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Abstract

In this paper we investigate conditions on a semiring S such that there are
semimodules overS with bases of different length. This includes and generalizes
corresponding results on rings, in particular one due to P. Dubreil.

§ 1. Introduction

It is a basic fact for many areas of mathematics that for every not necessarily com-
mutative field K each K-module is free and has a unique rank. However, considering
free R-modules (RM,+) over an arbitrary ring R with identity, the number of ele-
ments in a basis of (RM,+) may be unique or not, depending on further properties
of R. The first results concerning this question are due to J. Dieudonné, P. Dubreil,
and C. J. Everett (cf. [3] – [6]), and we also refer to the comprehensive paper [2] by
P. M. Cohn and to further references given there.

In this paper we investigate the same problem for semirings and free semi-
modules over semirings (cf. § 2), which have become more and more important
in different branches of theoretical computer science (cf. [7]). Because of the lack
of tools available for rings, we mostly have to use other methods in our context.
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Moreover, since each free S-semimodule over a ring S is a free S-module, all our
statements contain corresponding ring-theoretical results. In some cases, also the
latter are new (cf. Thms. 4.5, 4.7, 4.8 and Remark 5.2). In particular, in Thm. 5.3
we generalize a criterion for the uniqueness of the rank of free R-modules given by
J. Dieudonné and P. Dubreil to free S-semimodules.

§ 2. Semimodules over semirings

Let S = (S,+, ·) be a semiring, which means in general that (S,+) and (S, ·) are
arbitrary semigroups, connected by the usual distributive laws a(b+c) = ab+ac and
(b+c)a = ba+ca for all a, b, c ∈ S. Here we only consider semirings for which (S,+)
is commutative and has a neutral element 0, called the zero of (S,+, ·). Moreover,
we also assume that 0 is (multiplicatively) absorbing, defined by 0a = a0 = 0 for all
a ∈ S, and that (S, ·) has a neutral element 1, called the identity of (S,+, ·).
Definition 2.1. Let H = (H,+) be a commutative semigroup with a neutral
element o and S = (S,+, ·) be a semiring as described above. Then (SH,+) is
called a (left) S-semimodule iff ah ∈ H is defined for all (a, h) ∈ S × H such that
a(g +h) = ag +ah, (a+ b)h = ah+ bh, and (a · b)h = a(bh) holds for all a, b ∈ S and
g, h ∈ H. We further assume that (SH,+) is unitary and 0-true, defined by 1h = h
and 0h = o for all h ∈ H, where the latter implies ao = o for all a ∈ S.

For each semiring S and m,n ∈ N = {1, 2, . . .} we denote by Mm,n(S) the set of
all m × n-matrices and by Mat(S) =

⋃
m,n∈N

Mm,n(S) the set of all finite matrices
over S. With the usual operations, (Mat(S),+, ·) is a partial (2,2)-algebra, satisfying
both associative and the usual distributive laws whenever one side is defined.

Definition 2.2. a) A matrix A ∈ Mm,n(S) is called right invertible in Mat(S)
iff there exists X ∈ Mn,m(S) satisfying AX = Em, where Em denotes the identity
matrix in Mm,m(S). Dually, A is called left invertible iff Y A = En holds for some
Y ∈ Mn,m(S). Clearly, if A ∈ Mm,n(S) is (right and left) invertible, then AB = Em

and BA = En holds for a unique matrix B ∈ Mat(S), called the inverse of A.

b) A matrix A ∈ Mm,n(S) is called (multiplicatively) right cancellable in Mat(S)
iff

(y1, . . . , ym)A = (z1, . . . , zm)A =⇒ (y1, . . . , ym) = (z1, . . . , zm)

holds for all (y1, . . . , ym), (z1, . . . , zm) ∈ M1,m(S), which is clearly equivalent with
Y A = ZA =⇒ Y = Z for all Y,Z ∈ Mr,m(S) and each r ∈ N.

