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Abstract

Let A = {a1 = 1 < a2 < . . . < ak < . . .} be an infinite subset of N. A
partition of n with parts in A is a way of writing n = ai1 + ai2 + . . . + aij
with 1 ≤ i1 ≤ i2 ≤ . . . ≤ ij . An integer a is said to be represented by the

above partition, if it can be written a =
∑j

r=1 εrair with εr = 0 or 1. A
partition will be called practical if alla′s, 1 ≤ a ≤ n can be represented. When
A = N, it has been proved by P. Erdös and M. Szalay that almost all partitions
are practical. In this paper, a similar result is proved, first when ak = 2k,
secondly when ak ≥ kak−1. Finally an example due to D. Hickerson gives a
set A and integers n for which a lot of non practical partitions do exist.

I. Introduction

Let us denote by N the set of positive integers {1, 2, 3, . . .} and by A = {a1 = 1 <

a2 < . . . < ak < . . .} an infinite subset of N containing 1. A partition of an integer
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n with parts in A will be a solution of the equation:

x1a1 + x2a2 + . . . + xkak = n (1)

where xi are non negative integers, and k = k(n) is defined by

ak ≤ n < ak+1 . (2)

Let a be a positive integer. The partition (1) will be said to represent a, if a can be
written

y1a1 + . . . + ykak = a, 0 ≤ yi ≤ xi, 1 ≤ i ≤ k .

If you have n francs in your purse, with, say x1 coins of 1 franc, x2 coins of 2 francs,
x3 coins of 5 francs and x4 coins of 10 francs, then this partition of n will represent
a if you can pay a francs without needing any change.

The partition (1) will be said practical, if it represents all a, 1 ≤ a ≤ n. The
number of partitions of n with parts in A will be denoted by p(n) = pA(n), while
the number of practical, and non practical partitions will be denoted respectively
by p̃(n) = p̃A(n) and M(n) = MA(n), so that we have

p(n) = p̃(n) + M(n) . (3)

We shall denote by p(n,m) = pA(n,m) the number of partitions of n in parts
in A and ≤ m, and by r(n,m) = rA(n,m) the number of partitions of n in parts in
A and ≥ m. These two functions can be calculated by induction using

p(n,m) = p(n,m− 1) + p(n−m,m)

and
r(n,m) = r(n,m + 1) + r(n−m,m)

for any A, in the same way as for A = N (cf. [6]). It is convenient to set

p(0) = p(0,m) = r(0,m) = p̃(0) = 1.

Let us observe that, as 1 ∈ A, one has for m fixed:

pA(n) and pA(n,m) are non decreasing in n . (4)

Indeed, by adding 1 to any partition of n, a partition of (n + 1) is obtained. For
more about the increasingness of pA(n) when 1 	∈ A, see [1].

In [5], it is proved that, when A = N, almost all partitions are practical, that
is to say M(n) = o(p(n)) when n goes to infinity. Moreover, it is proved that the
number M(n) of non practical partitions is asymptotic to the number of partitions
of n without any 1, so that, if a partition is non practical, it is mainly because it
contains no 1. One of the authors gave a talk on this subject in Oberwolfach, and
M.N. Huxley wrote the following verses:
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If a beggar comes crying to you,

Ask Nicolas just what to do.

He proves a fact strange,

That “I don’t have the change”

Is the same as “I don’t have a sou”.

In [4], the above result of [5] is precised: The following asymptotic expansion is given
for any b:

M(n) =

(
b∑

a=1

αan
−a/2 + O(n−(b+1)/2)

)
p(n)

with α1 = π/
√

6, α2 = π2/4 − 1, etc. . . The following formula is also given

M(n) =
∑

1≤a≤n/2

p̃(a− 1)r(n− a + 1, a + 1) (5)

Formula (5) is used in [4] to calculate a table of M(n) up to n = 100.
It is not difficult to see that (5) still holds when the set of parts A is any subset

of N. Indeed, a partition which represents a, also represents n− a, so that for a non
practical partition, there is an a, 1 ≤ a ≤ n/2 such that all integers up to a are
represented, but a itself is not represented. For a given a, the number of partitions
of n for which a is the smallest number non represented can be proved to be equal
to

p̃(a− 1)r(n− a + 1, a + 1) ,

exactly in the same way as it was done in [4], lemma 5, when A = N.

