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Abstract

This paper exhibits, in addition to the direct product, six further associative
products of two inverse semigroups, each of which perhaps has a claim to be
called a semidirect product; and it poses the problem of whether there are further
such products.

1. Introduction

The direct product of two inverse semigroups is an inverse semigroup but, what has
been termed the semidirect product of two semigroups, is, when the semigroups are
inverse, in general not inverse.

This semidirect product is defined, for arbitrary semigroups, as follows: let S

and T be semigroups and let θ : S −→ End T be an antimorphism of S into the
endomorphism semigroup of T . (We shall throughout use θ to denote an antimor-
phism.) If s ∈ S denote t(sθ) by ts . Then the semidirect product of T and S,
in that order, with structure map θ, consists of the set T × S equipped with the
product

(t, s)(t1, s1) = (tts1, ss1). (A)

This product will be denoted by T θ ×A S.
In Preston [3], Theorem 6, (following Nico [1], Theorem 2.6) it is shown that

T θ ×A S is an inverse semigroup if and only if (i) S and T are inverse semigroups
and (ii) Sθ ⊆ Aut T , the automorphism group of T .
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In Preston [3] we also showed that, from a certain class of possibilities, the only
associative product on the set T × S, associative for all choices of S and T and all
choices of θ, is the product T θ×A S that we have just defined. We begin by looking
at a similar class of possibilities, but this time considering only inverse semigroups
S and T . We find six associative products, three of which can be constructed, by a
dual procedure, from the other three. We call these products of types A,B, and C,
and their duals products of types A′, B′, and C ′, respectively. The product defined
in equation (A) is the type A product. When θ maps each element of S to the
identity mapping of T , then all six types of product reduce to the direct product.

Conditions for a type A product to be regular were established in Preston [4],
Proposition 1. A dual result holds for type A′ products. It is straightforward to
show that for semidirect products of types B and C, and their duals, the resulting
semigroup is regular if and only if it is inverse; this can occur if and only if Sθ ⊆
Aut T . In this event the products of types A,B, and C coincide, as do the products
of types A′, B′, and C ′.

A final comment should be made about the six types of semidirect product
introduced. The products arise from solutions to equations (1), (2), and (3), listed
in Section 2, below. These are formally the same as the equations (2), (3), and (4)
of Preston [3]. Then we were seeking solutions that held in any semigroup. Here we
are seeking solutions that hold in any inverse semigroup. In the semigroup situation
we found all solutions. In the present inverse semigroup situation I have been unable
to ascertain whether there are further solutions yet to be found.

A further comment about this problem will be made at the end of the paper.

2. Some semidirect products of inverse semigroups

We use an approach parallel to that in Preston [3] and consider a class of rules of
formation of a product of a pair of inverse semigroups. We find six types of product
each of which always results in the product being a semigroup.

Denote by FI2 the free inverse semigroup on the two element set {x1, x2}, and
by FI1

2 the semigroup resulting from adjoining an identity element 1. If S is any
inverse semigroup and r, s ∈ S and u = u(x1, x2) ∈ FI2 , denote by u(r, s) the
element of S obtained from u by replacing each occurrence of x1 in u by r, each
occurrence of x−1

1 in u by r−1, each occurrence of x2 in u by s and each occurrence
of x−1

2 in u by s−1, and evaluating the resulting product in S. Let T be an inverse
semigroup and let θ : S −→ End T be an antimorphism. If u ∈ FI2 then, for
all t in T , let tu(r,s) denote t((u(r, s))θ), while for u = 1 take tu to equal t. The
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antimorphism θ involved, suppressed in this notation, will be clear from the context.
Now let u, v ∈ FI1

2 and define a product on the set T × S by the rule

(t1, s1)(t2, s2) = (tu(s1,s2)
1 t

v(s1,s2)
2 , s1s2) (∗)

and denote this system by (T × S, θ, u, v).
The products of these systems (T × S, θ, u, v) form the class of products we

consider.
We wish to discover for which choices of u and v the product (T × S, θ, u, v)

is a semigroup for all inverse semigroups S and T , for all associated antimorphisms
θ. We begin with a lemma, and for this it will be convenient to use Scheiblich’s [5]
representation of the elements of a free inverse semigroup with identity on a set X.
We denote this semigroup by FI1

X .
The representation is in terms of FGX , the free group on X, which we take to

consist of all reduced finite words in the alphabet X ∪X−1, where X−1 = {x−1|x ∈
X}, where X and X−1 are disjoint, and where x �−→ x−1, x ∈ X, is a bijection of
X upon X−1. A word here is said to be reduced if it contains no subwords xx−1 or
x−1x for x in X. If g ∈ FGX then we denote by ĝ the set of all initial segments of
g, including both the empty word 1 and the word g itself. Thus

ĝ = {h| g = hk, h, k ∈ FGX and hk is reduced as it stands}.
The free inverse semigroup FI1

X may then be defined (Scheiblich) as follows. First
define the set X by X := {A| A ⊆ FGX , A is finite and non-empty, g ∈ A implies
ĝ ⊆ A}. Then

FI1
X := {(A, g)| A ∈ X , g ∈ A}

equipped with the product

(A, g)(B, h) = (A ∪ gB, gh).