It is obvious that a left invertible matrix A ∈ Mat(S) is left cancellable in
Mat(S), and that A is left invertible and right cancellable iff A is invertible in
Mat(S).
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Definition 2.3. Let (SH,+) be a (in the following always unitary and 0-true)
S-semimodule and ∅ 
= U ⊆ H. An element h ∈ H is called a linear combination
of U iff it is a formal infinite sum of suitable elements auu, i. e. h =

∑o
u∈U auu for

au ∈ S such that au = 0 for almost all u ∈ U. We call U weakly linearly independent
iff o =

∑o
u∈U auu implies au = 0 for all u ∈ U , and strongly linearly independent iff∑o

u∈U auu =
∑o

u∈U buu implies au = bu for all u ∈ U . Further, U is said to be a
generating set of (SH,+) iff H = {∑o

u∈U auu | au ∈ S} holds, and a basis of (SH,+)
iff U is a strongly linearly independent generating set.

An S-semimodule (SH,+) which has a basis U will be called a free S-
semimodule in the following. (For a characterization of this concept by universal
properties, even in a more general setting, we refer to [8], § 3.) If (SH,+) has a
basis U and |U | is the cardinal number of U , then (SH,+) is said to be a free S-
semimodule of rank |U |. Note that a free S-semimodule (SH,+) is cancellative or
an S-module iff (S,+, ·) is additively cancellative or a ring, respectively, and that
all our concepts and statements apply directly to the latter case.

Clearly, each semiring (S,+, ·) may be considered as an S-semimodule (SS,+)
with U = {1} as a basis, where ah is defined by the multiplication in S. Moreover,
for each set I, the direct sum of |I| copies of (SS,+) is a free S-semimodule of rank
|I|.

Proposition 2.4

Let (SH,+) be a free S-semimodule with a basis U = {u1, . . . , un}. To

each subset {v1, . . . , vm} ⊆ H corresponds a matrix A ∈ Mm,n(S) according to

(v1, . . . , vm)T = A(u1, . . . , un)T . Then we have

a) {v1, . . . , vm} is a generating set of (SH,+) iff A is left invertible in Mat(S),

b) {v1, . . . , vm} is strongly linearly independent iff A is right cancellable in Mat(S),

c) {v1, . . . , vm} is a basis of (SH,+) iff A is invertible in Mat(S).

Proof. Obviously, {v1, . . . , vm} is a generating set iff in Mat(S) the equation

(2.1) (x1, . . . , xm)A = (c1, . . . , cn)

has at least one solution (x1, . . . , xm) for each (c1, . . . , cn) ∈ M1,n(S), which in
turn holds iff there exists a matrix X ∈ Mn,m(S) satisfying XA = En. For
b), {v1, . . . , vm} is strongly linearly independent iff (2.1) has at most one solution
(x1, . . . , xm) for each (c1, . . . , cn) ∈ M1,n(S), i. e. iff A is right cancellable in Mat(S).
From a) and b) one obtains c), since each left invertible and right cancellable matrix
A ∈ Mat(S) is invertible and conversely. �
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§ 3. Semirings with the property R(m,n)

Definition 3.1. A semiring S is said to have the property R(m,n) (or to be an
(m,n)-semiring) for m,n ∈ N iff there exists a left S-semimodule (SH,+) which has
a basis U = {u1, . . . , un} and a basis V = {v1, . . . , vm}.

Theorem 3.2

A semiring S satisfies R(m,n) for some m 
= n iff one of the following statements

holds:

a) There are matrices A ∈ Mm,n(S) and B ∈ Mn,m(S) such that AB = Em and

BA = En, in other words, there are elements ai,k and bk,i in S satisfying the

equations

(3.1)
∑n

k=1 ai,kbk,j = δi,j (i, j = 1, . . . ,m),
∑m

i=1 bk,iai,� = δk,� (k, # = 1, . . . , n).

Henceforth we call such a subset {ai,k, bk,i} an (m,n)-system of S.

b) The class Fn(S) of all free left S-semimodules of rank n coincides with the class

Fm(S) of all free left S-semimodules of rank m.

c) The statement b) formulated for right S-semimodules instead of left ones.

Proof. From Prop. 2.4 we obtain R(m,n) ⇐⇒ a), and also a) =⇒ b), since each
basis {u1, . . . , un} provides a basis {v1, . . . , vm} by (v1, . . . , vm)T = A(u1, . . . , un)T .

Finally, b) =⇒ R(m,n) is clear and the left-right-symmetry of a) implies c). �

Corollary 3.3

Let S be a semiring. Then the rank of each free (left or right) S-semimodule is

uniquely determined iff each invertible matrix A ∈ Mat(S) is a square one. Moreover,

if S has this property, the same holds for each subsemiring of S.