If the set A would not contain 1, then clearly, M(n) = p(n), all partitions of n
are not practical, since 1 is not represented. This is in agreement with (5), which
shows by induction that M(n) = p(n), since r(n, 2) = p(n) in that case.

In section 2, we shall deal with binary partitions, that is A =
{1, 2, 4, 8, . . . , 2k, . . .} consists of powers of 2. The number p(n) of binary partitions
has been studied by Mahler and de Bruijn (cf. [7] and [2]), and r(n,m) can be easily
deduced from p(n), so that, from (5), we shall prove:

Theorem 1

Let A = {1, 2, 4, . . .}. Then for all n, almost all partitions are practical. More

precisely, M(n) = 0 if and only if n+ 1 is a power of 2 and when n goes to infinity,

M(n) = O

(
log n
n

p(n)
)

.
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In section 4, we shall consider a set of parts such that ak ≥ kak−1. More
precisely, the following theorem will be proved:

Theorem 2

Let A = {a1 = 1, a2, . . . , ak, . . .} with ak ≥ kak−1. Then, for all n, almost all

partitions are practical, and moreover:

MA(n) = O
(
2−k(n)pA(n)

)
. (6)

(where k(n) is defined by (2)).

In section 5, an example of a set A will be given for which most of the partitions
will not be practical for a sequence of integers tending to infinity. We are very much
indebted to Dean Hickerson who provided this example and the proof of (7) below,
and who has allowed us to include his work in our paper. Moreover, we should say
that Hickerson’s example was the starting point of this study, and so we thank him
very much.

Theorem 3

Let f(0) ≥ 1, f(1), . . . , f(n), . . . a non decreasing sequence of integers tending

to infinity with n. There exists a set A = {a1 = 1, a2, . . .} with ak = O(kf(k)2k)
such that

lim p̃A(n)/pA(n) = 0 (7)

and

lim p̃A(n)/pA(n) = 1 . (8)

In the Hickerson example of section 5, A is the union of ranges of consecutive
integers far away of each other. A great deal of partitions of n are shown to be non
practical because they have a part > n/2.

In section 3, we shall recall classical estimations for pA(n). These estimations
are rough, but good enough when k = k(n) (defined by (2)) tends to infinity rather
slowly, and they will be used together with (5) to prove Theorems 2 and 3.

We did not succeed in finding a characterization of A such that almost all
partitions are practical. Let us formulate two conjectures:

Conjecture 1: Let A = {a1 = 1, a2, . . . , ak, . . .} with ak ≤ 2k. Then MA(n) =
o(pA(n)), that is almost all partitions are practical.
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Conjecture 2: Let A any subset of N containing 1. There exists a sequence nr

such that MA(nr) = o(pA(nr).

2. Binary partitions

In this section, A = {1, 2, 4, 8, . . .} is the set of powers of 2. We shall need the
following results:

Proposition 1

Let p(n) = pA(n) the number of binary partitions of n. For x real ≥ 0, let us set

p(x) = p(�x�). The following asymptotic expansion holds when x goes to infinity:

log p(2x) =
1

2 log 2

(
log

(
x

log x

))2

+
(

1
2

+
1

log 2
+

log log 2
log 2

)
log x

−
(

1 +
log log 2

log 2

)
log log x + O(1) . (9)

Moreover, there exist two positive real numbers α and β such that for all x ≥ 2.

