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Abstract

The purpose of this paper is to define, in a natural way, an order relation on the
set of antichains of an ordered set. Thus, the set of finite antichains becomes a
sup-lattice. If moreover, the given ordered set is a strictly ordered commutative
monoid, the finite antichains constitute also an ordered monoid.

In § 3, an ultrametric distance is introduced; it has values in the partially
ordered set of finite antichains. This distance appears naturally in the study of
rings of generalized power series. It will be used in a forthcoming paper (with
Sibylla Prieβ-Crampe) concerning fixed points of contracting maps. Antichains
have also been considered in the study of Gröbner bases, where they appear under
names like “crowns” and it is likely that the present results will be useful in that
context.

By its simplicity, it is also expected that use of these ideas will be found
in the theory of ordered sets and their applications.

I

Let (S,≤) be an ordered set. We denote by ≤◦ the relation opposite to ≤: s ≤◦ t in
S if and only if t ≤ s. Clearly, ≤◦ is also an order relation.

Let A(S,≤) be the set of antichains of (S,≤), these are the non-empty subsets
X of S such that if s, t ∈ X and s ≤ t, then s = t. Let F (S,≤) be the set of
(non-empty) finite antichains of (S,≤).

It is clear that A(S,≤) = A(S,≤◦), F (S,≤) = F (S,≤◦). For simplicity, we
shall use the notations A(S), F (S) for the set of antichains, resp. finite antichains
of (S,≤).
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Let ı : S → A(S) be the canonical injection ı(s) = {s}; it is surjective if and
only if the order ≤ is total.

We define the relations � ≤ and ≤ r on A(S) as follows. If X,Y ∈ A(S), let
X� ≤ Y when for every x ∈ X, there exists y ∈ Y such that x ≤ y. Similarly, let
X ≤ rY when for every y ∈ Y, there exists x ∈ X such that x ≤ y.

The relations � ≤ and ≤ r on A(S) are related as follows: if X,Y ∈ A(S), then
X ≤ rY if and only X(� ≤◦)◦Y , where ≤◦ denotes the opposite order of ≤ on S

and (� ≤◦)◦ the opposite relation of � ≤◦ on A(S).
Thus, it suffices to study the relation � ≤ on A(S). For simplicity and if there

is no ambiguity, we simply write X ≤ Y instead of X� ≤ Y.

We establish some properties of the relation ≤;X,Y, Z denote antichains of S.

Proposition 1.1

If X ⊆ Y, then X ≤ Y. In particular, X ≤ X.

Proposition 1.2

If X ≤ Y and Y ≤ X, then X = Y.

Proof. Let x ∈ X, so there exists y ∈ Y such that x ≤ y. Similarly, there exists
x′ ∈ X, such that y ≤ x′. From x ≤ y ≤ x′, it follows that x = x′, hence x = y ∈ Y,

showing the inclusion X ⊆ Y. Similarly, Y ⊆ X. �

Proposition 1.3

X ≤ Y and Y ≤ Z, then X ≤ Z.

Therefore (A(S),≤) is an ordered set and the mapping ı is an immersion of
ordered sets.

For each subset X of S, let Min(X) denote the set of minimal elements of X,

so Min(X) ∈ A(S) ∪ {∅}. It is not excluded that Min(X) = ∅ when X �= ∅.
Similarly, let Max(X) be the set of maximal elements of X; Max(X) ∈ A(S) ∪

{∅} and Max(X) may be empty when X �= ∅.

Proposition 1.4

Let X,Y ∈ A(S).
a) For every z ∈ X ∪ Y, there exists t ∈ Max(X ∪ Y ) such that z ≤ t.

b) For every z ∈ X ∪ Y, there exists t ∈ Min(X ∪ Y ) such that z ≥ t.
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Proof. a) Let z ∈ X ∪ Y, say z ∈ X. If z �∈ Max(X ∪ Y ), there exists y ∈ X ∪ Y

such that z < y; hence y �∈ X, so y ∈ Y. If y �∈ Max(X ∪ Y ), there exists x ∈ X ∪ Y

such that y < x, hence x �∈ Y, so x ∈ X. Therefore z < y < x, with z, x ∈ X, which
is impossible.

b) The proof is similar. �

Proposition 1.5

(A(S),≤) is a sup-lattice and (F (S),≤) is a sub-sup-lattice.