Proposition 3.4

Let S be a semiring satisfying R(m,n) for at least one pair m 
= n. Then there

is a smallest number m0 such that R(m0, k) holds for S and for at least one k > m0,

and among those k again a smallest one, say n0. Moreover, all non-trivial pairs

(m′, n′) ∈ N × N such that S satisfies R(m′, n′) are given by

(3.2) m′, n′ ≥ m0 and m′ ≡ n′ modulo n0 − m0.
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Proof. The relation σ on N defined by m′ σ n′ iff R(m′, n′) holds for S is reflexive,
symmetric and by Thm. 3.2 b) transitive, and R(m′, n′) implies R(m′ + k, n′ + k)
for each k ∈ N. So σ is a congruence on (N,+), which yields (3.2) by well known
facts. �

In order to obtain semirings satisfying R(m,n) for any pair m 
= n (and in par-
ticular those which are not rings), we start with the polynomial semiring Γ[xi,k, yk,i]
in the 2mn non-commutative indeterminates xi,k and yk,i (i = 1, . . . ,m; k =
1, . . . , n) over a semiring Γ. Denoting by U the free monoid with e as identity
over the set {xi,k, yk,i}, we may describe Γ[xi,k, yk,i] as the free Γ-semimodule with
the basis U, established with the multiplication

(3.3) (
∑o

u∈U αuu)(
∑o

v∈U βvv) =
∑o

w∈U (
∑

uv=w αuβv)w.

As usual, we identify each α ∈ Γ with αe ∈ Γ[xi,k, yk,i] such that Γ is a subsemiring
of Γ[xi,k, yk,i]. Let ηm,n be the congruence on Γ[xi,k, yk,i] generated by the pairs

(3.4) (
∑n

k=1 xi,kyk,j , δi,j), (
∑m

i=1 yk,ixi,�, δk,�)

according to (3.1). Then the congruence class semiring Tm,n = Γ[xi,k, yk,i]/ηm,n,

consisting of the classes [f ]ηm,n
for f ∈ Γ[xi,k, yk,i], is a (m,n)-semiring according

to the next theorem. We shall prove it in two steps in the following sections and
note that the elegant proof of corresponding statements for rings in [2], § 5 is not
applicable to semirings since it depends essentially on the use of differences.

Theorem 3.5

For each semiring Γ and m 
= n let Tm,n = Γ[xi,k, yk,i]/ηm,n be the congruence

class semiring introduced above. Then α ≡ β (ηm,n) implies α = β for all α, β ∈ Γ.

Hence Γ may be considered as a subsemiring of Tm,n, which is then generated by Γ
and the (m,n)-system consisting of the classes [xi,k]ηm,n

and [yk,i]ηm,n
. Moreover,

these classes are pairwise distinct and different from the elements of Γ.

Using these results which will be proved later we obtain:

Theorem 3.6

Let S be a semiring which is generated by a subsemiring Γ and an (m,n)-
system {ai,k, bk,i} such that αai,k = ai,kα and αbk,i = bk,iα hold for all α ∈ Γ
and all elements of {ai,k, bk,i}. Then there exists a unique homomorphism ϕ from

(Tm,n,+, ·) = (Γ[xi,k, yk,i]/ηm,n,+, ·) onto (S,+, ·) which satisfies

(3.5) ϕ([xi,k]ηm,n) = ai,k, ϕ([yk,i]ηm,n) = bk,i, and ϕ(α) = α for all α ∈ Γ.
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Proof. There is a unique homomorphism ψ of Γ[xi,k, yk,i] onto S satisfying ψ(xi,k) =
ai,k, ψ(yk,i) = bk,i, and ψ(α) = α. Due to (3.1), the congruence λ on Γ[xi,k, yk,i]
corresponding to ψ contains all pairs (3.4), which yields ηm,n ⊆ λ. This implies our
assertion by well known facts on universal algebras, cf. e. g. [1], Cor. II.3.8. �

Definition 3.7. a) With respect to Thm. 3.6 we call the congruence class semiring
Tm,n = Γ[xi,k, yk,i]/ηm,n of Γ[xi,k, yk,i] the free (m,n)-semiring over Γ.

b) Let N0 be the semiring of non-negative integers and Z the ring of integers,
and denote by ηm,n and 1m,n the congruences on N0[xi,k, yk,i] and Z[xi,k, yk,i] gen-
erated by (3.4). Then we call N0[xi,k, yk,i]/ηm,n the universal (m,n)-semiring and
Z[xi,k, yk,i]/1m,n the universal (m,n)-ring. This is justified by the following state-
ments, which are proved as above.

