Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 46, 3 (1995), 315-319
(c) 1995 Universitat de Barcelona

A theorem on derivations in semiprime rings

Qing Deng
Department of Mathematics, Southwest China Normal University, Chongqing 630715, P.R. of China

Received May 3, 1995. Revised September 30, 1995

Abstract

Let R be a semiprime ring with suitably-restricted torsion, U a nonzero left ideal of R and $D: R \rightarrow R$ a nonzero derivation. If for each $x \in U,[D(x), x]_{n}=$ $[[\cdots[D(x), x] \cdots x], x] \in Z(R)$ with n fixed, then R must contain nonzero central ideals in case $D(U) \neq 0$.

In a recent paper, Lanski [3] gives an extension of a well-known theorem of Posner [4] by showing that a prime ring R is commutative if $[D(x), x]_{n}=0$ for all x in a nonzero ideal of R. In [2], we studied the commutativity of semiprime rings with derivations and proved that a semiprime ring R must contain nonzero central ideals if $[[D(x), x], x] \in Z(R)$, which yields generalization of a theorem of Bell and Martindale [1]. The purpose of this note is to extend the result of Lanski [3, Theorem 1] from prime rings to semiprime rings with suitably-restricted additive torsion.

Throughout this paper, R denotes an associative ring with center $Z(R)$. We write $[x, y]$ for $x y-y x$, and $I_{a}(b)$ for $[b, a]$, and $[x, y]_{n}=[[\cdots[x, y], \cdots, y], y]$.

For easy reference we state two lemmas.
Lemma 1 ([2, Lemma 1]).
Let n be a positive integer, R be an n ! -torsion- free ring, and f be an additive map on R. For $i=1,2, \cdots, n$, let $F_{i}(X, Y)$ be a generalized polynomial which is homogeneous of degree i in the non-commuting indeterminates X and Y. Let $a \in R$ and (a) the additive subgroup generated by a. If

$$
F_{n}(x, f(x))+F_{n-1}(x, f(x))+\cdots+F_{1}(x, f(x)) \in Z(R)
$$

for all $x \in(a)$, then $F_{i}(a, f(a)) \in Z(R)$ for $i=1,2, \cdots, n$.

Lemma 2 ([5, Theorem]).
Let R be a ring and P a prime ideal such that $\operatorname{char}(R / P)=0$ or $\operatorname{char}(R / P) \geq n$. If $a_{1}, a_{2}, \cdots, a_{n+1}$ are elements of R such that $a_{1} x a_{2} x a_{3} \cdots a_{n} x a_{n+1} \in P$ for all $x \in R$, then $a_{i} \in P$ for some $i=1,2, \cdots, n+1$.

Theorem

Let n be a fixed positive integer, let R be $a(n+1)$! -torsion- free semiprime ring, and let U be a nonzero left ideal of R. If R admits a nonzero derivation D such that $[D(x), x]_{n} \in Z(R)$ for all $x \in U$, then R contains nonzero central ideals or $D(U)=0$.

Proof. For the proof, we need three steps.

Lemma A

$$
[D(x), x]_{n}=0 \text { for all } x \in U
$$

Proof. Linearizing the conditions $[D(x), x]_{n} \in Z(R)$ and using Lemma 1, we get
$I_{x}^{n}(D(y))+I_{n}^{n-1}([D(x), y])+\cdots+I_{x}\left(\left[[D(x), x]_{n-2}, y\right]\right)+\left[[D(x), x]_{n-1}, y\right] \in Z(R)$.
Replacing y by x^{2}, noting that each term in the relation is $2 x[D(x), x]_{n}$, we then have $2(n+1) x[D(x), x]_{n} \in Z(R)$, and $\left([D(x), x]_{n}\right)^{2}=\left[[D(x), x]_{n-1}, x[D(x), x]_{n}\right]=0$. Since the center of a semiprime ring contains no nonzero nilpotent elements, we obtain $[D(x), x]_{n}=0$.