Proof. Let X,Y ∈ A(S); we show that sup {X,Y } exists and it is equal to Max(X ∪
Y ) ∈ A(S).

First, X ≤ Max(X ∪ Y ) and also Y ≤ Max(X ∪ Y ), as follows from (1.4). If
X ≤ Z and Y ≤ Z and t ∈ Max(X ∪Y ) ⊆ X ∪Y, then necessarily there exists z ∈ Z

such that t ≤ z. This shows that (A(S),≤) is a sup-lattice, where the sup is given
as indicated.

If X,Y ∈ F (S) then Max(X ∪ Y ) ∈ F (S), so (F (S),≤) is a sub-sup-lattice of
(A(S),≤). �

We note that if X ∈ F (S), then X = sup {{x} |x ∈ X}.
Now we prove the following universal property.

Proposition 1.6

Let (L,≤) be a sup-lattice and ϕ : S → L an order-homomorphism. Then,

there exists a unique order-homomorphism ψ : F (S) → L, such that ψ ◦ ı = ϕ and

ψ(sup {X,Y }) = sup {ψ(X), ψ(Y )} .

Proof. We define ψ : F (S) → L as follows: ψ(X) = sup {ϕ(x) |x ∈ X}; we note
that since X is a finite set, the above sup exists.

If X ≤ Y, for each x ∈ X there exists yx ∈ Y such that x ≤ yx; then ϕ(x) ≤
ϕ(yx) and ψ(X) = sup {ϕ(x) |x ∈ X} ≤ sup {ϕ(yx) |x ∈ X} ≤ sup {ϕ(y) | y ∈ Y } =
ψ(Y ) .

We have also ψ ◦ ı(s) = ψ({s}) = ϕ(s) for every s ∈ S.

Clearly sup {ψ(X), ψ(Y )} ≤ ψ(sup {X,Y }). If z ∈ L and ψ(X) ≤ z, ψ(Y ) ≤ z,

then ϕ(x) ≤ z for every x ∈ X and ϕ(y) ≤ z for every y ∈ Y. So ϕ(t) ≤ z for
every t ∈ X ∪ Y, hence also for every t ∈ Max(X ∪ Y ) = sup {X,Y }. By definition,
ψ(sup {X,Y }) = sup {ϕ(t) | t ∈ sup {X,Y }} ≤ z.

It remains to show the uniqueness of ψ. If ψ′ : F (S) → L is an order-
homomorphism satisfying the same properties as ψ, then ψ′(X) = ψ′(sup{{x} |x ∈
X}) = sup {ψ′({x}) |x ∈ X} = sup {ϕ(x) |x ∈ X} = ψ(X). �
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An ordered set (S,≤) is noetherian if every strictly ascending chain in S is finite.
It is equivalent to say that if T is any non-empty subset of S, then Max(T ) �= ∅. In
particular, if s ∈ S there exists t ∈ Max(S) such that s ≤ t. We also agree that the
empty set is noetherian.

An ordered set is artinian if every strictly descending chain in S is finite. (S,≤)
is artinian if and only if (S,≤◦) is noetherian. We also say that the empty set is
artinian.

Proposition 1.7
Assume that (S,≤) is noetherian and has a smallest element. Then (A(S),≤)

is a complete lattice: if (Xi)i∈I is any non-empty family of elements of A(S), then

sup {Xi | i ∈ I} = Max
( ⋃

i∈I

Xi

)

inf {Xi | i ∈ I} = Max
(
{t ∈ S | for every i ∈ I .

there exists xi ∈ Xi such that t ≤ xi}
)
.

Moreover, the last element of A(S) is Max(S), and the first element of A(S) is {0}.

Proof. The last assertion is obvious because S is noetherian and it has the smallest
element 0.

We first determine the sup. It is clear that Xj ≤ Max
(
∪i∈I Xi

)
for every j ∈ I,

because S is noetherian, so for every x ∈ ∪i∈IXi there exists t ∈ Max
(
∪i∈I Xi) such

that x ≤ t.
Moreover, if Xi ≤ T for every i ∈ I, if x ∈ Max

(
∪i∈I Xi) ⊆ ∪i∈IXi, there

exists t ∈ T such that x ≤ t; this shows that Max
(
∪i∈I Xi

)
≤ T and determines

the sup. Let T = {t ∈ S | for every i ∈ I there exists xi ∈ Xi such that t ≤ xi}.
The smallest element of S belongs to T. Since S is noetherian, then Max(T ) �= ∅, so
Max(T ) ∈ A(S).