The canonical embedding of X in FX1
X is then x �−→ (x̂, x), x ∈ X. The

semilattice of idempotents of FI1
X is

{(A, 1)| A ∈ X}
and

(A, g)−1 = (g−1A, g−1).

We can now state our lemma.

Lemma 2.1
Let U = FI1

X , let E be the semilattice of idempotents of U , and let T =
E × FGX , the direct product. Let s = (A, g) be an element of U and define θ by

sθ :

{
(e, h) �−→ (ses−1, ghg−1), e ∈ E \ 1, h ∈ FGX

(1, h) �−→ (1, ghg−1), h ∈ FGX .

Then θ : U −→ End T is an antimorphism.
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Proof. A straightforward calculation suffices. �

Theorem 2.2
(T × S, θ, u, v) is a semigroup for all inverse semigroups T and S and all asso-

ciated θ if and only if u and v satisfy the following equations for all S and for all
s1, s2, s3 ∈ S:

u(s1s2, s3)u(s1, s2) = u(s1, s2s3) (1)

u(s1s2, s3)v(s1, s2) = v(s1, s2s3)u(s2, s3) (2)

v(s1s2, s3) = v(s1, s2s3)v(s2, s3) (3)

Proof. We easily show that the product in (T × S, θ, u, v) is associative if and only
if, for all s1, s2, s3 in S and for all t1, t2, t3 in T ,

t
u(s1s2,s3) u(s1,s2)
1 t

u(s1s2,s3) v(s1,s2)
2 t

v(s1s2,s3)
3

= t
u(s1,s2s3)
1 t

v(s1,s2s3) u(s2,s3)
2 t

v(s1,s2s3) v(s2,s3)
3 (4)

It is evident, therefore, that if equations (1), (2) and (3) hold, then (T × S, θ, u, v)
is associative.

To prove the converse we make a special choice of T, S and θ, namely as in
Lemma 1 with |X| > 1, and show that, with this choice, equations (1), (2), and (3)
hold. Because, in Lemma 1, U is any free inverse semigroup, it follows that if u and
v are chosen so that (1), (2) and (3) hold in U , then they also hold in any inverse
semigroup S.

First take t2 = t3 = 1. Equation (4) then reduces to

t
u(s1s2,s3)u(s1,s2)
1 = t

u(s1,s2s3)
1 . (5)

Since U = FI1
X , we may write u(s1s2, s3)u(s1, s2) = (C1, g1), and u(s1, s2s3) =

(C2, g2), say. Take t1 = ((B, 1), h). Then (5) is the same as

((C1, g1) (B, 1) (C1, g1)−1, g1hg
−1
1 )

= ((C2, g2) (B,1) (C2, g2)−1, g2hg
−1
2 ).

So, equating components,

((C1 ∪ g1B, 1) = (C2 ∪ g2B, 1) (6)

and
g1hg

−1
1 = g2hg

−1
2 (7)

Since (5) holds for all t1 , equation (7) holds for all h. Thus g−1
1 g2 belongs to the

centre of FGX . Since |X| > 1, the centre of FGX is trivial. Hence g1 = g2.
Now take B = {1}, and recall that in the Scheiblich representation, g1 ∈ C1

and g2 ∈ C2 . Thus, from (6), we get C1 = C2 . Hence equation (1) holds with U
any free inverse semigroup FI1

X , with |X| > 1.
The arguments to show that equations (2) and (3) hold are similar. �



Products of inverse semigroups 155

I have been unable to find a complete solution to equations (1), (2), and (3).
By straightforward verification we easily check that six pairs of solutions listed in
the next theorem are, in fact, solutions.

Theorem 2.3

The following set of seven choices for the ordered pairs (u, v) of words u =
u(x1, x2) and v = v(x1, x2) satisfy the equations (1), (2), and (3).