Lemma B

$$
\left([D(x), x]_{n-1}\right)^{2} x=0 \text { for all } x \in U
$$

Proof. From $[D(x), x]_{n}=0$, we have $I_{x}^{i}\left([D(x), x]_{i}\right)=0$ for $i+j \geq n$. Linearizing $[D(x), x]_{n}=0$ and applying Lemma 1 , we now have

$$
\begin{equation*}
I_{x}^{n}(D(y))+I_{x}^{n-1}([D(x), y])+\cdots+I_{x}\left(\left[[D(x), x]_{n-2}, y\right]\right)+\left[[D(x), x]_{n-1}, y\right]=0 \tag{1}
\end{equation*}
$$

Since $I_{x}^{n}(D(y))=x I_{x}^{n}(D(y))+I_{x}^{n}(D(x), y)$,

$$
\begin{aligned}
I_{x}^{n-1}([D(x), x y]) & =x I_{x}^{n-1}([D(x), y])+I_{x}^{n-1}([D(x), x] y) \\
I_{x}^{k}\left(\left[[D(x), x]_{n-k-1}, x y\right]\right) & =x I_{x}^{k}\left([D(x), x]_{n-k-1}, y\right)+I_{x}^{k}\left([D(x), x]_{n-k}, y\right)
\end{aligned}
$$

for $k=1,2, \cdots, n-2$.

Replacing y by $x y$ in (1) yields

$$
\begin{equation*}
I_{x}^{n}(D(x) y)+I_{x}^{n-1}([D(x), x] y)+\cdots+I_{x}\left([D(x), x]_{n-1} y\right)=0 . \tag{2}
\end{equation*}
$$

Taking $y=[D(x), x]_{n-2} x$ in (2), and noting $I_{x}^{j}\left([D(x), x]_{n-2}\right)=0$ for $j \geq 2$ and $I_{x}^{k}(a b)=\sum_{j=0}^{k}\binom{k}{j} I_{x}^{k-j}(a) I_{x}^{j}(b)$, we then gain

$$
n\left([D(x), x]_{n-1}\right)^{2} x+(n-1)\left([D(x), x]_{n-1}\right)^{2} x+\cdots+\left([D(x), x]_{n-1}\right)^{2} x=0,
$$

thus $\frac{n(n+1)}{2}\left([D(x), x]_{n-1}\right)^{2} x=0$ and $\left([D(x), x]_{n-1}\right)^{2} x=0$.

Lemma C

$$
[D(x), x]_{n-1}=0 \text { for all } x \in U .
$$

Proof. Take a family $\Omega=\left\{p_{\alpha} \mid \alpha \in \Lambda\right\}$ of prime ideals of R such that $\cap P_{\alpha}=\{0\}$, and let $\Omega_{1}=\left\{P_{\alpha} \in \Omega \mid D(U) \subseteq P_{\alpha}\right\}$.

For each $P \in \Omega_{1}$, and for each $P \in \Omega \backslash \Omega_{1}$ such that $0<\operatorname{char}(R / P) \leq n+1$, we have $(n+1)![D(x), x]_{n-1} \in P$ for all $x \in U$.

Suppose that there is a $P \in \Omega \backslash \Omega_{1}$ such that $\operatorname{char}(R / P)=0$ or $\operatorname{char}(R / P)>$ $n+1$, we shall show that $[D(x), x]_{n-1} \in P$. Firstly we show that $a^{2} \in P$ implies $a \in P$ for $a \in U$. From $[D(x), x]_{n}=0$, we arrive at

$$
\begin{equation*}
x^{n} D(x)+(-1)\binom{n}{1} x^{n-1} D(x) x+\cdots+(-1)^{n} D(x) x^{n}=0 \tag{3}
\end{equation*}
$$

For any $a \in U$ with $a^{2} \in P$, replace x by $r a$ in (3) and then right-multiply by a, we have $(r a)^{n} r D(a) a \in P$ for all $r \in R$, and apply Lemma 2 to conclude $D(a) a \in P$.

If we replace x by $r a+a$ in (3), and apply the condition that $D(r a+a) a \in P$, we get

$$
\begin{aligned}
&\left((r a)^{n}+a(r a)^{n-1}\right) D(r a+a) \\
&+\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k}\left((r a)^{n-k}+a(r a)^{n-k-1}\right) D(r a+a)(r a)^{k} \\
&+(-1)^{n} D(r a+a)(r a)^{n} \in P,
\end{aligned}
$$

and by [2, Lemma 2], we conclude that

$$
\begin{align*}
&(r a)^{n} D(a)+a(r a)^{n-1} D(r a) \\
&+\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k}\left((r a)^{n-k} D(a)(r a)^{k}+a(r a)^{n-k-1} D(r a)(r a)^{k}\right. \\
&+(-1)^{n} D(a)(r a)^{n} \in P, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
a(r a)^{n-1} D(a)+\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k} a(r a)^{n-k-1} D(a)(r a)^{k} \in P . \tag{5}
\end{equation*}
$$

Left-multiplying (5) by r, and in conjunction with (4), shows that

$$
a(r a)^{n-1} D(r a)+\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k} a(r a)^{n-k-1} D(r a)(r a)^{k}+(-1)^{n} D(a)(r a)^{n} \in P .
$$

Left-multiplying this last condition by a, we have $(-1)^{n} a D(a)(r a)^{n} \in P$; and by Lemma 2, $a D(a) \in P$.