Clearly Max(T ) ≤ T ≤ Xi for every i ∈ I.
If Z ∈ A(S) and Z ≤ Xi for every i ∈ I, then Z ⊆ T, so for every z ∈ Z there

exists t ∈ Max(T ) such that z ≤ t. This shows that Z ≤ Max(T ) and determines
the inf. �

We prove now a universal property fpr A(S) :

Proposition 1.8
Assume that (S,≤) is noetherian and has a smallest element. Let (L,≤) be a

complete sup-lattice and ϕ : S → L an order-homomorphism. Then, there exists a
unique order-homomorphism ψ : A(S) → L, such that ψ ◦ ı = ϕ and ψ(sup {Xi | i ∈
I}) = sup {ψ(Xi) | i ∈ I} .
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Proof. We define ψ : A(S) → L as follows: ψ(X) = sup {ϕ(x) |x ∈ X} . The proof
is similar to that of (1.6) and may therefore be omitted. �

Let (S,≤) be an ordered set. A subset X of S is narrow if all its antichains are
finite. In particular, the empty set is narrow.

The subsets which are artinian and narrow (also called quasi-well-ordered sets)
have been extensively studied. We recall the following characterization:

Proposition 1.9

(S,≤) is artinian and narrow if and only if for every sequence {s1, s2, . . .} of

elements of S, there exist indices i < j such that si ≤ sj .

It is clear that if (S,≤) is artinian (or noetherian), then F (S) need not to have
the same property. For example, taking S = {s1, s2, . . . sn, . . .} with the trivial order,
Si = {s1, s2, . . . , si}, S′

i = S\Si, then S′
1 > S′

2 > S′
3 > . . . and S1 < S2 < S3 < . . .).

However, we show:

Proposition 1.10

If (S,≤) is artinian and narrow, then F (S) is also artinian and narrow.

Proof. According to the characterization of artinian and narrow sets quoted in (1.9),
we need to show that if {X1, X2, . . .} is any sequence in F (S), there exist indices
i < j such that Xi ≤ Xj . Assume this is not true, so if 1 < j then X1 �≤ Xj . Hence
there exists x1j ∈ X1 such that {x1j} �≤ Xj . Since X1 is finite, there exists an infinite
sequence j2 < j3 < . . . (with 1 < j2) such that x1j2 = x1j3 = . . . , say equal to some
element x1 ∈ X1.

Consider the subsequence {Xj2 , Xj3 , . . .} and for simplicity label these sets as
Xjk = Xk (for k ≥ 2). Repeating the same argument, there exists an element x2 ∈
X2 and an infinite subsequence j3 < j4 < . . . (with 2 < j3) such that {x2} �≤ Xjk

and also {x1} �≤ Xjk (for j3 ≤ k). This process may be repeated leading to an
infinite subset {x1, x2, . . .} of S, such that if i < j then xi �≤ xj . This is however
impossible, because (S,≤) is artinian and narrow. �
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II

Let S be an additive commutative monoid with zero element 0. If X,Y ⊆ S, let
X + Y = {x + y |x ∈ X, y ∈ Y } .

Assume that ≤ is a compatible order relation on S, that is, if s, t, u ∈ S then
s ≤ t implies s + u ≤ t + u .

Thus (S,≤) is a commutative ordered monoid.
The order ≤ is strict whenever s < t implies s+u < t+u (for s, t, u ∈ S); then

(S,≤) is called a strictly ordered monoid.
If (S,≤) is an ordered monoid, we define an operation on the set F (S) of finite

antichains of S, as follows:

X +
a
Y = Max(X + Y ) .

We note that X +
a

Y ∈ F (S) because Max(X + Y ) �= ∅. Now we describe the
properties of this operation. Let X,Y, Z ∈ F (S).

Proposition 2.1

X +
a
Y = Y +

a
X and X +

a
{0} = X .

Proposition 2.2

If (S,≤) is a strictly ordered monoid, then

X +
a

(Y +
a
Z) = (X +

a
Y ) +

a
Z .