Theorem 3.8

a) Let S be a semiring with the property R(m,n) for some m 
= n and

{ai,k, bk,i} ⊆ S an (m,n)-system. Then there is a unique semiring homomorphism

ϕ of (N0[xi,k, yk,i]/ηm,n,+, ·) into (S,+, ·) which satisfies

(3.6) ϕ([xi,k]ηm,n
) = ai,k, ϕ([yk,i]ηm,n

) = bk,i, and ϕ(1) = 1.

b) The corresponding statement holds for each ring S with the property R(m,n)
for some m 
= n and the ring Z[xi,k, yk,i]/1m,n.

Remark 3.9. Applying Thm. 3.8 a) to Z[xi,k, yk,i]/1m,n as a semiring S with
the (m,n)-system {ai,k, bk,i} = {[xi,k]�m,n , [yk,i]�m,n}, we obtain a homomorphism
ϕ of N0[xi,k, yk,i]/ηm,n into Z[xi,k, yk,i]/1m,n determined by (3.6). However, we
do not know so far whether this homomorphism is injective, which is the case iff
N0[xi,k, yk,i]/ηm,n is additively cancellative. We prove this replacing N0 by an addi-
tively cancellative semiring Γ for later use: Such a semiring Γ is embeddable into a
smallest ring, consisting of all α−β for α, β ∈ Γ, called the difference ring D(Γ) of Γ.

Clearly, R = D(Γ)[xi,k, yk,i] is the difference ring of T = Γ[xi,k, yk,i]. Let ηm,n and
1m,n be the congruences on T and R generated by (3.4). Then, obviously, T/ηm,n

can be embedded into R/1m,n iff the trivial inclusion ηm,n ⊆ 1m,n ∩ (T × T ) holds
with equality. From a result on difference rings of semirings (cf. [7], Satz II.7.1) it fol-
lows that this is the case iff T/ηm,n is additively cancellative. (To illustrate the other
case, e. g. the congruences η on N0 and 1 on Z generated by (2, 4) ∈ N0 ×N0 satisfy
η ⊂ 1n(N0 × N0).) In fact, the above homomorphism ϕ is injective for m = 1 < n

due to Thm. 4.4, but we could not decide this question for 1 < m < n (cf. § 5).
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§ 4. The case m = 1

From Thm. 3.2 a) we obtain that a semiring S has the property R(1, n) for some
n ≥ 2 iff S contains an (1, n)-system {a1, . . . , an, b1, . . . , bn} defined by

(4.1) a1b1 + . . . + anbn = 1 and bjai = δj,i.

At first we investigate, for each n ≥ 2, the free (1, n)-semiring Γ[xi, yi]/η1,n over an
arbitrary semiring Γ. Let (H, ·) be the semigroup generated by x1, . . . , xn, y1, . . . , yn,
an absorbing element O and an identity e, subjected to the defining equations

(4.2) yixi = e, yjxi = O for i 
= j (i, j = 1, . . . , n).

Obviously, each element u ∈ U = H \ {O} has a unique presentation u = P (x)Q(y),
where P (x) is an element of the free monoid generated by {x1, . . . , xn} with
e as identity, and Q(y) an element of the free monoid over {y1, . . . , yn}. Let
Γ(H) = (Γ(H),+, ·) be the contracted semigroup semiring of H over Γ, which may
be described as the free Γ-semimodule (ΓH,+) with the basis U = H\{O} and with
the multiplication (3.3), where the absorbing element O of (H, ·) is identified with
the zero o =

∑o
u∈U 0u of (ΓH,+). We further identify each α ∈ Γ with αe ∈ Γ(H).

