Collect. Math. 46, 3 (1995), 255-261

(c) 1995 Universitat de Barcelona

Periodic solutions of a non coercive hamiltonian system

M. Timoumi and A. Trad

École Normale Supérieure de Bizerte, Faculté des Sciences, 7021 Jarzouna, Tunisie

Received June 22, 1994. Revised May 4, 1995

Abstract

In this paper, we study the existence of periodic solutions of hamiltonian systems:

$$\dot{x} = J H'(t, x)$$

where the hamiltonian H is non coercive of the type

$$H(t,r,p) = f(|p - Ar|) + h(t) \cdot (r,p).$$

1. Introduction

Let be given a relativistic particle with charge e and mass at rest m_0 submitted to a constant uniform magnetic field B and a uniform electric field E(t), its movement is governed by the hamiltonian equations:

$$\dot{r} = \frac{\partial H}{\partial p}(t, r, p), \ \dot{p} = -\frac{\partial H}{\partial r}(t, r, p)$$

where H is the particle energy given in terms of the time t, the position r and the impulsion p by the formula:

$$H(t,r,p) = c \left[m_0^2 c^2 + \left| p - \frac{e}{2c} B \wedge r \right|^2 \right]^{1/2} - e E(t) \cdot r$$

where c is the light speed.

This leads us to study the existence of periodic solutions of the hamiltonian systems:

$$\dot{x} = JH'(t, x)$$

where the hamiltonian H is non coercive of the type

$$H(t,r,p) = f(|p - Ar|) + h(t) \cdot (r,p)$$

with A a matrix of order $n, f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ is a non decreasing convex continuously differentiable function, $h: \mathbb{R} \longrightarrow \mathbb{R}^{2n}$ is a forcing term and J is the antisymmetric matrix:

$$J = \begin{pmatrix} 0 & I_{\mathbb{R}^n} \\ -I_{\mathbb{R}^n} & 0 \end{pmatrix} .$$

In this case the dual least action principle seems to provide the best results in the simplest way.

2. Autonomous case

In this section we take h=0 and we assume that the matrix A is non-symmetric and that the function f satisfies the assumptions:

(1)
$$\forall t \in \mathbb{R}_{+}^{*}, \ 0 = f(0) < f(t) \text{ and } f'(0) = 0;$$

(2)
$$\exists k > 0, \ \exists c \ge 0 : \forall t \in \mathbb{R}_+, \ f(t) \le \frac{k}{2} t^2 + c;$$

(3)
$$\exists \alpha > 0, \ \exists K \in \left] \frac{k}{2\tau} \left(1 + ||A||^2 \right), + \infty \right[\text{ such that } \right.$$

$$\forall t \in [o, \alpha], \ \frac{k}{2} t^2 \le f(t);$$

where

$$\tau = \sup \{b \cdot (A^* - A) a; a^2 + b^2 = 1; a, b \in \mathbb{R}^n \}$$

and A^* is the adjoint of A. The corresponding hamiltonian H is then continuously differentiable and we obtain:

Theorem 1

For all $T \in \frac{\pi}{K\tau}$, $\frac{2\pi}{k(1+\|A\|^2)}$, the hamiltonian system (\mathcal{H}) has a non trivial periodic solution with minimal period T.

Proof. We proceed by proving successive lemmas.

We denote by f^* the Legendre transformation of f:

$$f^*(s) = \sup \left\{ st - f(t) \; ; \; t \in \mathbb{R} \right\}.$$

From the assumptions (2) and (3) we deduce easily the following lemma:

Lemma 1

 f^* satisfies

(4)
$$\forall t \in \mathbb{R}, \ f^*(t) \ge \frac{1}{2k} t^2 - c,$$

(5)
$$\exists r > 0; \ \forall |t| \le r, \ f^*(t) \le \frac{1}{2K} t^2.$$

It is easy to show that the function H is convex and its Legendre transformation H^* is given for $(s,q) \in \mathbb{R}^n \times \mathbb{R}^n$ by:

$$H^*(s,q) = \begin{cases} f^*(|q|) & \text{if } s + A^*q = 0 \\ +\infty & \text{elsewhere}. \end{cases}$$

