Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **47**, 1 (1996), 35–46 © 1996 Universitat de Barcelona

On the structure of tensor norms related to (p, σ) -absolutely continuous operators^(*)

ENRIQUE A. SÁNCHEZ-PÉREZ

E.T.S. Ingenieros Agrónomos, Camino de Vera, 46071 Valencia, Spain

Received December 19, 1994. Revised June 13, 1995

Abstract

We define an interpolation norm on tensor products of *p*-integrable function spaces and Banach spaces which satisfies intermediate properties between the Bochner norm and the injective norm. We obtain substitutes of the Chevet – Persson – Saphar inequalities for this case. We also use the calculus of traced tensor norms in order to obtain a tensor product description of the tensor norm associated to the interpolated ideal of (p, σ) -absolutely continuous operators defined by Jarchow and Matter. As an application we find the largest tensor norm less than or equal to our interpolation norm.

The operator ideals $\mathfrak{P}_{p,\sigma}$ of (p,σ) -absolutely continuous operators were defined by U. Matter in [5] just by applying an interpolative procedure to the ideals \mathfrak{P}_p of p-absolutely summing operators (see the paper [3] of Jarchow and Matter for a description of the interpolation method). These ideals are larger than the ideals \mathfrak{P}_p but they preserve some properties of \mathfrak{P}_p . In this paper we show that the tensor norms associated to these operator ideals – which we have characterized in [4] – can be constructed as in the classical case of \mathfrak{P}_p using the calculus of traced tensor norms given in [1]. In order to do this we define a special "pointwise interpolation norm"

35

^(*) Supported by a grant of the Ministerio de Educación y Ciencia.

on $L_{p/(1-\sigma)}(\mu) \otimes E$ – which we denote by $\Delta_{p,\sigma}$ – satisfying intermediate properties between the natural norm Δ_p and the injective norm ε . We adapt in this way the description of the Saphar tensor norm d_p [6] – which is related to the classical *p*absolutely summing operators – to the interpolation case. More precisely, we obtain the formula $d_{p,\sigma} = \Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p',\sigma}^t$ where $\bar{p} = \left(\frac{p'}{1-\sigma}\right)'$ and $1 \leq p \leq \infty$. This is the interpolation version of the formula $d_p = \Delta_p \otimes_{\ell_p} \varepsilon$.

In section 2 we give the main result. It is an adaptation of the Chevet-Persson-Saphar inequalities $d_p \leq \Delta_p \leq d'_{p'}$ on $L_p(\mu) \otimes E$ for the interpolated norm $\Delta_{p,\sigma}$. In particular, we obtain a tensor norm $b_{p,\sigma}$ satisfying

$$b_{p,\sigma} \leq \Delta_{p,\sigma} \leq b'_{p',\sigma}$$
 on $L_{\frac{p}{1-\sigma}}(\mu) \otimes E$

As an application we show that $b_{p,\sigma}$ is the largest tensor norm less than or equal to $\Delta_{p,\sigma}$ on $L_{p/(1-\theta)}(\mu) \otimes E$ extending in this way a classical result of Gordon and Saphar about the relation between Δ_p and d_p ([2], [1]).

0. Background and notation

Throughout this paper we use standard Banach space notation. The class of all Banach spaces is denoted by BAN. If $E \in BAN$, B_E is the closed unit ball and $\overset{\circ}{B}_E$ the open unit ball of E. We denote by $id_{L_p(\mu)}$ the identity map on a Lebesgue function space $L_p(\mu)$. If A is a measurable set on the measure space $(\Omega, \mu), \chi_A$ denotes the characteristic function of A. If $1 \leq p \leq \infty, p'$ is the real number satisfying $\frac{1}{p} + \frac{1}{p'} = 1$. We use the same notation for a tensor $z = \sum_{i=1}^{n} f_i \otimes x_i \in L_p(\mu) \otimes E$ and for the associated Bochner integrable function $z(\omega) = \sum_{i=1}^{n} f_i(\omega)x_i \in L_p(\mu, E)$. If $(x_i) \in E^{\mathbb{N}}$, we define

$$\pi_p((x_i)) := \left(\sum_{i=1}^{\infty} \|x_i\|^p\right)^{1/p}, \ w_p((x_i)) := \sup_{x' \in B_{E'}} \left(\sum_{i=1}^{\infty} |\langle x_i, x' \rangle|^p\right)^{1/p}$$

and

$$\delta_{p,\sigma}((x_i)) := \sup_{x' \in B_{E'}} \left(\sum_{i=1}^{\infty} \left(\left| \langle x_i, x' \rangle \right|^{1-\sigma} \|x_i\|^{\sigma} \right)^{p/(1-\sigma)} \right)^{(1-\sigma)/p}$$

If α is a tensor norm, we denote by α^t the transposed tensor norm, by α' the dual tensor norm and by α the cofinite hull of α . If \mathfrak{U} is an operator ideal, we write \mathfrak{U}^* for the adjoint ideal (see [1] for more details).