(A) (1, x1) (A′) (x−1
2 , 1)

(B) (x1x2x
−1
2 x−1

1 , x1) (B′) (x−1
2 , x−1

2 x−1
1 x1x2)

(C) (x1x2x
−1
2 x−1

1 , x1x2x
−1
2 ) (C ′) (x−1

2 x−1
1 x1, x

−1
2 x−1

1 x1x2)

(D) (1,1) (D′) (1.1).

The solutions have been listed in the above fashion in order to point to a duality.
The solution (D), corresponding to the direct product, is the same as (D′): (D) is
self dual. The solutions (A), (B), and (C) have as duals, in a sense made precise
below, the solutions (A′), (B′), and (C ′), respectively; and vice versa.

We define the dual of a pair of words (u(x1, x2), v(x1, x2)) to be the pair of
words (v(x−1

2 , x−1
1 ), u(x−1

2 , x−1
1 )). Each pair is then the dual of the other pair. In

this sense, as already stated, (A) and (A′), (B) and (B′), (C) and (C ′), are dual
pairs of words.

The connection between dual pairs of solutions of equations (1), (2), and (3) is
elucidated in the following theorem. In particular it shows that any solution pair is
always accompanied by a dual solution.

Theorem 2.4

Let S and T be inverse semigroups, let θ : S −→ End T and let (u, v) and

(u′, v′) be dual pairs of words. Denote the products determined by equation (∗) for

(T ×S, θ, u, v) and (T ×S, θ, u′, v′) by ◦ and ◦′, respectively. If (t, s) ∈ T ×S denote

(t−1, s−1) by (t, s)′. Then for A,B ∈ T × S,

A ◦B = (B′ ◦′ A′)′.

Hence ◦ is associative if and only if its dual ◦′ is associative.
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Proof. Let A = (t1, s1) and B = (t2, s2). Then

A ◦B = (tu(s1,s2)
1 t

v(s1,s2)
2 , s1s2)

= (tv
′(s−1

2 ,s−1
1 )

1 t
u′(s−1

2 ,s−1
1 )

2 , s1s2)

from the definition of dual pairs,

= (((t−1
1 )v

′(s−1
2 ,s−1

1 ))−1 ((t−1
2 )u

′(s−1
2 ,s−1

1 ))−1, s1s2),

since inverses are mapped to inverses under inverse semigroup morphisms,

= (((t−1
2 )u

′(s−1
2 ,s−1

1 ) (t−1
1 )v

′(s−1
2 ,s−1

1 ))−1, s1s2)

= ((t−1
2 )u

′(s−1
2 ,s−1

1 ) (t−1
1 )v

′(s−1
2 ,s−1

1 ), s−1
2 s−1

1 )′

= ((t−1
2 , s−1

2 ) ◦′ (t−1
1 , s−1

1 ))′

= (B′ ◦′ A′)′.

Suppose that ◦ is associative. Then

(A′ ◦B′) ◦′ C ′ = (B ◦A)′ ◦′ C ′ = (C ◦ (B ◦A))′

= ((C ◦B) ◦A)′

= A′ ◦′ (B′ ◦′ C ′).

so ◦′ is associative. Similarly when ◦′ is associative then so also is ◦. �

3. Context of problem

The interest in finding associative products of the kind discussed here arose from
looking at possible definitions of wreath products for inverse semigroups, as used, for
example, in a special case, by Mario Petrich [2], p.226. I was looking for a framework
that would enable a wreath product to be defined abstractly, without working with
representations of the inverse semigroups involved, and presented a survey of the
situation in a lecture at the Second Australian Mathematics Convention, Sydney
University, 11-15 May, 1981. A possible candidate was the subset M = {(tss−1

, s)
|(t, s) ∈ T × S} of Tθ × S, endowed with the product ◦B or the product ◦C , which
happen to coincide on the set M , and make M an inverse subsemigroup of both
T θ ×B S and T θ ×C S. The mapping (t, s) �−→ (tss

−1
, s) from T θ ×A S, is a

morphism onto M , with the above product, while for T θ ×B S and T θ ×C S, the
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morphism is a retraction. The existence of dual associative products was discovered
later and discussed in a seminar at Monash University in May 1982. In 1988, at
the Argonne National Laboratory, Illinois, with the generous help of Dr Ewing L.
Lusk, I set up a program to check by computer whether a pair of words u(x, y) and
v(x, y) satisfied equations (1), (2) and (3) of Theorem 2.2. The program allowed
me to check systematically all possible choices for u and v of lengths ≤ 2, ≤ 3, etc.
Unless a slip was made, the results showed that no choices of u, v other than those
listed in Theorem 2.2, for both u and v of length less than 12, would work.
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