Then (Γ,+, ·) is a subsemiring of (Γ(H),+, ·) with the common identity 1 = 1e = e

and αu = uα for all α ∈ Γ and u ∈ U , the latter as a consequence of (3.3). (For this
concept and more general ones concerning semialgebras over semirings we refer to
[8], and [7], V.2. and V.3.) Now the following statement is obvious:

Lemma 4.1

Let Γ(H) be the contracted semigroup semiring of H over Γ. Then the free (1, n)-
semiring Γ[xi, yi]/η1,n over Γ can be identified with the congruence class semiring

Γ(H)/ηn, where ηn is the smallest congruence on Γ(H) satisfying

(4.3) x1y1 + . . . + xnyn ≡ e.

In the following, f ≡ g always refers to the congruence ηn in Γ(H). Further, for
each monomial element αu = αP (x)Q(y) ∈ Γ(H), the number #x(αu) = #x(P (x))
of elements xi occurring in P (x) is called the x-degree of αu and #y(αu) = #y(Q(y))
its y-degree, and d(αu) = #x(αu)− #y(αu) the degree difference of αu. In particular,
each f ∈ Γ(H) can be decomposed with respect to degree differences according to
f =

∑o
u∈U αuu =

∑o
δ∈Z

f (δ), where each f (δ) is the formal infinite sum of all αuu

satisfying d(αuu) = δ.

Lemma 4.2

For all f, g ∈ Γ(H) decomposed as described above, f ≡ g is equivalent to

f (δ) ≡ g(δ) for all δ ∈ Z.
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Proof. Since ηn is generated by (4.3), f ≡ g holds iff there exists a sequence
f = f0, f1, . . . , fr = g in Γ(H) such that for each 1 ∈ {0, . . . , r − 1} one either has

(4.4) f� = s�t� + h� and f�+1 = s�(
∑n

i=1 xiyi)t� + h�

or f� = s�(
∑n

i=1 xiyi)t� + h� and f�+1 = s�t� + h� with elements s�, t�, h� ∈ Γ(H).
Due to (4.2), all monomials occurring in s�t� and in s�(

∑n
i=1 xiyi)t� have the same

degree difference, which yields f (δ) ≡ g(δ) for each δ ∈ Z by decomposing all f�. �

Proposition 4.3

For all α, β ∈ Γ, from α ≡ β in Γ(H) it follows α = β. Hence Γ may be

considered as a subsemiring of Γ(H)/ηn = Γ[xi, yi]/η1,n = T1,n. Moreover, this

semiring satisfies also the other statements of Thm. 3.5 for the case m = 1.

Proof. For α ≡ β there is a sequence α = f0, f1, . . . , fr = β in Γ(H) as described in
the proof above. Adding more steps if necessary, we may further assume that s� and
t� are monomials for each 1, say s� = γ�P�(x)Q′

�(y) and t� = P ′
�(x)Q�(y). However,

from (4.2) we get Q′
�(y)(

∑n
i=1 xiyi)P ′

�(x) = Q′
�(y)P ′

�(x) iff Q′
�(y) 
= e or P ′

�(x) 
= e,
which yields f� = f�+1. Canceling those superfluous steps, we may replace (4.4) and
its converse by

(4.5) {f�, f�+1} = {γ�P�(x)Q�(y) + h�, γ�P�(x)(
∑n

i=1 xiyi)Q�(y) + h�}.
By Lemma 4.2, d(α) = 0 implies d(αuu) = #x(αuu)−#y(αuu) = 0 for each monomial
αuu occurring in any f�, and we denote by k − 1 the maximal x-degree #x(αuu) for
all these monomials. Now we are ready to prove

(4.6) yk
1f�x

k
1 = α for each 1 ∈ {0, . . . , r},

which implies α = yk
1f�x

k
1 = yk

1βxk
1 = β. Since (4.6) clearly holds for 1 = 0, we go

on by induction and compare α = yk
1f�x

k
1 with yk

1f�+1x
k
1 using (4.5). By the choice

of k, (4.2) implies yk
1γ�P�(x)Q�(y)xk

1 = γ�σ� = yk
1γ�P�(x)(

∑n
i=1 xiyi)Q�(y)xk

1 and
yk
1h�x

k
1 = τ� for some σ�, τ� ∈ Γ. So we get from (4.5) that α = yk

1f�x
k
1 and

yk
1f�+1x

k
1 equal γ�σ� + τ�. Thus we have proved the first assertion of Prop. 4.3.