Let (\mathfrak{P}, Π_p) be the ideal of *p*-absolutely summing operators and $1 \leq p \leq \infty$. The following definition is due to Matter ([5]):

DEFINITION 0.1. Let $0 \leq \sigma < 1$ and $E, F \in BAN$. We say that $T \in \mathcal{L}(E, F)$ is a (p, σ) -absolutely continuous operator if there exist $G \in BAN$ and an operator $S \in \mathfrak{P}_p(E, G)$ such that

$$||Tx|| \le ||x||^{\sigma} ||Sx||^{1-\sigma} \ \forall x \in E.$$
(1)

In such case, we put $\Pi_{p,\sigma}(T) = \inf \Pi_p(S)^{1-\sigma}$, taking the infimum over all G and $S \in \mathfrak{P}_p(E,G)$ such that (1) holds. We denote by $(\mathfrak{P}_{p,\sigma}, \Pi_{p,\sigma})$ the injective normed ideal of (p,σ) -absolutely continuous operators in BAN.

Theorem 0.2 (Matter [5])

For every operator $T: E \longrightarrow F$, the following are equivalent: (i) $T \in \mathfrak{P}_{p,\sigma}(E, F)$.

(ii) There is a constant C > 0 and a probability measure μ on $B_{E'}$, such that

$$||Tx|| \le C \left(\int_{B_{E'}} \left(\left| \langle x, x' \rangle \right|^{1-\sigma} ||x||^{\sigma} \right)^{p/(1-\sigma)} d\mu(x') \right)^{(1-\sigma)/p} \quad \forall x \in E.$$

(iii) There exists a constant C > 0 such that for every finite sequence x_1, \ldots, x_n in $E, \pi_{p/(1-\sigma)}((Tx_i)) \leq C \delta_{p,\sigma}((x_i)).$

In addition, $\pi_{p,\sigma}(T)$ is the smallest number C for which (ii) and (iii) hold.

The ideal $\mathfrak{P}_{p,\sigma}$ is a particular case of a family $\mathfrak{D}_{p,\sigma,q,\nu}$ of operator ideals introduced in [4] which generalizes the classical ideal $\mathfrak{D}_{p,q}$ of (p,q)-dominated operators. The following result is a characterization of the ideal $(\mathfrak{D}_{p,\sigma,q,\nu}, D_{p,\sigma,q,\nu})$ of (p,σ,q,ν) dominated operators (see [4]).

Theorem 0.3

Let $E, F \in \text{BAN}, T \in \mathcal{L}(E, F), 1 \leq r, p, q \leq \infty$ and $0 \leq \sigma, \nu < 1$ such that $\frac{1}{r} + \frac{1-\sigma}{p} + \frac{1-\nu}{q} = 1$. The following assertions are equivalent. 1) $T \in \mathfrak{D}_{p,\sigma,q,\nu}(E, F)$.

2) There exist a constant C > 0 and regular probabilities μ and τ on $B_{E'}$ and $B_{F''}$ respectively, such that for every $x \in E$ and $y' \in F'$ the following inequality holds

$$\begin{split} \left| \langle Tx, y' \rangle \right| &\leq C \left(\int_{B_{E'}} \left(\left| \langle x, x' \rangle \right|^{1-\sigma} \|x\|^{\sigma} \right)^{p/(1-\sigma)} d\mu(x') \right)^{(1-\sigma)/p} \\ & \times \left(\int_{B_{F''}} \left(\left| \langle y', y'' \rangle \right|^{1-\nu} \|y'\|^{\nu} \right)^{q/(1-\nu)} d\tau(y'') \right)^{(1-\nu)/q} \end{split}$$

3) There exists a constant C > 0 such that for every $(x_i)_{i=1}^n \subset E$ and $(y'_i)_{i=1}^n \subset F'$ the inequality $\pi_{r'}((\langle Tx_i, y'_i \rangle)_{i=1}^n) \leq C \,\delta_{p,\sigma}((x_i)_{i=1}^n) \delta_{q,\nu}((y'_i)_{i=1}^n)$ holds. (4) There are a Bernsch are C and an extense $A \in \mathfrak{M}$ (E, C) and $B \in \mathfrak{M}$ dual $C \in F'$

4) There are a Banach space G and operators $A \in \mathfrak{P}_{p,\sigma}(E,G)$ and $B \in \mathfrak{P}_{q,\nu}^{\text{dual}}G, F$ such that T = BA.

