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Abstract

Let R be a semiprime ring with suitably-restricted torsion,U a nonzero left ideal
of R and D : R → R a nonzero derivation. If for each x ∈ U, [D(x), x]n =[
[· · · [D(x), x] · · ·x], x

]
∈ Z(R) withn fixed, thenR must contain nonzero

central ideals in case D(U) �= 0.

In a recent paper, Lanski [3] gives an extension of a well-known theorem of Pos-
ner [4] by showing that a prime ring R is commutative if [D(x), x]n = 0 for all x in
a nonzero ideal of R. In [2], we studied the commutativity of semiprime rings with
derivations and proved that a semiprime ring R must contain nonzero central ideals
if

[
[D(x), x], x

]
∈ Z(R), which yields generalization of a theorem of Bell and Mar-

tindale [1]. The purpose of this note is to extend the result of Lanski [3, Theorem 1]
from prime rings to semiprime rings with suitably-restricted additive torsion.

Throughout this paper, R denotes an associative ring with center Z(R). We
write [x, y] for xy − yx, and Ia(b) for [b, a], and [x, y]n =

[
[· · · [x, y], · · · , y], y] .

For easy reference we state two lemmas.

Lemma 1 ([2, Lemma 1]).
Let n be a positive integer, R be an n! -torsion- free ring, and f be an additive

map on R. For i = 1, 2, · · · , n, let Fi(X,Y ) be a generalized polynomial which is
homogeneous of degree i in the non-commuting indeterminates X and Y. Let a ∈ R
and (a) the additive subgroup generated by a. If

Fn

(
x, f(x)

)
+ Fn−1

(
x, f(x)

)
+ · · · + F1

(
x, f(x)

)
∈ Z(R)

for all x ∈ (a), then Fi

(
a, f(a)

)
∈ Z(R) for i = 1, 2, · · · , n .
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Lemma 2 ([5, Theorem]).

Let R be a ring and P a prime ideal such that char(R/P ) = 0 or char(R/P ) ≥ n .

If a1, a2, · · · , an+1 are elements of R such that a1xa2xa3 · · · anxan+1 ∈ P for all

x ∈ R, then ai ∈ P for some i = 1, 2, · · · , n + 1.

Theorem

Let n be a fixed positive integer, let R be a(n + 1)! -torsion- free semiprime

ring, and let U be a nonzero left ideal of R. If R admits a nonzero derivation D

such that [D(x), x]n ∈ Z(R) for all x ∈ U, then R contains nonzero central ideals or

D(U) = 0.

Proof. For the proof, we need three steps.

Lemma A

[D(x), x]n = 0 for all x ∈ U.

Proof. Linearizing the conditions [D(x), x]n ∈ Z(R) and using Lemma 1, we get

Inx
(
D(y)

)
+ In−1

n

(
[D(x), y]

)
+ · · ·+ Ix

(
[[D(x), x]n−2, y]

)
+

[
[D(x), x]n−1, y

]
∈ Z(R) .

Replacing y by x2, noting that each term in the relation is 2x[D(x), x]n, we then have
2(n + 1)x

[
D(x), x

]
n
∈ Z(R), and

(
[D(x), x]n

)2 =
[
[D(x), x]n−1, x[D(x), x]n

]
= 0.

Since the center of a semiprime ring contains no nonzero nilpotent elements, we
obtain [D(x), x]n = 0. �

Lemma B(
[D(x), x]n−1

)2
x = 0 for all x ∈ U.

Proof. From [D(x), x]n = 0, we have Iix
(
[D(x), x]i

)
= 0 for i + j ≥ n. Linearizing

[D(x), x]n = 0 and applying Lemma 1, we now have

Inx (D(y))+In−1
x

(
[D(x), y]

)
+ · · ·+Ix

(
[[D(x), x]n−2, y]

)
+

[
[D(x), x]n−1, y

]
= 0 . (1)

Since Inx
(
D(y)

)
= xInx

(
D(y)

)
+ Inx

(
D(x), y

)
,

In−1
x

(
[D(x), xy]

)
= xIn−1

x

(
[D(x), y]

)
+ In−1

x

(
[D(x), x]y

)
;

Ikx
(
[[D(x), x]n−k−1, xy]

)
= xIkx

(
[D(x), x]n−k−1, y

)
+ Ikx

(
[D(x), x]n−k, y

)
,

for k = 1, 2, · · · , n− 2 .
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Replacing y by xy in (1) yields

Inx
(
D(x)y

)
+ In−1

x

(
[D(x), x]y

)
+ · · · + Ix

(
[D(x), x]n−1y

)
= 0 . (2)

Taking y =
[
D(x), x

]
n−2

x in (2), and noting Ijx
(
[D(x), x]n−2

)
= 0 for j ≥ 2 and

Ikx (ab) =
∑k

j=0

(
k
j

)
Ik−j
x (a)Ijx(b), we then gain

n
(
[D(x), x]n−1

)2
x + (n− 1)

(
[D(x), x]n−1

)2
x + · · · +

(
[D(x), x]n−1

)2
x = 0 ,

thus n(n+1)
2

(
[D(x), x]n−1

)2
x = 0 and

(
[D(x), x]n−1)2 x = 0 . �

Lemma C

[D(x), x]n−1 = 0 for all x ∈ U .

Proof. Take a family Ω = {pα|α ∈ Λ} of prime ideals of R such that ∩Pα = {0},
and let Ω1 = {Pα ∈ Ω|D(U) ⊆ Pα} .

For each P ∈ Ω1, and for each P ∈ Ω\Ω1 such that 0 < char(R/P ) ≤ n+ 1, we
have (n + 1)!