Since $a D(a)$ and $D(a) a$ are in P, we obtain

$$
\begin{gathered}
(r a+a r a)^{n} D(r a+a r a)-\left((r a)^{n}+a(r a)^{n}\right) D(r a) \in P ; \\
(r a+a r a)^{n-k} D(r a+a r a)(r a+a r a)^{k}-\left((r a)^{n-k}+a(r a)^{n-k}\right) D(r a)(r a)^{k} \in P
\end{gathered}
$$

for $k=1,2, \cdots, n-1$;

$$
D(r a+a r a)(r a+a r a)^{n}-(D(r a)+D(a r a))(r a)^{n} \in P .
$$

Substituting $r a+$ ara for x in (3), we have

$$
\begin{gathered}
\left((r a)^{n}+a(r a)^{n}\right) D(r a)+\sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k}\left((r a)^{n-k}+a(r a)^{n-k}\right) D(r a)(r a)^{k} \\
+(-1)^{n}(D(r a)+D(a r a))(r a)^{n} \in P
\end{gathered}
$$

and using the condition $[D(r a), r a]_{n}=0$, we obtain $D(a)(r a)^{n+1} \in P$, so that Lemma 2 yields either $a \in P$ or $D(a) \in P$. For all $x \in R$, axa $\in U$ and $(x a x)^{2} \in P$, that is, axa satisfies our original hypotheses on a, therefore for each $x \in R$, either $a x a \in P$ or $D(a x a) \in P$. Since the sets $\{x \in R \mid a x a \in P\}$ and $\{x \in R \mid D(a x a) \in P\}$ are additive subgroups of R, we conclude that either $a R a \subseteq P$ or $D(a D a) \subseteq P$. The former implies that $a \in P$ and in this event we are done. We assume henceforth that

$$
a \notin P, D(a) \in P \quad \text { and } \quad D(a R a) \subseteq P .
$$

It follows immediately that $a D(y a) \in P$ for all $y \in R$. Substituting $y a$ for x in (3), $(-1)^{n} D(y a)(y a)^{n} \in P$ and $D(y a)(y a)^{n} \in P$. Now, right-multiplying the equation $D(a x y a)=D(a x)(y a)+a x D(y a)$ by $(y a)^{n}$, we see that

$$
D(a x y a)(y a)^{n}=D(a x)(y a)^{n+1}+a x D(y a)(y a)^{n} .
$$

Since $D(a x y a) \in P$ and $D(y a)(y a)^{n} \in P$, we have $D(a x)(y a)^{n+1} \in P$ for all $x, y \in R$. By Lemma 2, we obtain $D(a x) \in P$ and $a D(x) \in P$ for all $x \in R$. Therefore $a D(x y)=a D(x) y+a x D(y) \in P, a x D(y) \in P$ and $D(y) \in P$ for all $y \in R$, contradicting the hypothesis that $P \notin \Omega_{1}$. Hence $a \in P$. Henceforth $(P+U) / P$ contains no left zero divisors of R in view of [2, Lemma 3], but by Lemma A, we get $[D(x), x]_{n-1} x=x[D(x), x]_{n-1}$, and Lemma B shows that $\left(x[D(x), x]_{n-1}\right)^{2}=$ $\left([D(x), x]_{n-1} x\right)^{2}=0$, so that $x[D(x), x]_{n-1} \in P$ and $[D(x), x]_{n-1} \in P$.

Now, we establish that $(n+1)![D(x), x]_{n-1} \in P$ for all $P \in \Omega$ and for all $x \in U$, thus $(n+1)![D(x), x]_{n-1} \in \cap P_{\alpha}=\{0\}$; hence $[D(x), x]_{n-1}=0$.

We finish the proof of our theorem by induction on n. Assume inductively that $[D(x), x]_{n-1}=0$ implies $[D(x), x]=0$, by Lemma C , then $[D(x), x]_{n}=0$ implies $[D(x), x]=0$ as well. The existence of a nonzero central ideal follows from [1] in case $D(U) \neq 0$.

Acknowledgment. The author is indebted to the referee for his helpful suggestions and valuable comments which helped in appearing the paper in its present shape.

References

1. H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101.
2. Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra, (to appear).
3. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731-734.
4. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
5. A. Richoux, A theorem for prime rings, Proc. Amer. Math. Soc. 77 (1979), 27-31.