αx

log x
≤ p(2x)

p(x)
≤ βx

log x
. (10)

Proof. When x is an integer, formula (10) has been proved by de Bruijn (cf. [2])
improving preceding results of Mahler (cf. [7]). It is easy to extend it whenever x is
a positive real number.

One deduces from (9):

log p(2x) − log p(x) = log x− log log x + O(1) ,

which proves (10). �

Proof of Theorem 1. We shall start from (5)

M(n) =
n/2∑
a=1

p̃(a− 1)r(n− a + 1, a + 1) . (11)

Let us define k = k(n) by (2):
2k ≤ n < 2k+1
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and the binary expansion of n + 1:

n + 1 =
k+1∑
i=0

ci2i, ci = 0, 1.

Note that ck+1 is always 0 unless n + 1 = 2k+1. It will be convenient to use, for
0 ≤ t ≤ k:

Nt =
k+1∑

i=t+1

ci2i, nt =
t∑

i=0

ci2i,

so that n + 1 = Nt + nt. We can rewrite (11) as:

M(n) =
k−2∑
t=0

∑
2t≤a<2t+1

p̃(a− 1)r(n− a + 1, 2t+1)

+
∑

2k−1≤a≤n/2

p̃(a− 1)r(n− a + 1, 2k). (12)

Now, r(n, 2t) is 0 unless n is a multiple of 2t where it is p(n/2t), so, in (12) in order
that r(n− a + 1, 2t+1) does not vanish, we must have

a ≡ n + 1 ≡ nt mod 2t+1

and a will be ≥ 2t if and only if ct = 1. In the last term of (12), we should have

a ≡ nk−1 mod 2k

and ck−1 must be 1 to get a ≥ 2k−1. On the other hand, nk−1 < 2k ≤ Nk−1, so that
2nk−1 < nk−1 + Nk−1 = n + 1, and

nk−1 ≤ n/2 , (13)

so (12) can be rewritten as

M(n) =
k−1∑
t=0

ctp̃(nt − 1)p(Nt/2t+1) . (14)

From (14), it follows that whenever n + 1 is a power of 2, all the c′ts vanish, and
M(n) = 0. If n+1 is different of a power of 2, at least one of the ct does not vanish,
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and since the partition of n made with n 1′s is certainly practical, p̃(n) ≥ 1 for all
n, so that (14) yields M(n) 	= 0.

From (13) and (14), it follows that

M(n) ≤ 2p(n/2) +
k−2∑
t=1

p(2t+1)p(n/2t+1) . (15)

To estimate the above sum, it is convenient to cut it into three parts : from t = 1
to t = t0 = logn

3 log 2 , from t0 to t1 = 2t0, and from t1 to k − 1. Let us set yt =
p(2t+1)p(n/2t+1). From (10) one has, for 1 ≤ t ≤ k − 3,

yt+1

yt
≤ β2t+1 log(n/2t+2)

(t + 1) log 2 αn/2t+2
� 22t log n

n
(16)

and similarly, since t ≤ k = O(log n) :

yt+1

yt
� 22t

n log n
. (17)

It follows from (16) that for 1 ≤ t ≤ t0,

yt+1

yt
� 22t0 log n

n
= (log n)n−1/3

and so, far n large enough, yt+1/yt ≤ 1/2. Therefore,

S1 =
t0∑
t=1

yt = O(y1) = O(p(n/4)) = O

(
log2 n

n2
p(n)

)
(18)

by (10).
In the same way, from (17), one deduces that

S3 =
∑

t1≤t≤k−2

yt = O(yk−2) = O(p(2k−1)) = O(p(n/2)) . (19)

It remains to estimate S2. For t0 < t < t1, the number of terms is O(log n), and
each term satisfies:

yt ≤ p(2t1+1)p(n/2t0+1) ≤ (p(2n2/3))2 . (20)
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But, from (9),

log p(2x) =
1

2 log 2
(1 + o(1)) log2 x (21)

holds, so that, for n large enough

(
p(2n2/3)