[
D(x), x

]
n−1

∈ P for all x ∈ U.
Suppose that there is a P ∈ Ω\Ω1 such that char(R/P ) = 0 or char(R/P ) >

n + 1, we shall show that [D(x), x]n−1 ∈ P. Firstly we show that a2 ∈ P implies
a ∈ P for a ∈ U. From [D(x), x]n = 0, we arrive at

xnD(x) + (−1)
(
n

1

)
xn−1D(x)x + · · · + (−1)nD(x)xn = 0 . (3)

For any a ∈ U with a2 ∈ P, replace x by ra in (3) and then right-multiply by a, we
have (ra)nrD(a)a ∈ P for all r ∈ R, and apply Lemma 2 to conclude D(a)a ∈ P.

If we replace x by ra + a in (3), and apply the condition that D(ra + a)a ∈ P,
we get (

(ra)n + a(ra)n−1
)
D(ra + a)

+
n−1∑
k=1

(−1)k
(
n

k

)(
(ra)n−k + a(ra)n−k−1

)
D(ra + a)(ra)k

+ (−1)nD(ra + a)(ra)n ∈ P,

and by [2, Lemma 2], we conclude that

(ra)nD(a) + a(ra)n−1D(ra)

+
n−1∑
k=1

(−1)k
(
n

k

)(
(ra)n−kD(a)(ra)k + a(ra)n−k−1D(ra)(ra)k

+ (−1)nD(a)(ra)n ∈ P , (4)
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and

a(ra)n−1D(a) +
n−1∑
k=1

(−1)k
(
n

k

)
a(ra)n−k−1D(a)(ra)k ∈ P . (5)

Left-multiplying (5) by r, and in conjunction with (4), shows that

a(ra)n−1D(ra) +
n−1∑
k=1

(−1)k
(
n

k

)
a(ra)n−k−1D(ra)(ra)k + (−1)nD(a)(ra)n ∈ P .

Left-multiplying this last condition by a, we have (−1)naD(a)(ra)n ∈ P ; and by
Lemma 2, aD(a) ∈ P.

Since aD(a) and D(a)a are in P, we obtain

(ra + ara)nD(ra + ara) −
(
(ra)n + a(ra)n

)
D(ra) ∈ P ;

(ra + ara)n−kD(ra + ara)(ra + ara)k −
(
(ra)n−k + a(ra)n−k

)
D(ra)(ra)k ∈ P

for k = 1, 2, · · · , n− 1 ;

D(ra + ara)(ra + ara)n −
(
D(ra) + D(ara)

)
(ra)n ∈ P .

Substituting ra + ara for x in (3), we have

(
(ra)n + a(ra)n

)
D(ra) +

n−1∑
k=1

(−1)k
(
n

k

)(
(ra)n−k + a(ra)n−k

)
D(ra)(ra)k

+ (−1)n
(
D(ra) + D(ara)

)
(ra)n ∈ P ,

and using the condition [D(ra), ra]n = 0, we obtain D(a)(ra)n+1 ∈ P, so that
Lemma 2 yields either a ∈ P or D(a) ∈ P. For all x ∈ R, axa ∈ U and (xax)2 ∈ P,

that is, axa satisfies our original hypotheses on a, therefore for each x ∈ R, either
axa ∈ P or D(axa) ∈ P. Since the sets {x ∈ R|axa ∈ P} and {x ∈ R|D(axa) ∈ P}
are additive subgroups of R, we conclude that either aRa ⊆ P or D(aDa) ⊆ P. The
former implies that a ∈ P and in this event we are done. We assume henceforth
that

a �∈ P, D(a) ∈ P and D(aRa) ⊆ P .

It follows immediately that aD(ya) ∈ P for all y ∈ R. Substituting ya for x in (3),
(−1)nD(ya)(ya)n ∈ P and D(ya)(ya)n ∈ P. Now, right-multiplying the equation
D(axya) = D(ax)(ya) + axD(ya) by (ya)n, we see that

D(axya)(ya)n = D(ax)(ya)n+1 + axD(ya)(ya)n .
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Since D(axya) ∈ P and D(ya)(ya)n ∈ P, we have D(ax)(ya)n+1 ∈ P for all x, y ∈ R.

By Lemma 2, we obtain D(ax) ∈ P and aD(x) ∈ P for all x ∈ R. Therefore
aD(xy) = aD(x)y + axD(y) ∈ P, axD(y) ∈ P and D(y) ∈ P for all y ∈ R,

contradicting the hypothesis that P �∈ Ω1. Hence a ∈ P. Henceforth (P + U)/P
contains no left zero divisors of R in view of [2, Lemma 3], but by Lemma A, we
get [D(x), x]n−1 x = x[D(x), x]n−1, and Lemma B shows that

(
x[D(x), x]n−1

)2 =(
[D(x), x]n−1x

)2 = 0, so that x[D(x), x]n−1 ∈ P and [D(x), x]n−1 ∈ P.

Now, we establish that (n+1)![D(x), x]n−1 ∈ P for all P ∈ Ω and for all x ∈ U ,
thus (n + 1)![D(x), x]n−1 ∈ ∩Pα = {0}; hence [D(x), x]n−1 = 0 . �

We finish the proof of our theorem by induction on n. Assume inductively that
[D(x), x]n−1 = 0 implies [D(x), x] = 0, by Lemma C, then [D(x), x]n = 0 implies
[D(x), x] = 0 as well. The existence of a nonzero central ideal follows from [1] in
case D(U) �= 0 . �
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