Proof. Let a ∈ (X +
a

Y ) +
a

Z = Max(Max(X + Y ) + Z), so a = b + z, with b ∈
Max(X + Y ), z ∈ Z. Then, b = x + y , with x ∈ X, y ∈ Y, hence a = x + y + z.

We show that y + z ∈ Max(Y + Z). If y′ ∈ Y, z′ ∈ Z and y + z ≤ y′ + z′, then
a = x + y + z ≤ x + y′ + z′. Since X + Y is finite, there exists x1 ∈ X, y1 ∈ Y,

such that x + y′ ≤ x1 + y1 ∈ Max(X + Y ). Then a ≤ x1 + y1 + z′ and since a ∈
Max(Max(X + Y ) + Z), then a = x1 + y1 + z′, hence x + y + z = x + y′ + z′. From
y + z ≤ y′ + z′ and the fact that the order is strict, then y + z = y′ + z′. So a ∈ X+
Max(Y + Z).

If x′′ ∈ X, y′′ ∈ Y, z′′ ∈ Z are such that a = x + y + z ≤ x′′ + y′′ + z′′, with
y′′ + z′′ ∈ Max(Y + Z), then (x + y) + z ≤ (x′′ + y′′) + z′′. But X + Y is finite, so
there exists x2 ∈ X, y2 ∈ Y such that x2 + y2 ∈ Max(X +Y ) and x′′ + y′′ ≤ x2 + y2.

Therefore a = (x + y) + z ≤ (x2 + y2) + z′′.
Again, since a ∈ Max(Max(X+Y )+Z), then a = (x2+y2)+z′′ = x′′+(y′′+z′′) ∈

Max(X+ Max(Y + Z)) = X +
a

(Y +
a
Z).
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The proof of the converse is similar. �

Thus, if (S,≤) is a strictly ordered monoid, then F (S) is a commutative monoid
with the operation +

a
with zero element {0}. The canonical injection ı : S → F (S)

is a monoid-homomorphism.
We shall henceforth assume that (S,≤) is strictly ordered.

Proposition 2.3

The order on F (S) is compatible with the operation +
a
, so (F (S),≤) is a com-

mutative ordered monoid.

Proof. Let X,Y, Z ∈ F (S) be such that X ≤ Y ; we show that X +
a
Z ≤ Y +

a
Z.

Let x + z ∈ Max(X + Z), with x ∈ X, z ∈ Z. So there exists y1 ∈ Y such that
x ≤ y1, hence x + z ≤ y1 + z. Since Y + Z is finite, there exist y′ ∈ Y, z′ ∈ Z, such
that y1 + z ≤ y′ + z′ ∈Max(Y + Z). This shows the statement. �

We have also:

Proposition 2.4

If X,Y, Z ∈ F (S), then sup {X +
a
Z, Y +

a
Z} = sup {X,Y } +

a
Z.

Proof. By the preceding result, sup {X +
a
Z, Y +

a
Z} ≤ sup {X,Y } +

a
Z.

Conversely, we show that it T ∈ F (S) and X +
a

Z ≤ T, Y +
a

Z ≤ T, then
sup {X,Y } +

a
Y ≤ T, and this proves the statement.

Let v ∈ Max(X ∪Y ), z ∈ Z and v+ z ∈ Max(Max(X ∪Y )+Z). Say, v ∈ X, so
v + z ∈ X + Z. Since X + Z is finite, there exist x′ ∈ X, z′ ∈ Z, such that x′ + z′ ∈
Max(X + Z) and v + z ≤ x′ + z′.

Therefore, there exists t ∈ T such that v+z ≤ x+z ≤ t, concluding the proof. �

Proposition 2.5

Assume that 0 ≤ s for every s ∈ S.

If X,Y ∈ F (S), then

sup {X,Y } ≤ X +
a
Y.
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Proof. Let t ∈ sup {X,Y } = Max(X ∪ Y ), say t ∈ X; let y ∈ Y so 0 ≤ y, hence
t ≤ t + y ∈ X + Y ; hence there exist x′ ∈ X, y′ ∈ Y such that t + y ≤ x′ + y′ ∈
Max(X + Y ) = X +

a
Y. This proves the statement. �

III

In this section we shall define an ultrametric distance.
Let (S,≤) be an ordered set, let R be an abelian additive group, with zero,

element 0. For each f : S → R, we define the support of f by

supp(f) = {s ∈ S | f(s) �= 0} .