Now, let $T\in \left]\frac{\pi}{K\tau}, \frac{2\pi}{k(1+\|A\|^2)}\right[$. We consider the functional Φ in the space E_0 defined by

$$E_0 = \left\{ \left(-A^* v, v \right); \ v \in L^2 \left(0, T; \mathbb{R}^n \right), \ \int_0^T v(t) \, dt = 0 \right\},$$

$$\Phi(w) = \frac{1}{2} \int_0^T \langle Jw, \pi w \rangle \, dt + \int_0^T H^*(w) \, dt,$$

where πw is the primitive of w with mean value zero:

$$\frac{d}{dt}(\pi w) = w, \int_0^T (\pi w)(t) dt = 0.$$

Lemma 2

Let, for $w \in L^2(0,T; \mathbb{R}^{2n})$

$$g(w) = \int_0^T H^*(w) dt.$$

The subdifferential of $g_{|E_0}$ at a point $w \in E_0$, where g is finite, is given by:

$$\bar{\partial}g(w) = \left\{u \in L^2(0,T;\,\mathbb{R}^{2n});\,\exists\, x \in E_0^\perp,\,\,u(t) + x(t) \in \partial H^*\big(u(t)\big)\,\,a.e\right\}$$

where $\bar{\partial}$ designates the subdifferential in E_0 .

Proof. It is clear that

$$\bar{\partial}g(w) = \partial(g + \delta_{E_0})(w)$$

where

$$\delta_{E_0}(w) = \begin{cases} 0 & \text{if } w \in E_0 \\ +\infty & \text{elsewhere.} \end{cases}$$

We have $\delta_{E_0}^* = \delta_{E_0^{\perp}}$ and

$$E_0^{\perp} = \mathbb{R}^{2n} + \{(v, Av); \ v \in L^2(0, T; \mathbb{R}^n)\}.$$

Consequently, for $u \in L^2(0,T; \mathbb{R}^{2n})$, we have

$$\left(g^*\nabla \delta_{E_0}^*\right)(u) = \inf_{x \in \mathbb{R}^{2n}} \int_0^T H(u+x) \, dt \, .$$

So, by the assumption (2), there exist $\alpha, \beta > 0$ such that

$$0 \le (g^* \nabla \delta_{E_0}^*)(u) \le \alpha ||u||_{L^2}^2 + \beta$$

and, since $g^*\nabla \delta_{E_0}^*$ is convex, then it is continuous. Noting u=(r,p), we have

$$\left(g^*\nabla \delta_{E_0}^*\right)(u) = \inf_{\xi \in \mathbb{R}^n} \int_0^T f(|p - Ar + \xi|) dt.$$

Therefore, by assumptions (2), (3) and the convexity of f, the function $g^*\nabla \delta_{E_0}^*$ is exactly.

In the other hand, g and δ_{E_0} are convex, l.s.c. and proper. Then for all $w \in E_0$, where g is finite, we have

$$\partial(g + \delta_{E_0})(w) = \partial g(w) + \partial \delta_{E_0}(w)$$
.

The result follows then from the equalities:

$$\partial \delta_{E_0}(w) = E_0^{\perp} \text{ and } \partial g(w) = \left\{ u \in L^2(0,T;\mathbb{R}^{2n}); u(t) \in \partial H^*(w(t)) \text{ a.e.} \right\} \quad \Box$$

Lemma 3

The function Φ has a global minimum on E_0 :

$$\exists \, \bar{w} \in E_0 \,, \quad \min_{E_0} \Phi = \Phi(\bar{w}) \,.$$

Proof. By the inequality (4) we have, for all $w \in E_0$;

$$\int_0^T H^*(w)dt \ge \frac{1}{2k(1+\|A\|^2)} \|w\|_{L^2}^2 - cT.$$

By application of the Wirtinger inequality, we obtain

$$\Phi(w) \ge \frac{1}{2} \left\{ \frac{1}{k[1 + ||A||^2]} - \frac{T}{2\pi} \right\} ||w||_{L^2}^2 - cT$$

and since $T<\frac{2\pi}{k(1+\|A\|^2)}$ and the space E_0 is reflexive the minimum of Φ on E_0 is achieved. \square

Lemma 4

We have

$$\min_{E_0} \Phi < 0.$$

Proof. By definition, we have

$$T > \frac{\pi}{K\tau} = \frac{\pi}{K} \inf\left\{ \frac{a^2 + b^2}{b \cdot (A^* - A)a}; \ b \cdot (A^* - A)a > 0 \right\},$$

so there exist $a, b \in \mathbb{R}^n$ such that

$$b \cdot (A^* - A)a > 0$$
, $a^2 + b^2 \le r^2$ and $T > \frac{\pi(a^2 + b^2)}{K b \cdot (A^* - A) a}$.

