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Abstract

In this paper, we study the existence of periodic solutions of hamiltonian systems:

ẋ = J H ′(t, x)

where the hamiltonian H is non coercive of the type

H(t, r, p) = f
(
|p−Ar|

)
+ h(t) · (r, p) .

1. Introduction

Let be given a relativistic particle with charge e and mass at rest m0 submitted to
a constant uniform magnetic field B and a uniform electric field E(t), its movement
is governed by the hamiltonian equations:

ṙ =
∂H

∂p
(t, r, p) , ṗ = −∂H

∂r
(t, r, p)

where H is the particle energy given in terms of the time t, the position r and the
impulsion p by the formula:

H
(
t, r, p

)
= c

[
m2

0 c
2 +

∣∣p− e

2c
B ∧ r

∣∣2]1/2

− eE(t) · r

where c is the light speed.
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This leads us to study the existence of periodic solutions of the hamiltonian
systems:

(H) ẋ = JH ′(t, x)

where the hamiltonian H is non coercive of the type

H
(
t, r, p

)
= f

(
|p−Ar|

)
+ h(t) · (r, p)

with A a matrix of order n, f : R+ −→ R is a non decreasing convex continuously
differentiable function, h : R −→ R

2n is a forcing term and J is the antisymmetric
matrix:

J =

(
0 IRn

−IRn 0

)
.

In this case the dual least action principle seems to provide the best results in the
simplest way.

2. Autonomous case

In this section we take h = 0 and we assume that the matrix A is non symmetric
and that the function f satisfies the assumptions:

∀ t ∈ R
∗
+ , 0 = f(0) < f(t) and f ′(0) = 0 ;(1)

∃ k > 0 , ∃ c ≥ 0 : ∀ t ∈ R+ , f(t) ≤ k

2
t2 + c ;(2)

∃α > 0 , ∃K ∈
] k

2τ
(
1 + ‖A‖2

)
, +∞

[
such that(3)

∀ t ∈ [o, α] ,
k

2
t2 ≤ f(t) ;

where
τ = sup

{
b · (A∗ −A) a ; a2 + b2 = 1 ; a, b ∈ R

n
}

and A∗ is the adjoint of A. The corresponding hamiltonian H is then continuously
differentiable and we obtain:

Theorem 1

For all T ∈
]

π
Kτ , 2π

k(1+‖A‖2)

[
, the hamiltonian system (H) has a non trivial

periodic solution with minimal period T.
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Proof. We proceed by proving successive lemmas.
We denote by f∗ the Legendre transformation of f :

f∗(s) = sup
{
st− f(t) ; t ∈ R

}
.

From the assumptions (2) and (3) we deduce easily the following lemma:

Lemma 1
f∗ satisfies

∀ t ∈ R , f∗(t) ≥ 1
2k

t2 − c ,(4)

∃ r > 0 ; ∀ |t| ≤ r , f∗(t) ≤ 1
2K

t2 .(5)

It is easy to show that the function H is convex and its Legendre transformation
H∗ is given for (s, q) ∈ R

n × R
n by:

H∗(s, q) =
{
f∗(|q|) if s + A∗q = 0

+∞ elsewhere .

Now, let T ∈
]

π
Kτ , 2π

k(1+‖A‖2)

[
. We consider the functional Φ in the space E0

defined by

E0 =
{(

−A∗v, v
)
; v ∈ L2

(
0, T ; R

n
)
,

∫ T

0

v(t) dt = 0
}
,

Φ(w) =
1
2

∫ T

0

〈Jw , πw〉 dt +
∫ T

0

H∗(w) dt ,

where πw is the primitive of w with mean value zero:

d

dt
(πw) = w ,

∫ T

0

(πw)(t) dt = 0 .

Lemma 2
Let, for w ∈ L2

(
0, T ; R

2n
)
g(w) =

∫ T

0

H∗(w) dt .

The subdifferential of g|E0 at a point w ∈ E0, where g is finite, is given by:

∂̄g(w) =
{
u ∈ L2(0, T ; R

2n); ∃x ∈ E⊥
0 , u(t) + x(t) ∈ ∂H∗(u(t)

)
a.e

}
where ∂̄ designates the subdifferential in E0 .
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Proof. It is clear that
∂̄g(w) = ∂

(
g + δE0

)
(w)

where

δE0(w) =
{ 0 if w ∈ E0

+∞ elsewhere.

We have δ∗E0
= δE⊥

0
and

E⊥
0 = R

2n +
{
(v,Av); v ∈ L2(0, T ; R

n)
}
.

Consequently, for u ∈ L2(0, T ; R
2n), we have

(
g∗∇δ∗E0

)
(u) = inf

x∈R2n

∫ T

0

H(u + x) dt .

So, by the assumption (2), there exist α, β > 0 such that

0 ≤
(
g∗∇δ∗E0

)
(u) ≤ α‖u‖2

L2 + β

and, since g∗∇δ∗E0
is convex, then it is continuous. Noting u = (r, p), we have

(
g∗∇δ∗E0

)(u) = inf
ξ∈Rn

∫ T

0

f
(
|p−Ar + ξ|

)
dt .