Moreover, the norm on $\mathfrak{D}_{p,\sigma,q,\nu}$ is $D_{p,\sigma,q,\nu}(T) = \inf C$, where the infimum in calculated over all "C" on 2) and 3).

1. The tensor product description of the tensor norm associated to the ideal of (p, σ) -absolutely continuous operators

DEFINITION 1.1. Let μ be a measure on Ω , the function space $L_{p/(1-\sigma)}(\Omega, \mu), E \in$ BAN, $1 \leq p < \infty$. and $0 \leq \sigma \leq 1$. For every $z \in L_{p/(1-\sigma)}(\mu) \otimes E$, we define

$$\Delta_{p,\sigma}(z) := \inf \left\{ \sum_{i=1}^{n} \sup_{x' \in B_{E'}} \left(\int_{\Omega} \left(\left| \langle z_i(\omega), x' \rangle \right|^{1-\sigma} \| z_i(\omega) \|^{\sigma} \right)^{p/(1-\sigma)} d\mu(\omega) \right)^{(1-\sigma)/p} : where \quad z = \sum_{i=1}^{n} z_i, \, z_i \in L_{p/(1-\sigma)}(\mu) \otimes E \quad \forall \ 1 \le i \le n \right\}.$$

Proposition 1.2

For every
$$z \in L_{p/(1-\sigma)}(\mu) \otimes E$$
, $\varepsilon(z) \leq \Delta_{p,\sigma}(z) \leq \Delta_{p/(1-\sigma)}(z)$.

The proof is standard and left to the reader.

Corollary 1.3

 $\Delta_{p,\sigma}$ is a norm on $L_{p/(1-\sigma)}(\mu) \otimes E$.

Proof. If $\Delta_{p,\sigma}(z) = 0$, then $\varepsilon(z) = 0$ and hence z = 0. The triangle inequality holds easily. \Box

The following proposition gives us some information about the intermediate properties of the tensor product $L_{p/(1-\sigma)}(\mu) \otimes_{\Delta_{p,\sigma}} E$ in relation to the couple $(L_{p/(1-\sigma)}(\mu) \otimes_{\Delta_{p/(1-\sigma)}} E, L_{p/(1-\sigma)}(\mu) \otimes_{\varepsilon} E).$

Proposition 1.4

For every $z \in L_{p/(1-\sigma)}(\mu) \otimes E$, $\Delta_{p,\sigma}(z) \leq \Delta_{p/(1-\sigma)}(z)^{\sigma} \varepsilon(z)^{1-\sigma}$.

Proof.

$$\begin{split} \Delta_{p,\sigma}(z) &\leq \sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(\left| \langle z(\omega), x' \rangle \right|^{1-\sigma} \| z(\omega) \|^{\sigma} \right)^{p/(1-\sigma)} d\mu(\omega) \right)^{(1-\sigma)/p} \\ &\leq \sup_{x'\in B_{E'}} \left(\int_{\Omega} \left| \langle z(\omega), x' \rangle \right|^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)^2/p} \left(\int_{\Omega} \| z(\omega) \|^{p/(1-\sigma)} d\mu \right)^{\sigma(1-\sigma)/p} \\ &\leq \Delta_{p/(1-\sigma)}(z)^{\sigma} \varepsilon(z)^{1-\sigma} \,, \end{split}$$

where the second inequality is obtained just by applying Hölder's inequality with indexes $1/\sigma$ and $1/(1-\sigma)$. \Box

The proof of the following proposition is standard.

Proposition 1.5

Let $E, F \in \text{BAN}$ and $T \in \mathcal{L}(E, F)$. Then for each $L_{p/(1-\sigma)}(\mu)$ the map $id_{L_{p/(1-\sigma)}(\mu)} \otimes T : L_{p/(1-\sigma)}(\mu) \otimes_{\Delta_{p,\sigma}} E \longrightarrow L_{p/(1-\sigma)}(\mu) \otimes_{\Delta_{p,\sigma}} F$ is continuous and $\|id_{L_{p/(1-\sigma)}} \otimes T\| \leq \|T\|$.

Remark 1.6. Following the definition given at [1], proposition 1.2 and 1.5 mean that $\Delta_{p,\sigma}$ is a right tensor norm, just like Δ_p . Moreover, $\Delta_{p,\sigma}$ is by definition a finitely generated right tensor norm.