This, Lemma 4.2 and (4.2) yield the statements concerning the classes [xi] and [yi]
in Thm. 3.5 for the case m = 1. �

Theorem 4.4

Let T1,n = Γ[xi, yi]/η1,n = Γ(H)/ηn be the free (1, n)-semiring over a semiring

Γ. Then T1,n is additively cancellative iff the same holds for Γ. If this is the case,

by Remark 3.9 there exists an injective homomorphism ϕ of T1,n into the free (1, n)-
ring D(Γ)[xi, yi]/11,n over the difference ring D(Γ) of Γ satisfying ϕ([xi]η1,n) =
[xi]�1,n , ϕ([yi]η1,n) = [yi]�1,n and ϕ(α) = α for each α ∈ Γ.
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Proof. Since Γ is a subsemiring of T1,n by Prop. 4.3, it is enough to show that T1,n is
additively cancellative if Γ is assumed to be so. We go by contradiction and disprove

(4.7) h + f ≡ h + g and f 
≡ g for some h, f, g ∈ Γ(H).

We denote by M the set of all monomials ξuu 
= 0 occurring in h, f or g. According to
Lemma 4.2 we may assume that all these monomials have the same degree difference,
say δ. We further use that yifxj ≡ yigxj for all i, j ∈ {1, . . . , n} implies f ≡ g as
a consequence of (4.3). Hence there is at least one pair (ik, jk) such that yikfxjk 
≡
yikgxjk holds, which implies yikhxjk 
≡ 0 by (4.7). We apply this k times where k is
the maximum of the degrees #x(ξuu) and #y(ξuu) for all ξuu ∈ M . Then there are
ik, ik−1, . . . , i1 such that

(4.8) Q(y)(h + f)P (x) ≡ Q(y)(h + g)P (x) and Q(y)fP (x) 
≡ Q(y)gP (x)

holds for Q(y) = yi1 . . . yik and P (x) = xjk . . . xj1 . Since all ξuu ∈ M have the
same degree difference δ, one easily checks that each Q(y)ξuuP (x) 
= 0 equals either
ξuxjδ . . . xj1 for δ > 0 or ξu for δ = 0 or ξuyi1 . . . yi|δ| for δ < 0. Hence (4.8) reads as

αxjδ . . . xj1 + βxjδ . . . xj1 ≡ αxjδ . . . xj1 + γxjδ . . . xj1 and βxjδ . . . xj1 
≡ γxjδ . . . xj1

for δ > 0, which yields α+β ≡ α+γ and β 
≡ γ for some α, β, γ ∈ Γ by multiplication
with yj1 . . . yjδ from the left. The same follows for δ ≤ 0. By Prop. 4.3, this yields
α + β = α + γ and β 
= γ, contradicting that (Γ,+) was assumed to be cance-
llative. �

With similar considerations one can prove:

Theorem 4.5

Let T1,n = Γ[xi, yi]/η1,n be the free (1, n)-semiring over a semiring Γ. Then each

congruence κ on T1,n is either the identical congruence ιT1,n or satisfies κ∩(Γ×Γ) 
=
ιΓ. Hence each (1, n)-semiring S generated by Γ and an (1, n)-system {ai, bi} such

that αai = aiα and αbi = biα hold for all i ∈ {1, . . . , n} and α ∈ Γ is isomorphic to

T1,n and thus also a free (1, n)-semiring.

We close this section dealing with further and somewhat curious properties of
semirings (and rings) satisfying R(1, n).

Lemma 4.6

Let S be a semiring containing an (1, n)-system {ai, bi}. Then {b1, . . . , bn} is

a basis of S considered as a (left) S-semimodule (SS,+), and one has the following

three unique presentations for each s ∈ S:
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(4.9) s =
∑n

j=1 sjbj for sj = saj ,

(4.10) s =
∑n

i=1 aiti for ti = bis,

(4.11) s =
∑n

i,j=1 aisi,jbj for si,j = bisaj .

Proof. From s1 = sa1b1 + . . . + sanbn we obtain (4.9), where the sj are uniquely
determined since s =

∑n
j=1 rjbj implies saj = rj . Hence {b1, . . . , bn} is a basis

of (SS,+). Dually it follows (4.10) and that {a1, . . . , an} is a basis for the right
S-semimodule (SS ,+). Both together imply (4.11). �

Theorem 4.7
Let S be a semiring containing an (1, n)-system. Then S is isomorphic to the

semiring Mn,n(S) of all n × n-matrices over S.