The zero-mapping has empty support.
Let A = {f : S → R | supp(f) is artinian and narrow} .

With pointwise addition, we see that supp(f + g) ⊆ supp(f)∪ supp(g); hence
A is an abelian additive group.

We consider the set F (S) of finite antichains of S endowed with order � ≤◦=
(≤ r)◦, which we denote by % for simplicity. Explicitly, X % Y means that for every
x ∈ X there exists y ∈ Y such that y ≤ x. It follows from (1.5) that (F (S), %) is a
sup-lattice, with sup�{X,Y } = Max≤◦(X ∪ Y ) = Min≤(X ∪ Y ).

We adjoin to F (S) an element, namely the empty set ∅, and we put ∅ % X for
every X ∈ F (S).

Now we define d : A×A → (F (S)∪ {∅}, %) by letting d(f, g) = Min≤(supp(f −
g)). We note that since f, g have artinian and narrow support, then d(f, g) ∈ F (S)∪
{∅} .

Proposition 3.1

d is an ultrametric distance on A, compatible with the addition, that is, for

f, g, h,∈ A we have:

1) d(f, g) = ∅ if and only if f = g.

2) d(f, g) = d(g, f).
3) d(f, g) % sup�{d(f, h), d(g, h)} .

4) d(f + h, g + h) = d(f, g) .
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Proof. The assertions (1), (2), (4) are trivial. We show (3) and we may as-
sume f �= g, so d(f, g) �= ∅. Let t ∈ d(f, g) = Min≤(supp(f − g)), so t ∈
supp(f − g) ⊆ supp(f − h)∪ supp(g − h), say t ∈ supp(f − h). Hence there ex-
ists u ∈ Min≤(supp(f − h)) = d(f, h) ⊆ d(f, h) ∪ d(g, h) such that u ≤ t. Again,
there exists v ∈ Min≤(d(f, h)∪d(g, h)) = sup�{d(f, h), d(g, h)} , such that v ≤ u ≤ t;
this shows the statement (3). �

We deduce the following special case. Let (S,≤) be an ordered set, let W (S)
be the set of all artinian and narrow subsets of S. We define d : W (S) × W (S) →
(F (S)∪{∅}, %), by d(X,Y ) = Min≤(X ⊕Y ) (the symmetric difference X ⊕Y is the
set of all z ∈ X ∪ Y which are not in X ∩ Y ).

Proposition 3.2

The mapping d : W (S) × W (S) → (F (S) ∪ {∅}, %) defined by d(X,Y ) =
Min≤(X ⊕ Y ), is an ultrametric distance, compatible with the symmetric

difference.

Proof. Consider the set A of all the mappings f : S → Z having artinian and narrow
support. For each X ∈ W (S), let ωX : S → Z be the characteristic function of X,
namely

ωX(s) =
{

1 if s ∈ X
0 if s �∈ X .

so ωX ∈ A for each X ∈ W (S).
If X,Y ∈ W (S) then X ∪ Y ∈ W (S), hence also X ⊕ Y ∈ W (S) and X ⊕ Y =

supp(ωX−ωY ). It follows that d(X,Y ) = Min≤(X⊕Y ) = Min≤ (supp(ωX−ωY )) =
d(ωX , ωY ). According to (3.1), d is an ultrametric distance on W (S), with values in
(F (S) ∪ {∅}, %). Clearly, d(X ⊕ Z, Y ⊕ Z) = d(X,Y ), for any X,Y, Z ∈ W (S). �

Here is a particular case. If (S,≤) is totally ordered, then W (S) is the set of
all well-ordered subsets of S. Now, if X,Y ∈ W (S), then d(X,Y ) is the smallest
element of the set X ⊕ Y.

The following result generalizes a noteworthy property of the usual ultrametric
distances:

Proposition 3.3

Let f, g, h ∈ A and assume that d(f, h)∩ d(g, h) = ∅ and d(f, h) % d(g, h) . Then

d(f, g) = d(g, h) .
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Proof. By (3.1), d(f, g) % sup� {d(f, h), d(g, h)} = d(g, h) and we need to show that
d(g, h) % d(f, g) .