Remark 1.7. Let $\Omega = \mathbb{N}$ and ν the measure satisfying $L_{p/(1-\sigma)}(\Omega,\nu) = \ell_{p/(1-\sigma)}$. Then for every (λ_i) the associated function $f : \mathbb{N} \longrightarrow \mathbb{K}$ is given by $f(i) = \lambda_i$. If $x \in E$, consider the usual representation $f(n) \otimes x = (\lambda_i) \otimes x = (\lambda_i x) \in E^{\mathbb{N}}$. Then for every $\sum_{j=1}^n f_j(n) \otimes x_j = (\sum_{j=1}^n \lambda_i^j x_j) \in \ell_{p/(1-\sigma)} \otimes E$ the following equalities hold.

$$\sup_{x'\in B_{E'}} \left(\int_{\mathbb{N}} \left(\left| \left\langle \sum_{j=1}^{n} f_{j}(n)x_{j}, x' \right\rangle \right|^{1-\sigma} \right\| \sum_{j=1}^{n} f_{j}(n)x_{j}) \right\|^{\sigma} \right)^{p/(1-\sigma)} d\nu(n) \right)^{(1-\sigma)/p} \\ = \sup_{x'\in B_{E'}} \left(\sum_{i=1}^{\infty} \left(\left| \left\langle \sum_{j=1}^{n} \lambda_{i}^{j}x_{j}, x' \right\rangle \right|^{1-\sigma} \right\| \sum_{j=1}^{n} \lambda_{i}^{j}x_{j}) \right\|^{\sigma} \right)^{p/(1-\sigma)} \right)^{(1-\sigma)/p} \\ = \delta_{p,\sigma} \left(\left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j}, x' \right\rangle \right)^{1-\sigma} \| \sum_{j=1}^{n} \lambda_{i}^{j}x_{j}) \|^{\sigma} \right)^{p/(1-\sigma)} \right)^{(1-\sigma)/p} \\ = \delta_{p,\sigma} \left(\left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j}, x' \right) \right)^{1-\sigma} \| \sum_{j=1}^{n} \lambda_{i}^{j}x_{j}\|^{\sigma} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j} \right)^{1-\sigma} \| \sum_{j=1}^{n} \lambda_{j}^{j}x_{j}\|^{\sigma} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j} \right)^{p/(1-\sigma)} \right)^{p/(1-\sigma)} = \delta_{p,\sigma} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \right)^{p/(1-\sigma)} = \delta_{p,\sigma} \left(\sum_{j=1}^{n} \lambda_{i}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{n} \lambda_{j}^{j}x_{j} \right)^{p/(1-\sigma)} \left(\sum_{j=1}^{$$

Thus, if $z \in \ell_{p/(1-\sigma)} \otimes E$ then $\Delta_{p,\sigma}(z) = \inf \left\{ \sum_{j=1}^{n} \delta_{p,\sigma}((x_i^j)) \mid z = \sum_{j=1}^{n} (x_i^j) \right\}$. Remark 1.8. As in the case of the injective tensor norm ε , the completion

 $\ell_{p/(1-\sigma)} \overset{\wedge}{\otimes}_{\Delta_{p,\sigma}} E \text{ can be represented as the set } \{(x_i) \in E^{\mathbb{N}} \mid \Delta_{p,\sigma}((x_i)_{n=\mathbb{N}}^{\infty}) \longrightarrow 0\}.$ The proof is standard and left to the reader.

DEFINITION 1.9. Let $1 \le p, q, r \le \infty$ and $0 \le \sigma, \nu < 1$ verifying $\frac{1}{r} + \frac{1-\sigma}{p'} + \frac{1-\nu}{q'} = 1$, and $E, F \in \text{BAN}$. We define on $E \otimes F$ the function

$$\alpha_{p,\sigma,q,\nu}(z) := \inf \left\{ \pi_r((\lambda_i)) \delta_{q',\nu}((x_i)) \delta_{p',\sigma}((y_i)) \, \Big| \, z = \sum_{i=1}^n \lambda_i x_i \otimes y_i \right\} \, .$$

We have proved on [4] that this expression defines a tensor norm and that $\alpha'_{p,\sigma,q,\nu}$ is the associated tensor norm to the maximal operator ideal $\mathfrak{D}_{q',\nu,p',\sigma'}$ of (q',ν,p',σ) dominated operators.