Therefore, by assumptions (2), (3) and the convexity of f, the function g∗∇δ∗E0
is

exactly.
In the other hand, g and δE0 are convex, l.s.c. and proper. Then for all

w ∈ E0, where g is finite, we have

∂
(
g + δE0

)
(w) = ∂g(w) + ∂δE0(w) .

The result follows then from the equalities:

∂δE0(w) = E⊥
0 and ∂g(w) =

{
u ∈ L2(0, T ; R2n); u(t) ∈ ∂H∗(w(t)) a.e.} �

Lemma 3

The function Φ has a global minimum on E0:

∃ w̄ ∈ E0 , min
E0

Φ = Φ(w̄) .
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Proof. By the inequality (4) we have, for all w ∈ E0;∫ T

0

H∗(w)dt ≥ 1
2k(1 + ‖A‖2)

‖w‖2
L2 − c T .

By application of the Wirtinger inequality, we obtain

Φ(w) ≥ 1
2

{ 1
k[1 + ‖A‖2]

− T

2π

}
‖w‖2

L2 − c T

and since T < 2π
k(1+‖A‖2) and the space E0 is reflexive the minimum of Φ on E0

is achieved. �

Lemma 4

We have

min
E0

Φ < 0 .

Proof. By definition, we have

T >
π

Kτ
=

π

K
inf

{ a2 + b2

b · (A∗ −A)a
; b · (A∗ −A)a > 0

}
,

so there exist a, b ∈ R
n such that

b · (A∗ −A)a > 0 , a2 + b2 ≤ r2 and T >
π(a2 + b2)

K b · (A∗ −A) a
.

Let
v(t) = a cos

(2π
T

t
)

+ b sin
(2π
T

t
)
, w(t) =

(
−A∗v(t), v(t)

)
,

we have by the inequality (5) and easy calculation∫ T

0

f∗(|v|) dt ≤ 1
2K

‖v‖2
L2 =

a2 + b2

4K
,

∫ T

0

〈Jw, πw〉 dt = − T

2π
b · (A∗ −A)a ,

consequently

Φ(w) ≤ 1
4π

b · (A∗ −A)a
[ π(a2 + b2)
K b · (A∗ −A)a

− T
]
< 0

and so inf
E0

Φ < 0.
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Now, let w be a point of E0 where the minimum of Φ is achieved, then we
have

0 ∈ −Jπw + ∂̄g(w) .

From Lemma 2, there exist ξ ∈ R
2n and h ∈ L2(0, T ; R

n) such that

J(πw)(t) + ξ +
(
h(t), Ah(t)

)
∈ ∂H∗(w(t)

)
a.e.

By setting x = Jπw + ξ, we obtain by the Fenchel reciprocity ẋ = JH ′(x). It is
clear that x is T -periodic and, by lemma 4, x is non constant.

It remains to show that T is the minimal period of x. Assume that x and
then w are T

m - periodic with m ≥ 2. Let y(t) = w
(

t
m

)
, then (πy)(t) = m(πm)

(
t
m

)
.

This point y belongs to E0 and verifies

Φ(y) =
m

2

∫ T

0

〈Jw, πw〉dt +
∫ T

0

H ∗ (w) dt

≤ mΦ(w) .

So, by lemma 4, we have Φ(y) < inf
E0

Φ which is a contradiction, then T is the

minimal period of x. �

3. Non autonomous case

Here we assume that f is not constant and there exist k > 0 and a ≥ 0 such that:

(6) ∀ t ∈ R+ , 0 ≤ f(t) ≤ k

2
t2 + a and f ′(0) = 0 ,

and the function h is continuous, periodic with minimal period T > 0 and mean
value zero.

Theorem 2

For all T ∈
]
0, π

k[1+‖A‖2]

[
, the hamiltonian system (H) has a periodic solution

with minimal period T.
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Proof. We proceed as in section 2, so we omit some details. We consider the
functional Φ over the space E defined by

E = E0 + h

Φ(w) =
1
2

∫ T

0

〈Jw, πw〉dt +
∫ T

0

H∗(t, w) dt

where E0 is defined as in section 2.
For w =

(
−A∗v, v) + h ∈ E, we have

Φ(w) =
1
2

∫ T

0

〈Jw, πw〉dt +
∫ T

0

f∗(|v|) dt .

From the assumption (6), we have∫ T

0

f∗(|v|) dt ≥ 1
2k

‖v‖2
L2 − aT,

it follows then, by Hölder inequality, that there exists a constant c such that

Φ(w) ≥ 1
4π

[ π

k[1 + ‖A‖2]
− T

]
‖w‖2

L2 − c ,

and then the global minimum of Φ over E is achieved at a point w. Therefore,
there exists ξ ∈ R

2n and r ∈ L2(0, T ; R
n) such that

0 ∈ −Jπw + ξ + (r,Ar) + ∂H∗(t, w) a.e.

By using the Fenchel reciprocity, it is clear that the function x = J πw + ξ is a
periodic solution of (H) with minimal period T. �
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