)2

≤ exp
(

1 + o(1))
2 log 2

8
9

log2 n

)
≤ p(2n)/n3 . (22)

From (20), (22), and (10), one has

S2 =
∑

t0<t<t1

yt ≤
log n
n3

p(2n) = O(p(n)/n2) ,

which together with (15), (18), (19) and (10) completes the proof of Theorem 1. �

At the end of this paper, a table of p(n) and M(n) up to n = 100 will be found.
In fact it has been calculated up to n = 1000, by using (11). As shown by formula
(14), large values of M(n) are obtained whenever c0 or c1 or c2 are equal to 1, or on
the other hand when ck−1 or ck−2 are 1. For the computation of p(n), see [3].

3. Upper and lower bounds for partition functions

Proposition 2

Let a1, a2, . . . , ak, k positive real numbers, and Ak = a1 + a2 + . . . + ak. The

number Nk(z) of solutions of the inequality

x1a1 + x2a2 + . . . + xkak ≤ z

satisfies:
zk

k!a1a2 . . . ak
≤ Nk(z) ≤

(z + Ak)k

k!a1a2 . . . ak
(23)

and

Nk(z) ≤
zk

k!a1a2 . . . ak
exp

(
kAk

z

)
. (24)

Proof. This Proposition is a classical one. For instance, a proof of (23) can be found
in [8], p. 401. The upper bound (24) can be deduced from (23) by

(
1 +

Ak

z

)k

= exp
(
k log

(
1 +

Ak

z

))
≤ exp

(
kAk

z

)
. � (25)
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Corollary 1

Let A = {a1 = 1 < a2 < . . . < aj < . . .} be a subset of N, n a positive integer,

and Aj = a1 + a2 + . . . + aj . Then the following inequality holds:

nj−1

(j − 1)!a2a3 . . . aj
≤ p(n, aj) ≤

nj−1 exp(jAj/n)
(j − 1)!a2a3 . . . aj

. (26)

Proof. For j = 1, (26) in obvious. For j ≥ 2, there is a one to one correspondence
between the partitions of n in parts a1, a2, . . . , aj and the solutions of the inequality:

x2a2 + x3a3 + . . . + xjaj ≤ n

and so, (26) follows from (23) and (24). �

Corollary 2

Let A = {a1 = 1 < a2 < . . . < ak < . . .} be a subset of N, n a positive

integer; k = k(n) is defined by (2), and Ak = a1 + a2 + . . . + ak. For j such that

0 ≤ j ≤ k− 2, let us introduce the set R(n) of partitions in parts aj+1, aj+2, . . . , ak
of n, n− 1, . . . , n− aj+1 + 1, and

R(n) = card R(n) =
aj+1−1∑
a=0

r(n− a, aj+1).

Then the following inequality holds:

nk−j−1

(k − j − 1)!aj+2aj+3 . . . ak
≤ R(n) ≤ nk−j−1 exp(kAk/n)

(k − j − 1)!aj+2aj+3 . . . ak
. (27)

Proof. To every solution of the inequality

xj+2aj+2 + xj+3aj+3 + . . . + xkak ≤ n (28)

with non negative integers xi, one can associate exactly one integer xj+1 ≥ 0 such
that

n− aj+1 + 1 ≤
k∑

i=j+1

xiai ≤ n,

and so, there is a one to one correspondence between the solutions of (28) and
R(n). Then, (27) follows from (23) and (24), by observing that (k− j− 1)Ak−j−1 ≤
kAk. �
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4. Proof of Theorem 2

Let A = {a1 = 1 < a2 < . . . < ak < . . .} and ak ≥ kak−1. One has

Ak = a1 + a2 + . . . + ak ≤ ak

(
1 +

1
k

+
1

k(k − 1)
+ . . . +

1
k!

)

≤ ak

(
1 + 1 +

1
2!