DEFINITION 1.10. Let $1 \le p \le \infty$, $0 \le \sigma < 1, E, F \in \text{BAN}$ and denote $\bar{p} = \left(\frac{p'}{1-\sigma}\right)'$. We define on $E \otimes F$ the function

$$d_{p,\sigma}(z) := \inf \left\{ \delta_{p',\sigma} \big((x_i) \big) \pi_{\bar{p}} \big((y_i) \big) \, \Big| \, z = \sum_{i=1}^n x_i \otimes y_i \right\} \, .$$

Note that $d_{p,\sigma}(z)$ can also be written as

$$d_{p,\sigma} = \inf \left\{ \Delta_{p',\sigma} ((x_i)) \pi_{\bar{p}} ((y_i)) \left| \left| z = \sum_{i=1}^n x_i \otimes y_i \right\} \right.$$
$$= \inf \left\{ \Delta_{p',\sigma}^t \left(\sum_{i=1}^n x_i \otimes e_i \right) \Delta_{\bar{p}} \left(\sum_{i=1}^n e_i \otimes y_i \right) \left| z = \sum_{i=1}^n x_i \otimes y_i \right\} \right\}$$

where $\sum_{i=1}^{n} x_i \otimes e_i \in E \otimes \ell_{p'/(1-\sigma)}$ and $\sum_{i=1}^{n} e_i \otimes y_i \in \ell_{\bar{p}} \otimes F$.

It is easy to prove that $\alpha_{1,0,p,\sigma} = d_{p,\sigma}$. Thus, $d'_{p,\sigma}$ is the associated tensor norm to the maximal injective operator ideal $(\mathfrak{P}_{p',\sigma},\pi_{p',\sigma})$. We can define also $g_{p,\sigma} := d^t_{p,\sigma} = \alpha_{p,\sigma,1,0}$.

Theorem 1.11

$$d_{p,\sigma} = \Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p',\sigma}^t.$$

Proof. We apply the calculus of traced tensor norms. Following the lines of 12.9 [1], we only need to prove that the tensor contraction

$$\stackrel{\wedge}{C}: \left(E \otimes_{\Delta_{p',\sigma}^t} \ell_{p'/(1-\sigma)} \right) \otimes_{\pi} \left(\ell_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F \right) \longrightarrow E \otimes_{d_{p,\sigma}} F$$

is a metric surjection.

Let $S_{p'/(1-\sigma)}$ and $S_{\bar{p}}$ the subspaces of $\ell_{p'/(1-\sigma)}$ and $\ell_{\bar{p}}$ respectively of finite sequences endowed with the induced topology. Consider the map

$$D: \left(E \otimes_{\Delta_{p',\sigma}^t} S_{p'/(1-\sigma)}\right) \times \left(S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow E \otimes_{d_{p,\sigma}} F$$

given by $D\left(\sum_{i=1}^{n} x_i \otimes e_i, \sum_{i=1}^{n} e_i \otimes y_i\right) = \sum_{i=1}^{n} x_i \otimes y_i$. Let $z \in E \otimes_{d_{p,\sigma}} F$ such that $d_{p,\sigma}(z) < 1$. Then there is a representation of $z = \sum_{i=1}^{n} x_i \otimes y_i$ such that $\delta_{p',\sigma}((x_i)) < 1$ and $\pi_{\bar{p}}((y_i)) < 1$. Just by taking $z_0 = \sum_{i=1}^{n} x_i \otimes e_i \in E \otimes_{\Delta_{p',\sigma}^t} S_{p'/(1-\sigma)}$ and $z_1 = \sum_{i=1}^{n} e_i \otimes y_i \in S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F$ we obtain that $D(z_1, z_2) = z$ and then $D\left(\stackrel{\circ}{B}_{E\otimes_{\Delta_{p',\sigma}}} S_{p'/(1-\sigma)} \times \stackrel{\circ}{B}_{S_{\bar{p}}\otimes_{\Delta_{\bar{p}}}} F\right) = \stackrel{\circ}{B}_{E\otimes_{d_{p,\sigma}}} F$, since the other inclusion is obvious. This means that the tensor contraction $C: \left(E \otimes_{\Delta_{p',\sigma}^t} S_{p'/(1-\sigma)}\right) \otimes_{\pi} \left(S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F\right) \longrightarrow E \otimes_{d_{p,\sigma}} F$ is a metric surjection.

Since $\varepsilon \leq \Delta_{p,\sigma} \leq \Delta_p$, then $E \otimes_{\Delta_{p',\sigma}^t} S_{p'/(1-\sigma)}$ and $S_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F$ are dense on $E \otimes_{\Delta_{p',\sigma}^t} \ell_{p'/(1-\sigma)}$ and $\ell_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F$ respectively, and so

$$\stackrel{\wedge}{C}: \left(E \otimes_{\Delta_{p',\sigma}^t} \ell_{p'/(1-\sigma)} \right) \otimes_{\pi} \left(\ell_{\bar{p}} \otimes_{\Delta_{\bar{p}}} F \right) \longrightarrow E \otimes_{d_{p,\sigma}} F$$

is a metric surjection, (see [1] 7.4 and 12.9). This means that $\Delta_{\bar{p}} \otimes_{\ell_{\bar{p}}} \Delta_{p',\sigma}^t = d_{p,\sigma}$ and concludes the proof. \Box

