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Abstract

An inverse transversal of a regular semigroupS is an inverse subsemigroup ofS
that contains a unique inverse x◦ of every element x of S. Here we consider the
congruences on such a semigroup, considered as an algebra of type (2, 1). The
structure of such semigroups being known, with ‘building bricks’ the inverse
subsemigroup S◦ and the sub-bands I = {xx◦;x ∈ S},Λ = {x◦x; x ∈
S}, we investigate how congruences on S are related to congruences on these
building bricks.

Throughout this paper1 we shall be concerned with a regular semigroup S with an
inverse transversal. Basically, an inverse transversal is an inverse subsemigroup T

of S with the property that |T ∩ V (x)| = 1 for every x ∈ S, where V (x) denotes as
usual the set of inverses of x in S. Defining x◦ by T∩ V (x) = {x◦}, we can write T as
S◦ = {x◦;x ∈ S}. The structure of regular semigroups having inverse transversals
has been determined by Saito [4]. Here we shall be interested in congruences on

1 NATO Collaborative Research Grant 910765 is gratefully acknowledged.
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such semigroups. We denote by Con S the complete lattice of congruences on S.
We shall say that ϑ ∈ Con S is a ◦-congruence if

(a, b) ∈ ϑ ⇒ (a◦, b◦) ∈ ϑ .

The set of ◦-congruences on S, i.e. the set of congruences on the algebra (S, ·,◦ ),
will be denoted by Con S. It is readily seen that Con S is a complete sublattice of
Con S. In order to investigate Con S we require the following known facts.

If E(S) is the set of idempotents of S then, as established by Tang [6],

I =
{
xx◦;x ∈ S} = {e ∈ E(S); e = ee◦

}
is a sub-band of S; moreover, it is left regular [i.e. (∀i, j ∈ I) iji = ij]. Dually

Λ =
{
x◦x;x ∈ S} = {f ∈ E(S); f = f◦f

}
is a sub-band of S; moreover, it is right regular [i.e. (∀e, f ∈ Λ) efe = fe]. We have
that I ∩Λ = E(S◦), the semilattice of idempotents of S◦ and an inverse transversal
of both I, Λ.

Important properties of the operation x 
→ x◦ are:

(1) (∀x ∈ S) x◦◦◦ = x◦ .

In fact, both x◦◦◦ and x◦ belong to S◦ ∩ V (x◦◦).

(2) S is orthodox if and only if (xy)◦ = y◦x◦ for all x, y ∈ S.

This is established in [4].

(3) (∀x, y ∈ S) (xy)◦ = (x◦xy)◦x◦ = y◦(xyy◦)◦ .

This is established in [3].

(4) (∀x, y ∈ S) (x◦y)◦ = y◦x◦◦ and (xy◦)◦ = y◦◦x◦ .

In view of the above result of Tang, this follows from [5, Proposition 2.2]. It may
also be proved directly. For example, since I is left regular we have

y◦x◦◦ · x◦y · y◦x◦◦ = y◦yy◦x◦◦x◦yy◦x◦◦ = y◦yy◦x◦◦x◦x◦◦ = y◦x◦◦ ,

and similarly x◦y · y◦x◦◦ · x◦y = x◦y . It follows that y◦x◦◦ ∈ S◦ ∩ V (x◦y) and
therefore y◦x◦◦ = (x◦y)◦ .

Theorem 1

Let S be a regular semigroup with an inverse transversal S◦. If X ∈ {I, S◦,Λ}
then Con X = Con X.
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Proof. It is well known that on an inverse semigroup every congruence ϑ is such that
(a, b) ∈ ϑ implies (a−1, b−1) ∈ ϑ. It follows immediately that Con S◦ = Con S◦.

Suppose now that ı ∈ Con I. If (i, j) ∈ ı then (i◦, i◦j) = (i◦i, i◦j) ∈ ı whence
(i◦j◦, i◦j) = (i◦j◦, i◦jj◦) ∈ ı and therefore (i◦, i◦j◦) ∈ ı. Interchanging i, j and
using the fact that i◦, j◦ ∈ E(S◦) and therefore commute, we obtain (i◦, j◦) ∈ ı.
Hence Con I = Con I, and similarly Con Λ = Con Λ. �
Definition. Given ı ∈ Con I, π ∈ Con S◦, λ ∈ Con Λ we shall say that (ı, π, λ) is a
linked triple if, for all i1, i2 ∈ I all x1, x2 ∈ S◦, and all l1, l2 ∈ Λ,

(i1, i2) ∈ ı, (l1, l2) ∈ λ ⇒




(
l1i1(l1i1)◦, l2i2(l2i2)◦

)
∈ ı (α)(

(l1i1)◦, (l2i2)◦
)
∈ π (β)(

(l1i1)◦l1i1, (l2i2)◦l2i2
)
∈ λ (γ)

(i1, i2) ∈ ı, (x1, x2) ∈ π ⇒ (x1i1x
◦
1, x2i2x

◦
2) ∈ ı (δ)

(l1, l2) ∈ λ, (x1, x2) ∈ π ⇒ (x◦
1l1x1, x

◦
2l2x2) ∈ λ (ε)

To observe that (δ) and (ε) are meaningful, it suffices to show that, for example,
if i ∈ I then x◦◦ix◦ ∈ I for every x ∈ S. This follows from the fact that

x◦◦ix◦(x◦◦ix◦)◦ = x◦◦ix◦x◦◦(x◦◦ix◦x◦◦)◦

= x◦◦ix◦x◦◦(ix◦x◦◦)◦x◦

= x◦◦ix◦x◦◦x◦x◦◦i◦x◦ since I is orthodox

= x◦◦ii◦x◦

= x◦◦ix◦ .