+ . . . +
1
k!

)
< eak . (29)

For a given n, k = k(n) is defined by (2), and from n ≥ ak ≥ k! and Stirling’s
formula, one deduces

k = O(log n/ log log n). (30)

Further, from

n ≥ ak ≥ kak−1 ≥ k(k − 1)ak−2 ≥ . . . ≥ k(k − 1) . . . (j + 1)aj ,

one has
aj ≤

n

k(k − 1) . . . (j + 1)
. (31)

Now, we want to prove that if m = �n/2�, and k = k(n) is defined by (2), one has:

p(m) = O(p(n)/2k) . (32)

First, we shall suppose that

(k − 2)ak ≤ n < ak+1 . (33)

From (26), we get

p(m) = p(m, ak) ≤
mk−1

(k − 1)!a2a3 . . . ak
exp

(
kAk

m

)

= O

(
nk−1

(k − 1)!a2a3 . . . ak
2−k

)
(34)

since (29) and (33) yield exp(kAk/m) = O(1).
On the other hand, (26) gives

p(n) = p(n, ak) ≥
nk−1

(k − 1)!a2a3 . . . ak
(35)

which, with (34), proves (32) whenever (33) is satisfied.
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Let us suppose now that

ak ≤ n < (k − 2)ak (36)

and let us define t = �m/ak�. Clearly, for k ≥ 4, t satisfies

0 ≤ t ≤ k − 3 , (37)

and one has

p(m) =
t∑

u=0

p(m− uak, ak−1)

≤ 2p(m, ak−1) +
t−1∑
u=1

p(m− uak, ak−1)

by (4). Further, by (26), we get:

p(m) ≤ mk−2

(k − 2)!a2a3 . . . ak−1[
2 exp

(
(k − 1)Ak−1

m

)
+

t−1∑
u=1

(
1 − uak

m

)k−2

exp
(

(k − 1)Ak−1

m− uak

)]
. (38)

But, for 0 ≤ u ≤ t− 1, one has from (29):

(k − 1)Ak−1

m− uak
≤ keak−1

ak
≤ e .

We also have, by (37):

(
1 − uak

m

)k−2

= exp
(
(k − 2) log

(
1 − uak

m

))
≤ exp

(
−(k − 2)

uak
m

)

≤ exp
(
− (k − 2)u

t + 1

)
≤ exp(−u).

Then (38) becomes:

p(m) ≤ eemk−2

(k − 2)!a2a3 . . . ak−1

[
2 +

t−1∑
u=1

exp(−u)

]
,
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and so,

p(m) = O

(
nk−22−k

(k − 2)!a2a3 . . . ak−1

)
. (39)

On the other hand, by (26), one has

p(n) ≥ p(n, ak−1) ≥
nk−2

(k − 2)!a2a3 . . . ak−1
,

which, with (39), completes the proof of (32).
Now, let us define h = h(n) by

ah ≤ n/2 < ah+1 . (40)

From (5), we have:

M(n) =
h−1∑
j=1

∑
aj≤a<aj+1

p̃(a− 1)r(n− a + 1, a + 1)

+
∑

ah≤a≤n/2

p̃(a− 1)r(n− a + 1, a + 1) . (41)

But, for aj ≤ a < aj+1, one has, by (4):

r(n− a + 1, a + 1) = r(n− a + 1, aj+1)

p̃(a− 1) ≤ p(a− 1) ≤ p(a) = p(a, aj) ≤ p(aj+1, aj)

and (41) becomes, with m = �n/2� :

M(n) ≤
h−1∑
j=1

p(aj+1, aj)
∑

aj≤a<aj+1

r(n− a + 1, aj+1)

+ p(m)
∑

ah≤a≤m

r(n− a + 1, ah+1) . (42)

We now have to consider two cases: First, let us suppose that ak = ak(n) satisfies:

n/2 < ak ≤ n . (43)

