor contraction $C:\left(E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}} S_{p^{\prime} /(1-\sigma)}\right) \otimes_{\pi}\left(S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow$ $E \otimes_{d_{p, \sigma}} F$ is a metric surjection.

Since $\varepsilon \leq \Delta_{p, \sigma} \leq \Delta_{p}$, then $E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}} S_{p^{\prime} /(1-\sigma)}$ and $S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F$ are dense on $E \hat{\otimes}_{\Delta_{p^{\prime}, \sigma}^{t}} \ell_{p^{\prime} /(1-\sigma)}$ and $\ell_{\bar{p}} \hat{\otimes}_{\Delta_{\bar{p}}} F$ respectively, and so

$$
\stackrel{\wedge}{C}:\left(E \otimes_{\Delta_{p^{\prime}, \sigma}^{t}} \ell_{p^{\prime} /(1-\sigma)}\right) \otimes_{\pi}\left(\ell_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow E \otimes_{d_{p, \sigma}} F
$$

is a metric surjection, (see [1] 7.4 and 12.9). This means that $\Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p^{\prime}, \sigma}^{t}=d_{p, \sigma}$ and concludes the proof.

Corollary 1.12

$$
g_{p, \sigma}=\Delta_{p^{\prime}, \sigma} \otimes_{\ell_{p^{\prime} /(1-\sigma)}} \Delta_{\bar{p}}^{t}
$$

Corollary 1.13

$$
\alpha_{p, \sigma, p, \nu}^{\prime}=g_{q, \nu}^{\prime} \otimes d_{p, \sigma}^{\prime}
$$

Proof. Theorem 0.3 gives $\mathfrak{D}_{q^{\prime}, \nu, p^{\prime}, \sigma}=\mathfrak{P}_{p^{\prime}, \sigma}^{\text {dual }} \circ \mathfrak{P}_{q^{\prime}, \nu}$. Since $\mathfrak{D}_{q^{\prime}, \nu, p^{\prime}, \sigma}$ is maximal normed, 29.8 [1] implies that $\alpha_{p, \sigma, q, \nu}^{\prime}$ is the associated tensor norm to $\mathfrak{P}_{p^{\prime}, \sigma}^{\text {dual }} \otimes \mathfrak{P}_{q^{\prime}, \nu}$ and then the result holds.

The next corollary is an application of the main theorem of traced tensor norms in order to obtain a characterization of the adjoint ideal $\mathfrak{P}_{p, \sigma, q, \nu}^{*}$. Note that the characterization of $\mathfrak{P}_{p, \sigma}^{*}$ can be obtained as a particular case of the following:

Corollary 1.14

Let $1 \leq p, q \leq \infty$ band $0 \leq \sigma, \nu<1$. Then $\mathfrak{D}_{p, \sigma, q, \nu}^{*}=\left(\mathfrak{P}_{q, \nu}^{\text {dual }} \otimes \mathfrak{P}_{p, \sigma}\right)^{*}$. Moreover, if $E, F \in \mathrm{BAN}$, the following assertions are equivalent.
i) $T \in \mathfrak{D}_{p, \sigma, q, \nu}^{*}(E, F)$.
ii) For every $G \in \mathrm{BAN}$ (or only for the Johnson space C_{2}) the map

$$
i d_{G} \otimes T: G \otimes_{g_{p^{\prime}, \sigma}^{\prime}} E \longrightarrow G \otimes_{\overleftarrow{g}_{q^{\prime}, \nu}} F
$$

is continuous and $D_{p, \sigma, q, \nu}^{*}(T)=\left\|i d_{C_{2}} \otimes T\right\|$.
Proof. The isometry $\mathfrak{D}_{p, \sigma, q, \nu}=\mathfrak{P}_{q, \nu}^{\text {dual }} \circ \mathfrak{P}_{p, \sigma}$ and the fact that $\mathfrak{P}_{p, \sigma}$ is injective imply the first assertion just by applying 29.8 [1]. The equivalence between i) and ii) holds by a direct application of 29.4 [1].

2. The Chevet-Persson-Saphar inequalities for the interpolated norm $\Delta_{p, \sigma}$.

Definition 2.1. Let $E, F \in \operatorname{BAN}, 1 \leq p \leq \infty$ and $0 \leq \sigma<1$. We define on $E \otimes F$ the function

$$
b_{p, \sigma}(z):=\inf \left\{w_{(p /(1-\sigma))^{\prime}}\left(\left(x_{i}\right)\right) \delta_{p, \sigma}\left(\left(y_{i}\right)\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

It is easy to proof that $b_{p, \sigma}$ defines a tensor norm of the class $\alpha_{p, \sigma, q, \nu}$.