Corollary 1.12

$$g_{p,\sigma} = \Delta_{p',\sigma} \otimes_{\ell_{p'/(1-\sigma)}} \Delta_{\bar{p}}^t$$

Corollary 1.13

$$\alpha'_{p,\sigma,p,\nu} = g'_{q,\nu} \otimes d'_{p,\sigma}.$$

Proof. Theorem 0.3 gives $\mathfrak{D}_{q',\nu,p',\sigma} = \mathfrak{P}_{p',\sigma}^{\mathrm{dual}} \circ \mathfrak{P}_{q',\nu}$. Since $\mathfrak{D}_{q',\nu,p',\sigma}$ is maximal normed, 29.8 [1] implies that $\alpha'_{p,\sigma,q,\nu}$ is the associated tensor norm to $\mathfrak{P}_{p',\sigma}^{\mathrm{dual}} \otimes \mathfrak{P}_{q',\nu}$ and then the result holds. \Box

The next corollary is an application of the main theorem of traced tensor norms in order to obtain a characterization of the adjoint ideal $\mathfrak{P}^*_{p,\sigma,q,\nu}$. Note that the characterization of $\mathfrak{P}^*_{p,\sigma}$ can be obtained as a particular case of the following:

Corollary 1.14

Let $1 \leq p, q \leq \infty$ band $0 \leq \sigma, \nu < 1$. Then $\mathfrak{D}_{p,\sigma,q,\nu}^* = (\mathfrak{P}_{q,\nu}^{dual} \otimes \mathfrak{P}_{p,\sigma})^*$. Moreover, if $E, F \in BAN$, the following assertions are equivalent. i) $T \in \mathfrak{D}_{p,\sigma,q,\nu}^*(E,F)$.

ii) For every $G \in BAN$ (or only for the Johnson space C_2) the map

$$id_G \otimes T : G \otimes_{g'_{p',\sigma}} E \longrightarrow G \otimes_{\overleftarrow{q}_{\sigma',\mu}} F$$

is continuous and $D^*_{p,\sigma,q,\nu}(T) = \|id_{C_2} \otimes T\|.$

Proof. The isometry $\mathfrak{D}_{p,\sigma,q,\nu} = \mathfrak{P}_{q,\nu}^{\text{dual}} \circ \mathfrak{P}_{p,\sigma}$ and the fact that $\mathfrak{P}_{p,\sigma}$ is injective imply the first assertion just by applying 29.8 [1]. The equivalence between i) and ii) holds by a direct application of 29.4 [1]. \Box

2. The Chevet-Persson-Saphar inequalities for the interpolated norm $\Delta_{p,\sigma}$.

DEFINITION 2.1. Let $E, F \in \text{BAN}$, $1 \le p \le \infty$ and $0 \le \sigma < 1$. We define on $E \otimes F$ the function

$$b_{p,\sigma}(z) := \inf \left\{ w_{\left(p/(1-\sigma)\right)'}((x_i)) \delta_{p,\sigma}((y_i)) \, \Big| \, z = \sum_{i=1}^n x_i \otimes y_i \right\} \, .$$

It is easy to proof that $b_{p,\sigma}$ defines a tensor norm of the class $\alpha_{p,\sigma,q,\nu}$.

Proposition 2.2

 $b_{p,\sigma} \leq \Delta_{p,\sigma} \leq b'_{p',\sigma}$ on $L_{p/(1-\sigma)}(\mu) \otimes E$.

Proof. The second inequality follows by duality just by applying the Chevet-Persson-Saphar inequalities (see e.g. [1]). Note that $b_{p,\sigma} \leq d_{p/(1-\sigma)}$. Thus

$$b_{p,\sigma} \le d_{p/(1-\sigma)} \le \Delta_{p/(1-\sigma)} \le d'_{\left(p/(1-\sigma)\right)'} \le b'_{p',\sigma}$$

To prove the other inequality, first we claim that if $z = \sum_{i=1}^{n} f_i \otimes x_i \in L_{p/(1-\sigma)}(\mu) \otimes E$ and $(z_k)_{k=1}^{\infty}$ is a sequence of *E*-valued step functions which converges to *z* for $\Delta_{p/(1-\sigma)}$, then $\forall \varepsilon > 0$ there exists a k_0 such that $\forall k \ge k_0$

$$\left| \sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(\left| \langle z_k, x' \rangle \right|^{1-\sigma} \| z_k \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} - \sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(\left| \langle z, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \right| < \varepsilon.$$
(1)