Let s ∈ d(g, h) = Min≤(supp(g − h)), hence s ∈ supp(g − h). If (f − g)(s) = 0,
then s ∈ supp(f−h), so there exists t ∈ Min≤(supp(f−h)) = d(f, h) such that t ≤ s.

Again, by hypothesis, there exists u ∈ d(g, h) such that u ≤ t ≤ s and necessarily,
u = t = s ∈ d(f, h) ∩ d(g, h) = ∅, which is a contradiction.

Thus s ∈ supp(f − g) and there exists v ∈ Min≤(supp(f − g)) such that v ≤ s.

This proves that d(g, h) % d(f, g), as required. �

In particular, If (S,≤) is totally ordered, if d(f, h) ≤◦ d(g, h), then d(f, g) =
d(g, h), and this is a known property for ultrametric distances with values in a totally
ordered set.

We define now the norm ‖f‖ for every f ∈ A:

‖f‖ = d(f, 0) .

So we have at once:

Proposition 3.4

If f, g ∈ A:

1) ‖f‖ = ∅ if and only if f = 0.
2) ‖f + g‖ % sup�{‖f‖, ‖g‖} .

3) If ‖f‖ % ‖g‖ and ‖f‖ ∩ ‖g‖ = ∅, then ‖f + g‖ = ‖g‖ .

Proof. This follows routinely from (3.1) and (3.3).
For example,

‖f + g‖ = d(f + g, 0) % sup �{d(f + g, g), d(g, 0)}
= sup �{d(f, 0), d(g, 0)} = sup �{‖f‖, ‖g‖} . �

Let α : (F (S) ∪ {∅}, %) → (F (S) ∪ {∅},≤ r) be the identity mapping; we recall
that ≤ r is the opposite order to % = (� ≤◦).

We define π(f) = α(‖f‖) ∈ (F (S) ∪ {∅},≤ r) and we note the properties:

Proposition 3.5

If f, g ∈ S :
1) π(f) = ∅ if and only if f = 0.
2) inf≤r{π(f), π(g)} ≤ r π(f + g) .
3) If π(g) ≤ r π(f) and π(f) ∩ π(g) = ∅, then π(f + g) = π(g).
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We shall now assume that (S,≤) is a strictly ordered abelian additive monoid
and R is a commutative ring with unit element. Then A is a commutative ring, with
multiplication.

(f ∗ g)(s) =
∑

t+u=s

f(t)g(u)

(see [1]), called the ring of generalized power series with exponents in (S,≤) and
coefficients in R.

From the definition, supp(f ∗ g) ⊆ supp(f)+ supp(g).
In this situation, we note the following property of the distance:

Proposition 3.6
If f, g, h ∈ A, then d(f ∗ h, g ∗ h) % d(f, g) +

a
‖h‖ .

Proof. Let s ∈ d(f ∗h, g ∗h) = Min≤(supp(f ∗h−g ∗h)), so s ∈ supp(f ∗h−g ∗h) =
supp((f − g) ∗ h) ⊆ supp(f − g)+ supp(h). Hence there exists t ∈ supp(f − g), u ∈
supp(h) such that s = t + u. Then there exist t′ ∈ Min(supp(f − g)) = d(f, g) and
u′ ∈ Min(supp(h)) = ‖h‖ such that t ≥ t′, u ≥ u′, so t′ + u′ ≤ s. Again, there exist
v ∈ Min≤(d(f, g) + ‖h‖) = d(f, g) +

a
‖h‖ , such that v ≤ t′ + u′ ≤ s. This shows the

statement. �
In terms of the norm, we have:

Proposition 3.7
If f, g ∈ A, then

‖f ∗ g‖ ≤ ‖f‖ +
a
‖g‖ .

Again, we have:

Proposition 3.8
If f, g ∈ A, then

π(f) + π(g) ≤ r π(f ∗ g) .

In the special case when (S,≤) is totally ordered, π(f) is the smallest element
of supp(f) and we have:

π(f + g) ≥ inf {π(f), π(g)} ,

π(f ∗ g) ≥ π(f) + π(g) .

If moreover, R is a domain, then A is a domain and π(f ∗ g) = π(f) + π(g) .
Therefore, π may be extended to a valuation of the field of fractions of A (see

[2]).
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