Proposition 2.2

$$
b_{p, \sigma} \leq \Delta_{p, \sigma} \leq b_{p^{\prime}, \sigma}^{\prime} \text { on } L_{p /(1-\sigma)}(\mu) \otimes E
$$

Proof. The second inequality follows by duality just by applying the Chevet-PerssonSaphar inequalities (see e.g. [1]). Note that $b_{p, \sigma} \leq d_{p /(1-\sigma)}$. Thus

$$
b_{p, \sigma} \leq d_{p /(1-\sigma)} \leq \Delta_{p /(1-\sigma)} \leq d_{(p /(1-\sigma))^{\prime}}^{\prime} \leq b_{p^{\prime}, \sigma}^{\prime}
$$

To prove the other inequality, first we claim that if $z=\sum_{i=1}^{n} f_{i} \otimes x_{i} \in L_{p /(1-\sigma)}(\mu) \otimes$ E and $\left(z_{k}\right)_{k=1}^{\infty}$ is a sequence of E-valued step functions which converges to z for $\Delta_{p /(1-\sigma)}$, then $\forall \varepsilon>0$ there exists a k_{0} such that $\forall k \geq k_{0}$

$$
\begin{align*}
& \mid \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
& \quad-\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \mid<\varepsilon \tag{1}
\end{align*}
$$

Indeed, for every $x^{\prime} \in B_{E^{\prime}}$ and every $k \in \mathbb{N}$, the following inequalities hold.

$$
\begin{align*}
& \mid\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}-\left(\int_{\Omega}\left(\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p \mid} \mid \\
& \leq\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}-\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma} \mid\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
&=\left(\int _ { \Omega } \left(\left.| |\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}-\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}+\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}\right.\right. \\
&\left.\left.\quad-\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma} \mid\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
& \leq\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left(\left|\left\|z_{k}\right\|^{\sigma}-\|z\|^{\sigma}\right|\right)\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
& \quad+\left(\int_{\Omega}\left(\left.| |\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}-\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma} \mid\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
& \leq\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}-z\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
& \quad+\left(\int_{\Omega}\left(\left\|z_{k}-z\right\|^{1-\sigma}\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \tag{2}
\end{align*}
$$

Now, using Hölder's inequality with indexes $1 / \sigma$ and $1 /(1-\sigma)$ we have

$$
\begin{aligned}
(2) \leq & \left(\int_{\Omega}\left\|z_{k}\right\|^{p /(1-\sigma)} d \mu\right)^{(1-\sigma)^{2} / p}\left(\int_{\Omega}\left\|z_{k}-z\right\|^{p /(1-\sigma)} d \mu\right)^{\sigma(1-\sigma) / p} \\
& +\left(\int_{\Omega}\|z\|^{p /(1-\sigma)} d \mu\right)^{\sigma(1-\sigma) / p}\left(\int_{\Omega}\left\|z_{k}-z\right\|^{p /(1-\sigma)} d \mu\right)^{(1-\sigma)^{2} / p}
\end{aligned}
$$

This inequalities mean that the expression

$$
\begin{aligned}
& \sup _{x^{\prime} \in B_{E^{\prime}}} \mid \mid\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \\
&-\left(\int_{\Omega}\left(\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \mid
\end{aligned}
$$

converges to 0 if $z_{k} \longrightarrow z$ on $\Delta_{p /(1-\sigma)}$. Since

$$
\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{k}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{k}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}<\infty \quad \text { for each } \quad k, \quad \text { and }
$$

$$
\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z, x^{\prime}\right\rangle\right|^{1-\sigma}\|z\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}<\infty, \text { the inequality (1) holds. }
$$

Now, let $z \in L_{p /(1-\sigma)}(\mu) \otimes E$ and $\varepsilon>0$. Then we can find a representation of z as $z=\sum_{j=1}^{n} z_{j}$ satisfying

$$
\sum_{j=1}^{n} \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{j}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{j}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \leq \Delta_{p, \sigma}(z)+\varepsilon
$$

Since the set of step functions is dense on $L_{p /(1-\sigma)}(\mu) \hat{\otimes}_{\Delta_{p /(1-\sigma)}} E$, for every $1 \leq$ $j \leq n$ there exists a step function s_{j} such that

$$
\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{j}-s_{j}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{j}-s_{j}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p} \leq \Delta_{p / 1-\sigma}\left(z_{j}-s_{j}\right) \leq \frac{\varepsilon}{2^{j}}
$$

Thus, if $s=\sum_{j=1}^{n} s_{j}$, then $b_{p, \sigma}(z-s) \leq d_{p /(1-\sigma)}(z-s) \leq \Delta_{p /(1-\sigma)}(z-s) \leq \varepsilon$.
Note that we can take the step functions s_{j} satisfying also the conditions of the previous claim for $\frac{\varepsilon}{2^{j}}$. On the other hand, for every $s_{j}=\sum_{m=1}^{l_{j}} \chi_{A_{m, j}} \otimes x_{m, j}-$ where $\left\{A_{m, j} \mid 1 \leq m \leq l_{j}\right\}$ is a class of pairwise disjoint sets - we can consider the representation $s_{j}=\sum_{m=1}^{l_{j}} \chi_{A_{m, j}} \mu\left(A_{m, j}\right)^{(\sigma-1) / p} \otimes x_{m, j} \mu\left(A_{m, j}\right)^{(1-\sigma) / p}$.