Proof. One easily checks that ϕ : S → Mn,n(S) defined by ϕ(s) = (si,j) for the
si,j ∈ S determined in (4.11) is such an isomorphism. �

From S ∼= Mn,n(S) ⊃ {sEn | s ∈ S} = S1
∼= S it follows that each

(1, n)-semiring S contains an infinite chain S ⊃ S1 ⊃ S2 . . . of subsemirings
isomorphic to S, all with the same identity 1. In particular, an (1, n)-system
{ai, bi} of S yields an (1, n)-system {ci, di} of S1 by ci =

∑n
ν=1 aνaibν and

di =
∑n

µ=1 aµbibµ. As a contrast we note, that there are also various infinite
chains S ⊃ S′

1 ⊃ S′
2 . . . of subsemirings isomorphic to S with different identities

as e. g. 1, a1b1, a1a2b2b1, . . . This follows since s �→ aisbi defines an injective endo-
morphism of S for each i = 1, . . . , n. Note also that an (1, n)-semiring S satisfies
R(1, k) for k = n + (n − 1), n + 2(n − 1), . . . In particular, an (1, 2)-system gener-
ates (1, k)-systems for each k ≥ 3, e. g. {a1, a2a1, a2a2, b1, b1b2, b2b2} for k = 3 and
{a1a1, a1a2, a2a1, a2a2, b1b1, b2b1, b1b2, b2b2} for k = 4. By lack of space we can only
announce the following

Theorem 4.8
Let S be an (1, n)-semiring which is generated by an (1, n)-system {ai, bi},

(G(S), ·) the group of all invertible elements t of S and E(S) the set of all injective
endomorphisms τ of (S,+, ·) satisfying τ(1) = 1. Then there is a bijection t �→ τ of
G(S) onto E(S) according to

(4.12) ai �→ τ(ai) = tai = ci, bi �→ τ(bi) = bit
−1 = di (i = 1, . . . , n) and

(4.13) t = c1b1 + . . . + cnbn, t−1 = a1d1 + . . . + andn,

which yields also a bijection of G(S) onto the set of all (1, n)-systems {ci, di} con-
tained in S. Moreover, (E(S), ·) is a group isomorphic to (G(S), ·), and the semigroup
(S, ·) contains isomorphic copies of each symmetric group Sk, k ∈ N, and hence of
each finite group.
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§ 5. The case m > 1

As a contrast to the situation with (1, n)-semirings (cf. Thm. 4.5), for 1 < m < n
the free (m,n)-semiring Tm,n = Γ[xi,k, yi,k]/ηm,n over Γ has congruences κ 
= ιTm,n

satisfying κ ∩ (Γ × Γ) = ιΓ, and there are also (m,n)-semirings S generated by Γ
and an (m,n)-system which are not free. To show this as well as Thm. 3.5, we
use the free (1, p)-semiring T1,p over Γ for p = n − m + 1, which is generated by its
subsemiring Γ and an (1, p)-system {ai, bi} according to Thm. 4.5. There is a unique
homomorphism ψ1 of the polynomial semiring Γ[xi,k, yk,i] onto T1,p which satisfies
ψ1(α) = α for all α ∈ Γ and maps the indeterminates xi,k, yk,i in such a way that
the matrices X = (xi,k) and Y = (yk,i) are mapped according to

(5.1) X �→ A =




a1 . . . ap 0 . . . 0
0 . . . 0 1 0
...

...
. . .

0 . . . 0 0 1


 Y �→ B =




b1 0 . . . 0
...

...
...

bp 0 . . . 0
0 1 0
...

. . .
0 0 1




.

From AB = En and BA = Em it follows that ηm,n ⊆ λ1 holds for the congruence
λ1 on Γ[xi,k, yk,i] corresponding to ψ1. As in the proof of Thm. 3.6, we obtain
a unique homomorphism ϕ1 of Tm,n = Γ[xi,k, yk,i]/ηm,n onto T1,p which satisfies
ϕ1([α]ηm,n) = α for each α ∈ Γ and maps the classes [xi,k]ηm,n and [yk,i]ηm,n onto
the elements 0, 1, a1, . . . , ap, b1, . . . , bp ∈ T1,p according to (5.1).