As there is at most one element of A between n/2 and n, one has from (40), h = k−1.
In the last term of (42), r(n−a+1, ah+1) = r(n−a+1, ak) vanishes for all a, unless
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n−a+1 = ak, where it is 1. Similarly, let us deal with the last term of the first sum in
(42), corresponding to j = h−1 = k−2. We have r(n−a+1, aj+1) = r(n−a+1, ak−1),
which is the number of partitions of n − a + 1 in parts ak−1 or ak. But, clearly, in
such a partition, ak can occur at most once (from (43)). If ak does not appears,
n− a + 1 must be a multiple of ak−1, and as a < aj+1 = ak−1, this will happen at
most once. In the same way, if ak appears once, n− ak − a + 1 must be a multiple
of ak−1.

In conclusion,

p(ah, ah−1)
∑

ah−1≤a<ah

r(n− a + 1, ah) + p(m)
∑

ah≤a≤m

r(n− a + 1, ah+1)

≤ 2p(ah, ah−1) + p(m) ≤ 2p(ah) + p(m) ≤ 3p(m) . (44)

The second case, when (43) does not hold is easier. We then have h = k, the last
term of (42) obviously vanishes, and r(n− a+ 1, ak) = 0 except for when n− a+ 1
is a multiple of ak, so that (44) still holds, even with p(m) instead of 3p(m) on the
right hand side.

We now have to deal with the first terms of (42). Let us set:

Sh−2 =
h−2∑
j=1

p(aj+1, aj)
∑

aj≤a<aj+1

r(n− a + 1, aj+1) .

Observing that jAj is increasing, one has from (27):

∑
aj≤a<aj+1

r(n− a + 1, aj+1) ≤
aj+1−1∑
a=0

r(n− a + 1, aj+1) = R(n + 1)

≤ (n + 1)k−j−1 exp(kAk/(n + 1))
(k − j − 1)!aj+2aj+3 . . . ak

. (45)

Further, from (26) and (45), one gets:

Sh−2 ≤
h−2∑
j=1

aj−1
j+1 exp(jAj/aj+1)(n + 1)k−j−1 exp(kAk/(n + 1))

(j − 1)!a2 . . . aj(k − j − 1)!aj+2 . . . ak
. (46)

Noting that from (29) and (2), one has

jAj/aj+1 ≤ ejaj/aj+1 ≤ e
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kAk/(n + 1) ≤ kAk/n ≤ keak/n ≤ ek ,

(n + 1)k−j−1 ≤ nk−j−1(1 + 1/n)k ≤ nk−j−1(1 + 1/n)n ≤ enk−j−1 ,

and
(k − 1)!

(j − 1)!(k − j − 1)!
= (k − 1)

(
k − 2
j − 1

)
≤ k2k ,

(46) becomes

Sh−2 ≤ ee+ke+1k2k

(k − 1)!a2a3 . . . ak

h−2∑
j=1

ajj+1n
k−j−1 . (47)

Now, from (31), one has:

ajj+1 ≤ nj

[k(k − 1) . . . (j + 2)]j
. (48)

The denominator of the right hand side of (48) is equal to k!/2 for j = 1, to kk−2

for j = k − 2, and for 2 ≤ j ≤ k − 3, it is the product of j(k − j + 1) ≥ k factors
all greater than j + 2 and it is a multiple of k, k − 1, . . . , j + 2, so that it is greater
than k!. Then it follows from (48) that

ajj+1 ≤ 2nj

k!
, 2 ≤ j ≤ h− 2, k large enough (49)

and (47) and (26) yield:

Sh−2 ≤ nk−1

(k − 1)!a2a3 . . . ak

2ee+ke+1k22k

k!
≤ (32)k

k!
p(n) (50)

for k large enough.