Let

$$v(t) = a \cos\left(\frac{2\pi}{T}t\right) + b \sin\left(\frac{2\pi}{T}t\right), \ w(t) = \left(-A^*v(t), v(t)\right),$$

we have by the inequality (5) and easy calculation

$$\int_0^T f^*(|v|) dt \le \frac{1}{2K} ||v||_{L^2}^2 = \frac{a^2 + b^2}{4K},$$
$$\int_0^T \langle Jw, \pi w \rangle dt = -\frac{T}{2\pi} b \cdot (A^* - A)a,$$

consequently

$$\Phi(w) \le \frac{1}{4\pi} b \cdot (A^* - A) a \left[\frac{\pi(a^2 + b^2)}{K b \cdot (A^* - A) a} - T \right] < 0$$

and so $\inf_{E_0} \Phi < 0$.

Now, let w be a point of E_0 where the minimum of Φ is achieved, then we have

$$0 \in -J\pi w + \bar{\partial}q(w)$$
.

From Lemma 2, there exist $\xi \in \mathbb{R}^{2n}$ and $h \in L^2(0,T;\mathbb{R}^n)$ such that

$$J(\pi w)(t) + \xi + (h(t), Ah(t)) \in \partial H^*(w(t))$$
 a.e.

By setting $x = J\pi w + \xi$, we obtain by the Fenchel reciprocity $\dot{x} = JH'(x)$. It is clear that x is T-periodic and, by lemma 4, x is non constant.

It remains to show that T is the minimal period of x. Assume that x and then w are $\frac{T}{m}$ - periodic with $m \geq 2$. Let $y(t) = w\left(\frac{t}{m}\right)$, then $(\pi y)(t) = m(\pi m)\left(\frac{t}{m}\right)$. This point y belongs to E_0 and verifies

$$\Phi(y) = \frac{m}{2} \int_0^T \langle Jw, \pi w \rangle dt + \int_0^T H * (w) dt$$

$$\leq m \Phi(w).$$

So, by lemma 4, we have $\Phi(y) < \inf_{E_0} \Phi$ which is a contradiction, then T is the minimal period of x. \square

3. Non autonomous case

Here we assume that f is not constant and there exist k > 0 and $a \ge 0$ such that:

(6)
$$\forall t \in \mathbb{R}_+, \quad 0 \le f(t) \le \frac{k}{2}t^2 + a \text{ and } f'(0) = 0,$$

and the function h is continuous, periodic with minimal period T > 0 and mean value zero.

Theorem 2

For all $T \in \left]0, \frac{\pi}{k[1+||A||^2]}\right[$, the hamiltonian system (\mathcal{H}) has a periodic solution with minimal period T.

Proof. We proceed as in section 2, so we omit some details. We consider the functional Φ over the space E defined by

$$E = E_0 + h$$

$$\Phi(w) = \frac{1}{2} \int_0^T \langle Jw, \pi w \rangle dt + \int_0^T H^*(t, w) dt$$

where E_0 is defined as in section 2.

For $w = (-A^*v, v) + h \in E$, we have

$$\Phi(w) = \frac{1}{2} \int_0^T \langle Jw, \pi w \rangle dt + \int_0^T f^*(|v|) dt.$$

From the assumption (6), we have

$$\int_0^T f^*(|v|) dt \ge \frac{1}{2k} ||v||_{L^2}^2 - aT,$$

it follows then, by Hölder inequality, that there exists a constant c such that

$$\Phi(w) \geq \frac{1}{4\pi} \Big[\frac{\pi}{k[1 + ||A||^2]} - T \Big] ||w||_{L^2}^2 - c \,,$$

and then the global minimum of Φ over E is achieved at a point w. Therefore, there exists $\xi \in \mathbb{R}^{2n}$ and $r \in L^2(0,T;\mathbb{R}^n)$ such that

$$0 \in -J\pi w + \xi + (r, Ar) + \partial H^*(t, w)$$
 a.e.

By using the Fenchel reciprocity, it is clear that the function $x = J \pi w + \xi$ is a periodic solution of (\mathcal{H}) with minimal period T. \square

References

- 1. J. P. Aubin and I. Ekeland, Applied non linear Analysis, Wiley, 1986.
- 2. D. Azé and J. Blot, Systèmes hamiltoniens: leurs solutions périodiques, Cedic, 1982.
- 3. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels, Dunod, 1974.
- 4. M. Timoumi, Solutions périodiques de systèmes hamiltoniens convexes non coercitifs, *Bull. de la classe des Sciences* **75** (1989), 463–481.
- 5. M. Timoumi, Subharmonics of convex non coercive hamiltonian systems, *Collect. Math.* **43** (1992), 63–69.