We shall denote by LT(S) the set of linked triples. It is clear that LT(S) is a
subset of Con I × Con S◦ × Con Λ and as such inherits the cartesian order of the
latter.

Guided by property (β) above, we introduce the following notion.

Definition. We shall say that ϑ ∈ Con S is braided if, for all i1, i2 ∈ I and all
l1, l2 ∈ Λ,

(i1, i2) ∈ ϑ|I, (l1, l2) ∈ ϑ|Λ ⇒
(
(l1i1)◦, (l2i2)◦

)
∈ ϑ|S◦ .

We shall denote the set of braided congruences on S by BrCon S. It is readily
seen that BrCon S is a complete sublattice of Con S. Clearly, we have

Con S ⊆ BrCon S ⊆ Con S.

To each (ı, π, λ) ∈ Con I × Con S◦ × Con Λ we associate the relation Ψ(ı, π, λ)
defined on S by

(a, b) ∈ Ψ(ı, π, λ) ⇐⇒ (aa◦, bb◦) ∈ ı, (a◦, b◦) ∈ π, (a◦a, b◦b) ∈ λ .

Theorem 2
If (ı, π, λ) ∈ LT(S) then Ψ(ı, π, λ) ∈ BrCon S.
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Proof. Suppose that (a, b) ∈ Ψ(ı, π, λ). Then (a◦, b◦) ∈ π and, for every x ∈ S ,

(ax)◦ = x◦(a◦axx◦)◦a◦

π≡ x◦(b◦bxx◦)◦b◦ by (β)

= (bx)◦ .

Similarly,
(
(xa)◦, (xb)◦

)
∈ π.

Now (α) gives
a◦axx◦(a◦axx◦)◦

ı≡ b◦bxx◦(b◦bxx◦)◦

whence, by (δ), we obtain

a◦◦a◦axx◦(a◦axx◦)◦a◦
ı≡ b◦◦b◦bxx◦(b◦bxx◦)◦b◦.

Since (aa◦, bb◦) ∈ ı we therefore have

ax(ax)◦ = aa◦ · a◦◦a◦axx◦(a◦axx◦)◦a◦
ı≡ bb◦ · b◦◦b◦bxx◦(b◦bxx◦)◦b◦ = bx(bx)◦ .

Similarly,
(
xa(xa)◦, xb(xb)◦

)
∈ ı.

Using (γ) and (ε) we can show likewise that(
(ax)◦ax, (bx)◦bx

)
∈ λ,

(
(xa)◦xa, (xb)◦xb

)
∈ λ .

Consequently, Ψ(ı, π, λ) ∈ Con S.

To prove that Ψ(ı, π, λ) is braided, suppose that (i1, i2) ∈ Ψ(ı, π, λ)|I and
(l1, l2) ∈ Ψ(ı, π, λ)|Λ. Then (i1, i2) ∈ ı and (l1, l2) ∈ λ and so, by (α), (γ) and
Theorem 1, we have(

(l1i1)◦◦(l1i1)◦, (l2i2)◦◦(l2i2)◦
)

=
(
[l1i1(l1i1)◦]◦ , [l2i2(l2i2)◦]◦

)
∈ ı;(1) (

(l1i1)◦(l1i1)◦◦, (l2i2)◦(l2i2)◦◦
)

=
(
[(l1i1)◦l1i1]◦ , [(l2i2)◦l2i2]◦

)
∈ λ.(2)

It follows from (1), (2), and (β) that ((l1i1)◦◦, (l2i2)◦◦
)
∈ Ψ(ı, π, λ)|S◦ and therefore,

by Theorem 1 again,
(
(l1i1)◦, (l2i2)◦

)
∈ Ψ(ı, π, λ)|S◦ . Hence Ψ(ı, π, λ) is braided. �

Definition. A triple (ı, π, λ) ∈ Con I × Con S◦ × Con Λ will be called balanced if

ı|E(S◦) = π|E(S◦) = λ|E(S◦) .

We shall denote the ordered set of balanced linked triples by BLT(S).