It can be easily proved that $w_{(p /(1-\sigma))^{\prime}}\left(\left(\chi_{A_{m, j}} \mu\left(A_{m, j}\right)^{(\sigma-1) / p}\right)_{m=1}^{l_{j}}\right) \leq 1$ and

$$
\delta_{p, \sigma}\left(\left(x_{m, j} \mu\left(A_{m, j}\right)^{(1-\sigma) / p}\right)\right)=\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle s_{j}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|s_{j}\right\|\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}
$$

Finally, as

$$
\begin{aligned}
& b_{p, \sigma}(z) \leq \sum_{j=1}^{n} b_{p, \sigma}\left(s_{j}\right)+b_{p, \sigma}(s-z) \\
& \leq \sum_{j=1}^{n} w_{(p /(1-\sigma))^{\prime}}\left(\left(\chi_{A_{m, j}} \mu\left(A_{m, j}\right)^{(\sigma-1) / p}\right)_{m=1}^{l_{j}}\right) \delta_{p, \sigma}\left(\left(x_{m, j} \mu\left(A_{m, j}\right)^{(1-\sigma) / p}\right)_{m=1}^{l_{j}}\right) \\
& \quad+\varepsilon \\
& \leq \sum_{j=1}^{n} \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle s_{j}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|s_{j}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}+\varepsilon \\
& \leq \sum_{j=1}^{n} \sup _{x^{\prime} \in B_{E^{\prime}}}\left(\int_{\Omega}\left(\left|\left\langle z_{j}, x^{\prime}\right\rangle\right|^{1-\sigma}\left\|z_{j}\right\|^{\sigma}\right)^{p /(1-\sigma)} d \mu\right)^{(1-\sigma) / p}+2 \varepsilon \leq \Delta_{p, \sigma}(z)+3 \varepsilon
\end{aligned}
$$

the result holds.

Corollary 2.3

$$
b_{p, \sigma}=\Delta_{p, \sigma} \otimes_{\ell_{p /(1-\sigma)}} \varepsilon .
$$

Proof. The inequality $\Delta_{p, \sigma} \otimes_{\ell_{p /(1-\sigma)}} \varepsilon \leq b_{p, \sigma}$ is obvious by the definition of $b_{p, \sigma}$. The converse follows from 2.2.: $b_{p, \sigma} \leq b_{p, \sigma} \otimes_{\ell_{p /(1-\sigma)}} \varepsilon \leq \Delta_{p, \sigma} \otimes_{\ell_{p /(1-\sigma)}} \varepsilon$.

The following proposition is a generalization of the result of Gordon and Saphar for the interpolated case [2]. The proof is exactly the same that the one that holds for proposition 15.11 [1].

Proposition 2.4

Let α be a tensor norm and $C \geq 1$. If $\alpha \leq C \Delta_{p, \sigma}$ on $L_{p /(1-\sigma)}(\mu) \otimes E$ for all normed spaces E, then $\alpha \leq C b_{p, \sigma}$.

Proof. We only need to observe that the following diagram commutes for the sequence space $\ell_{(p /(1-\sigma))^{\prime}}$ and for every $E, F \in \mathrm{BAN}$, where C_{1} and C_{2} are the respective tensor contractions.

$$
\begin{gathered}
\left(F \otimes_{\varepsilon} \ell_{(p /(1-\sigma))^{\prime}}\right) \otimes_{\pi}\left(\ell_{p /(1-\sigma)} \otimes_{\Delta_{p, \sigma}} E\right) \xrightarrow{C_{1}} F \otimes_{b_{p, \sigma}} E \\
\downarrow_{i d} \downarrow_{i d} \\
\left(F \otimes_{\varepsilon} \ell_{(p /(1-\sigma))^{\prime}}\right) \otimes_{\pi}\left(\ell_{p /(1-\sigma)} \otimes_{\alpha} E\right) \xrightarrow[C_{2}]{ } F \otimes_{\alpha} E
\end{gathered}
$$

Note that C_{1} is a metric surjection - this is corollary 2.3 - and that $\left\|C_{2}\right\| \leq 1$. Since the left identity has norm $\leq C$, the same holds for the right identity. Then $\alpha \leq C b_{p, \sigma}$ on $F \otimes E$.

References

1. A. Defant and K. Floret, Tensor norms and Operator Ideals, North-Holland Mathematics Studies 176. Amsterdam-London-New York-Tokyo, 1993.
2. Y. Gordon and P. Saphar, Ideal norms on $E \otimes L_{p}$, Illinois J. Math. 21 (1977), 266-285.
3. H. Jarchow and U. Matter, Interpolative constructions for operator ideals, Note Mat. 8 (1) (1988), 45-56.
4. J.A. López Molina and E.A. Sánchez-Pérez, Ideales de operadores absolutamente continuos, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 87 (1993), 349-378.
5. U. Matter, Absolutely Continuous Operators and Super-Reflexivity, Math. Nachr. 130 (1987), 193-216.
6. P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Math. 38 (1970), 71-100.

[^0]: (*) Supported by a grant of the Ministerio de Educación y Ciencia.