In conclusion, (42), (44) and (50) give

M(n) ≤ (32)k

k!
p(n) + 3p(�n/2�)

which together with (32) completes the proof of (6) and of Theorem 2. �
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5. An example due to D. Hickerson proving theorem 3

Let us define the sequence $r by $0 = 0, and for r ≥ 0, by

$r+1 = $r + 2�rf($r) . (51)

Let
mr = $r+1 − $r (52)

and
nr = 2$rmr . (53)

Let us define the set A = {a1, a2, . . .} by:

a�r+i = nr + i, r ≥ 0, 1 ≤ i ≤ mr . (54)

We claim that 1 = a1 < a2 < . . . . First, a1 = a�0+1 = n0 + 1 = 1. To see that
a1 < a2 < . . . it suffices to show that a�r < a�r+1 for r ≥ 1. But

a�r = a�r−1 + mr−1 = nr−1 + mr−1 = (2$r−1 + 1)mr−1

≤ (2$r−1 + 1)$r < 2$2r (55)

while
a�r+1 = nr + 1 > 2$rmr ≥ 2$rf($r)2�r > 2$2r . (56)

Note that, from (55) and (56), it follows that nr ≥ 2�r , which implies (lognr)2 ≥
$2r log 2 ≥ a�r (log 2)/2, and so,

a�r ≤ 2
log 2

(log nr)2 ≤ 3(log nr)2 . (57)

We must prove
ak = O(kf(k)2k) . (58)

Given k, let $r < k ≤ $r+1. Note that

mr = $r+1 − $r < f($r)2�r + 1 = O(2kf(k)) .

Hence

ak = nr + k − $r ≤ nr + mr = (2$r + 1)mr

= O($rmr) = O(k2kf(k)) ,

as required.
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Proof of (7). The above example and the proof of (7) below are due to D. Hickerson
and we thank him very much for allowing us to include them in this paper. Let
r ≥ 1, and consider the partitions of n = 2nr with parts in A. Let C = p(n, a�r )
be the number of such partitions with all parts ≤ a�r , and D be the number with
at least one part ≥ a�r+1. Thus p(n) = C + D. Also, every partition counted by D

contains a part ≥ a�r+1 = nr + 1, so the sum of the other parts is ≤ nr − 1. Hence,
such a partition cannot represent nr ; therefore, p̃(n) ≤ C, so

p̃(n)/p(n) ≤ C/(C + D) ≤ C/D . (59)

We now estimate C and D. By applying (26) with j = $r, and Aj ≤ jaj ,

C = p(n, a�r ) ≤
(2nr)�r−1 exp($2ra�r/(2nr))

($r − 1)!a2a3 . . . a�r
.

For 1 ≤ i ≤ mr, the number of partitions counted by D which contain a�r+i = nr + i

is p(nr − i, a�r ). Hence, by (26),

D ≥
mr∑
i=1

p(nr − i, a�r ) ≥
mr∑
i=1

(nr − i)�r−1

($r − 1)!a2a3 . . . a�r

≥ mr(nr −mr)�r−1

($r − 1)!a2a3 . . . a�r
,

so
C

D
≤ 2�r−1 exp($2ra�r/(2nr))

mr(1 −mr/nr)�r−1
.

Note that

mr = $r+1 − $r ≥ f($r)2�r ,

(1 −mr/nr)�r−1 = (1 − 1/(2$r))�r−1 ≥ 1 − $r − 1
2$r

>
1
2

and from (57)
$2ra�r
2nr

≤ (a�r )
3

2nr
≤ 27

2
(log nr)6

nr

Hence,
C

D
≤ exp(27(lognr)6/(2nr))

f($r)
,

which, with (59), proves (7). �
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Proof of (8). Here we shall choose n = nr. Observe that k = k(n) defined by (2) is
equal to $r, and that, from (57), ak is very much smaller than n:

k = $r ≤ ak ≤ 3(log n)2 , (60)

and ak+1 = n + 1. This implies in particular that, for m = �n/2�,
p(m) ≤ (1 + o(1))p(n)2−k+1 (61)

since, p(m) = p(m, ak) and p(n) = p(n, ak), and in (26) kAk/n ≤ k2ak/n tends to 0
because of (60).