Indeed, for every $x' \in B_{E'}$ and every $k \in \mathbb{N}$, the following inequalities hold.

$$\left| \left(\int_{\Omega} \left(\left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z_{k} \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} - \left(\int_{\Omega} \left(\left| \langle z, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \right. \\
\leq \left(\int_{\Omega} \left(\left| \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z_{k} \|^{\sigma} - \left| \langle z, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} + \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} \right. \\
= \left(\int_{\Omega} \left(\left| \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} - \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} + \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} \right. \\
- \left| \langle z, x' \rangle \right|^{1-\sigma} \| z \|^{\sigma} \right| \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \\
\leq \left(\int_{\Omega} \left(\left| \langle z_{k}, x' \rangle \right|^{1-\sigma} \left(\left| \| z_{k} \|^{\sigma} - \| z \|^{\sigma} \right) \right| \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \\
+ \left(\int_{\Omega} \left(\left| \left| \langle z_{k}, x' \rangle \right|^{1-\sigma} - \left| \langle z, x' \rangle \right|^{1-\sigma} \right| \| z \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \\
+ \left(\int_{\Omega} \left(\left| \left| z_{k}, x' \rangle \right|^{1-\sigma} \| z_{k} - z \|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} . \tag{2}$$

Now, using Hölder's inequality with indexes $1/\sigma$ and $1/(1-\sigma)$ we have

$$(2) \leq \left(\int_{\Omega} \|z_k\|^{p/(1-\sigma)} d\mu\right)^{(1-\sigma)^2/p} \left(\int_{\Omega} \|z_k - z\|^{p/(1-\sigma)} d\mu\right)^{\sigma(1-\sigma)/p} \\ + \left(\int_{\Omega} \|z\|^{p/(1-\sigma)} d\mu\right)^{\sigma(1-\sigma)/p} \left(\int_{\Omega} \|z_k - z\|^{p/(1-\sigma)} d\mu\right)^{(1-\sigma)^2/p}$$

This inequalities mean that the expression

$$\sup_{x'\in B_{E'}} \left| \left(\int_{\Omega} \left(|\langle z_k, x' \rangle|^{1-\sigma} \|z_k\|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} - \left(\int_{\Omega} \left(|\langle z, x' \rangle|^{1-\sigma} \|z\|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \right|$$

converges to 0 if $z_k \longrightarrow z$ on $\Delta_{p/(1-\sigma)}$. Since

$$\sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(|\langle z_k, x' \rangle|^{1-\sigma} ||z_k||^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} < \infty \quad \text{for each} \quad k, \quad \text{and}$$

$$\sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(|\langle z, x'\rangle|^{1-\sigma} \|z\|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} < \infty \text{, the inequality (1) holds.}$$

Now, let $z \in L_{p/(1-\sigma)}(\mu) \otimes E$ and $\varepsilon > 0$. Then we can find a representation of z as $z = \sum_{j=1}^{n} z_j$ satisfying

$$\sum_{j=1}^{n} \sup_{x' \in B_{E'}} \left(\int_{\Omega} \left(|\langle z_j, x' \rangle|^{1-\sigma} \|z_j\|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \le \Delta_{p,\sigma}(z) + \varepsilon$$

Since the set of step functions is dense on $L_{p/(1-\sigma)}(\mu) \bigotimes_{\Delta_{p/(1-\sigma)}}^{n} E$, for every $1 \leq 1$ $j \leq n$ there exists a step function s_j such that

$$\sup_{x'\in B_{E'}} \left(\int_{\Omega} \left(|\langle z_j - s_j, x'\rangle|^{1-\sigma} \|z_j - s_j\|^{\sigma} \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p} \leq \Delta_{p/1-\sigma} (z_j - s_j) \leq \frac{\varepsilon}{2^j} \,.$$

Thus, if $s = \sum_{j=1}^{n} s_j$, then $b_{p,\sigma}(z-s) \le d_{p/(1-\sigma)}(z-s) \le \Delta_{p/(1-\sigma)}(z-s) \le \varepsilon$. Note that we can take the step functions s_j satisfying also the conditions of

the previous claim for $\frac{\varepsilon}{2^j}$. On the other hand, for every $s_j = \sum_{m=1}^{l_j} \chi_{A_{m,j}} \otimes x_{m,j}$ -where $\{A_{m,j} \mid 1 \le m \le l_j\}$ is a class of pairwise disjoint sets – we can consider the representation $s_j = \sum_{m=1}^{l_j} \chi_{A_{m,j}} \mu(A_{m,j})^{(\sigma-1)/p} \otimes x_{m,j} \mu(A_{m,j})^{(1-\sigma)/p}$. It can be easily proved that $w_{(p/(1-\sigma))'}((\chi_{A_{m,j}}\mu(A_{m,j})^{(\sigma-1)/p})_{m=1}^{l_j}) \le 1$ and