Proposition 5.1

Let Tm,n = Γ[xi,k, yk,i]/ηm,n be the free (m,n)-semiring over Γ. Then α ≡
β (ηm,n) in Γ[xi,k, yk,i] implies α = β for all α, β ∈ Γ. Hence Γ may be considered
as a subsemiring of Tm,n. Moreover, this semiring satisfies also the other statements
of Thm. 3.5, and is obviously not commutative.

Proof. The first assertion follows immediately from ψ1(α) 
= ψ1(β) for all α 
= β
of Γ. Moreover, due to (5.1) and to the validity of Thm. 3.5 for m = 1, the classes
[x1,1]ηm,n , . . . , [x1,p]ηm,n , [y1,1]ηm,n , . . . , [yp,1]ηm,n are pairwise distinct and different
from all other classes [xi,k]ηm,n

and [yk,i]ηm,n
and all elements of Γ. However, the

matrix A in (5.1) can be changed in such a way, that any p elements of any line are
used for the entries a1, . . . , ap, and the matrix B can be chosen correspondingly such
that AB = En and BA = Em are satisfied. In this way we obtain homomorphisms
ψν of Γ[xi,k, yk,i] onto T1,p, and the resulting homomorphisms ϕν of Tm,n onto T1,p

imply that all classes [xi,k]ηm,n
and [yk,i]ηm,n

are pairwise distinct and different from
all elements of Γ. �
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Remark 5.2. The congruences κν on the free (m,n)-semiring Tm,n which corre-
spond to the homomorphisms ϕν of Tm,n onto T1,p considered in the above proof are

maximal with respect to the property κν ∩ (Γ × Γ) = ιΓ (in fact there are m!
(

n
p

)

homomorphisms of this kind). Moreover, there are also various other congruences
on Tm,n, since also each (m − q, n − q)-system {ai,k, bk,i} for 1 ≤ q < m can be
used to obtain matrices satisfying AB = En and BA = Em as in (5.1). Finally,
according to (5.1), the (1, p)-system {ai, bi} of T1,p yields various (m,n)-systems in
T1,p consisting of {ai, bi} and suitable elements equal to 0 and 1.

We have the conjecture that, according to Thm. 4.4, also each free (m,n)-
semiring Tm,n = Γ[xi,k, yk,i]/ηm,n is additively cancellative iff Γ has this property.
However, we can only prove that Tm,n is additively cancellative if we assume that
the classes [xi,k]ηm,n

and [yk,i]ηm,n
are multiplicatively left (or right) cancellable in

Tm,n.

Finally, we generalize one of the early results by J. Dieudonné and P. Dubreil
(cf. [3] and [4]) on rings and fields, both commutative or not, to semirings and
semifields. We recall that a semiring K with an absorbing zero 0 is called a semifield
iff (K \{0}, ·) is a group, and we use the following statements: Each semifield K has
no zero divisors, and K is either zero sum free, i. e. s + t = 0 implies s = t = 0 for
all s, t ∈ K, or a field (cf. [7], § I.5, also for a more general concept of a semifield).

Theorem 5.3

Let S be a semiring which is embeddable into any semifield K. Then each free

S-semimodule (SH,+) has a unique rank.

Proof. By Cor. 3.3, it is enough to show the assertion for each free K-semimodule
(KH,+). We go by contradiction and assume that K satisfies R(m,n) for some
m < n. Then K contains an (m,n)-system {ai,k, bk,i}. This is impossible for m = 1,
since each (1, n)-system contains zero divisors. But for 1 < m < n, the semifield K

is not zero sum free by (3.1), and hence a field. Since each K-module (KH,+) over
a field has a unique rank, K can also not contain such an (m,n)-system. �
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tatif, Bull. Sci. Math. (2) 67 (1943), 84 – 100.
6. C. J. Everett, Vector spaces over rings, Bull. Amer. Math. Soc. 48 (1942), 312 – 316.
7. U. Hebisch and H. J. Weinert, Halbringe - Algebraische Theorie und Anwendungen in der

Informatik, Teubner, Stuttgart 1993.
8. H. J. Weinert, Generalized semialgebras over semirings, Lecture Notes Math. 1320 (1988),

380 – 416.