The proof of (8) is very close to the proof of Theorem 2 in section 4. From (40)
and (60), one gets h = k, so (44) holds with p(m) instead of 3p(m) on the right
hand side, and we have:

M(n) ≤ Sk−2 + p(m) . (62)

(45) is still valid, and from (60),

kAk/n ≤ k2ak/n ≤ a3
k/n ≤ 27(log n)6/n

hence,
exp(kAk/n) = (1 + o(1)).

Now, in Sk−2, from (4), one has:

p(aj+1, aj) ≤ p(ak, aj) ≤ p(y, aj)

with y = �(log n)7�, and from (26)

p(aj+1, aj) ≤
yj−1 exp(jAj/y)
(j − 1)!a2a3 . . . aj

.

As above,
jAj/y ≤ j2aj/y ≤ k2ak/y = O(1/ log n) ,

and therefore,

Sk−2 ≤ (1 + o(1))
k−2∑
j=1

yj−1(n + 1)k−j−1aj+1

(j − 1)!(k − j − 1)!a2a3 . . . ak

≤ (1 + o(1))ak(k − 1)
(k − 1)!a2a3 . . . ak

k−2∑
j=1

(
k − 2
j − 1

)
yj−1(n + 1)k−j−1

≤ (1 + o(1))9(logn)4

(k − 1)!a2a3 . . . ak
(n + y + 1)k−2

≤ nk−1

(k − 1)!a2a3 . . . ak
(1 + o(1))

9(log n)4

n
(1 + (1 + y)/n)k−2 .
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But, by (26),

p(n) = p(n, ak) ≥
nk−1

(k − 1)!a2a3 . . . ak
,

(1 + y/n)k−2 ≤ exp((k − 2) log(1 + (1 + y)/n) ≤ exp(k(y + 1)/n)

≤ exp(O(log n)9/n) = 1 + o(1) ,

so that Sk−2/p(n) tends to 0 , and by (61), (62) and (3), the proof of (8) is com-
pleted. �
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Table of binary partitions
n p(n) M(n) n p(n) M(n)

1 1 0 51 786 54

2 2 1 52 900 168

3 2 0 53 900 88

4 4 2 54 1014 202

5 4 1 55 1014 80

6 6 3 56 1154 220

7 6 0 57 1154 122

8 10 4 58 1294 262

9 10 2 59 1294 134

10 14 6 60 1460 300

11 14 2 61 1460 187

12 20 8 62 1626 353

13 20 5 63 1626 0

14 26 11 64 1828 202

15 26 0 65 1828 36

16 36 10 66 2030 238

17 36 4 67 2030 20

18 46 14 68 2268 258

19 46 4 69 2268 66

20 60 18 70 2506 304

21 60 10 71 2506 24

22 74 24 72 2790 308

23 74 6 73 2790 78

24 94 26 74 3074 362

25 94 14 75 3074 68

26 114 34 76 3404 398

27 114 16 77 3404 136

28 140 42 78 3734 466

29 140 27 79 3734 52

30 166 53 80 4124 442

31 166 0 81 4124 124

32 202 36 82 4514 514

33 202 10 83 4514 112

34 238 46 84 4964 562

35 238 8 85 4964 202

36 284 54 86 5414 652

37 284 22 87 5414 160

38 330 68 88 5938 684

39 330 12 89 5938 266

40 390 72 90 6462 790

41 390 30 91 6462 272

42 450 90 92 7060 870

43 450 32 93 7060 402

44 524 106 94 7658 1000

45 524 56 95 7658 166

46 598 130 96 8350 858

47 598 26 97 8350 286

48 692 120 98 9042 978

49 692 52 99 9042 270

50 786 146 100 9828 1056
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