$$\delta_{p,\sigma} \big((x_{m,j} \mu(A_{m,j})^{(1-\sigma)/p}) \big) = \sup_{x' \in B_{E'}} \left(\int_{\Omega} \left(|\langle s_j, x' \rangle|^{1-\sigma} \|s_j\| \right)^{p/(1-\sigma)} d\mu \right)^{(1-\sigma)/p}$$

Finally, as

$$\begin{split} b_{p,\sigma}(z) &\leq \sum_{j=1}^{n} b_{p,\sigma}(s_j) + b_{p,\sigma}(s-z) \\ &\leq \sum_{j=1}^{n} w_{(p/(1-\sigma))'} \Big(\big(\chi_{A_{m,j}} \mu(A_{m,j})^{(\sigma-1)/p}\big)_{m=1}^{l_j} \Big) \delta_{p,\sigma} \Big(\big(x_{m,j} \mu(A_{m,j})^{(1-\sigma)/p}\big)_{m=1}^{l_j} \Big) \\ &\quad + \varepsilon \\ &\leq \sum_{j=1}^{n} \sup_{x' \in B_{E'}} \left(\int_{\Omega} \Big(|\langle s_j, x' \rangle|^{1-\sigma} \|s_j\|^{\sigma} \Big)^{p/(1-\sigma)} d\mu \Big)^{(1-\sigma)/p} + \varepsilon \\ &\leq \sum_{j=1}^{n} \sup_{x' \in B_{E'}} \left(\int_{\Omega} \Big(|\langle z_j, x' \rangle|^{1-\sigma} \|z_j\|^{\sigma} \Big)^{p/(1-\sigma)} d\mu \Big)^{(1-\sigma)/p} + 2\varepsilon \leq \Delta_{p,\sigma}(z) + 3\varepsilon \end{split}$$

the result holds. \Box

Corollary 2.3

 $b_{p,\sigma} = \Delta_{p,\sigma} \otimes_{\ell_{p/(1-\sigma)}} \varepsilon.$

Proof. The inequality $\Delta_{p,\sigma} \otimes_{\ell_{p/(1-\sigma)}} \varepsilon \leq b_{p,\sigma}$ is obvious by the definition of $b_{p,\sigma}$. The converse follows from 2.2.: $b_{p,\sigma} \leq b_{p,\sigma} \otimes_{\ell_{p/(1-\sigma)}} \varepsilon \leq \Delta_{p,\sigma} \otimes_{\ell_{p/(1-\sigma)}} \varepsilon$. \Box

The following proposition is a generalization of the result of Gordon and Saphar for the interpolated case [2]. The proof is exactly the same that the one that holds for proposition 15.11 [1].

Proposition 2.4

Let α be a tensor norm and $C \geq 1$. If $\alpha \leq C\Delta_{p,\sigma}$ on $L_{p/(1-\sigma)}(\mu) \otimes E$ for all normed spaces E, then $\alpha \leq C b_{p,\sigma}$.

Proof. We only need to observe that the following diagram commutes for the sequence space $\ell_{(p/(1-\sigma))'}$ and for every $E, F \in BAN$, where C_1 and C_2 are the respective tensor contractions.

Note that C_1 is a metric surjection – this is corollary 2.3 – and that $||C_2|| \leq 1$. Since the left identity has norm $\leq C$, the same holds for the right identity. Then $\alpha \leq C b_{p,\sigma}$ on $F \otimes E$. \Box

References

- A. Defant and K. Floret, Tensor norms and Operator Ideals, North-Holland *Mathematics Studies* 176. Amsterdam-London-New York-Tokyo, 1993.
- 2. Y. Gordon and P. Saphar, Ideal norms on $E \otimes L_p$, Illinois J. Math. 21 (1977), 266–285.
- 3. H. Jarchow and U. Matter, Interpolative constructions for operator ideals, *Note Mat.* **8** (1) (1988), 45–56.
- J.A. López Molina and E.A. Sánchez-Pérez, Ideales de operadores absolutamente continuos, *Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid*, 87 (1993), 349–378.

Sánchez-Pérez

- 5. U. Matter, Absolutely Continuous Operators and Super–Reflexivity, *Math. Nachr.* **130** (1987), 193–216.
- P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications linéaires, *Studia Math.* 38 (1970), 71–100.

46