Theorem 3

If (ı, π, λ) ∈ BLT(S) then Ψ(ı, π, λ) ∈ Con S.
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Proof. Given (ı, π, λ) ∈ BLT(S) we have that (a, b) ∈ Ψ(ı, π, λ) implies (a◦, b◦) ∈
π whence (a◦◦, b◦◦) ∈ π and therefore (a◦◦a◦, b◦◦b◦) ∈ π|E(S◦) = ı|E(S◦) and
(a◦a◦◦, b◦b◦◦) ∈ π|E(S◦) = λ|E(S◦). Consequently we see that (a, b) ∈ Ψ(ı, π, λ)
implies (a◦, b◦) ∈ Ψ(ı, π, λ), whence the result follows by Theorem 2. �

Theorem 4

The mapping Ψ : BLT(S) → BrCon S described by (ı, π, λ) 
→ Ψ(ı, π, λ) is

injective and residuated, with residual Ψ+ given by Ψ+(ϑ) = (ϑ|I, ϑ|S◦ , ϑ|Λ).

Proof. If ϑ ∈ BrCon S then taking ı = ϑ|I, π = ϑ|S◦ , λ = ϑ|Λ we see that (β), hence
(α) and (γ), and (δ), (ε) are satisfied. Consequently, (ϑ|I, ϑ|S◦ , ϑ|Λ) is a linked triple
which is clearly balanced. We can therefore define a mapping Φ+ : BrCon S →
BLT(S) by Ψ+(ϑ) = (ϑ|I, ϑ|S◦ , ϑ|Λ). It is clear that Ψ and Ψ+ are isotone. Now

(a, b) ∈ ΨΨ+(ϑ) ⇒ (aa◦, bb◦) ∈ ϑ|I, (a◦, b◦) ∈ ϑ|S◦ , (a◦a, b◦b) ∈ ϑ|Λ
⇒ a = aa◦ · a◦◦ · a◦a ϑ≡ bb◦ · b◦◦ · b◦b = b

so ΨΨ+(ϑ) ⊆ ϑ and therefore ΨΨ+ ≤ id.
Observe next that for i, j ∈ I we have

(i, j) ∈ Ψ(ı, π, λ) ⇐⇒ (i, j) ∈ ı, (i◦, j◦) ∈ π, (i◦, j◦) ∈ λ .

But, by Theorem 1 and the hypothesis that (ı, π, λ) ∈ BLT(S), we have

(i, j) ∈ ı ⇒ (i◦, j◦) ∈ ı|E(S◦) = π|E(S◦) = λ|E(S◦) .

Hence we see that Ψ(ı, π, λ)|I = ı. Similarly, Ψ(ı, π, λ)|Λ = λ and Ψ(ı, π, λ)|S◦ = π. It
follows from these observations that Ψ+Ψ(ı, π, λ) = (ı, π, λ) and therefore Ψ+Ψ = id.

Hence Ψ is injective and residuated, with residual Ψ+. �

Corollary 1

BLT(S) forms a lattice that is isomorphic to Con S = Im Ψ.

Proof. It follows from Theorem 3 that Im Ψ ⊆ Con S. But for every ϑ ∈ Con S we
have

(a, b) ∈ ϑ ⇒ (aa◦, bb◦) ∈ ϑ|I, (a◦, b◦) ∈ ϑ|S◦ , (a◦a, b◦b) ∈ ϑ|Λ
⇒ (a, b) ∈ ΨΨ+(ϑ)

so ϑ ⊆ ΨΨ+(ϑ), whence we have equality. It follows that Con S ⊆ Im Ψ and
therefore Con S = Im Ψ. Now since Ψ+ is the residual of Ψ we have ΨΨ+Ψ = Ψ.
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Thus ΨΨ+ acts as the identity on Im Ψ. More precisely, if Ψ+
∗ is the restriction of Ψ+

to Im Ψ and if Ψ∗ : BLT(S) → Im Ψ is the mapping induced by Ψ [i.e. Ψ∗(ı, π, λ) =
Ψ(ı, π, λ)] then Ψ+

∗ and Ψ∗ are mutually inverse isomorphisms. Consequently we
have the order isomorphism Im Ψ � BLT(S). �

Corollary 2

The relation ∼ defined on BrCon S by

ϑ ∼ ϕ ⇐⇒ ϑ|I = ϕ|I , ϑ|S◦ = ϕS◦ , ϑ|Λ = ϕ|Λ

is a dual closure equivalence. The smallest element in the ∼ -class of ϑ is ΨΨ+(ϑ).

Proof. Since Ψ is residuated, ΨΨ+ is a dual closure on BrCon S and the equality
Ψ+ = Ψ+ΨΨ+ gives

ϑ ∼ ϕ ⇐⇒ Ψ+(ϑ) = Ψ+(ϕ) ⇐⇒ ΨΨ+(ϑ) = ΨΨ+(ϕ) .

Also, the equality ΨΨ+Ψ = Ψ gives Im Ψ = Im ΨΨ+. It follows by Corollary 1 that
the fixed points of the dual closure ΨΨ+ are precisely the elements of Con S. If ϑ ∈
BrCon S then the smallest element in the ∼-class of ϑ relative to this dual closure
is clearly ΨΨ+(ϑ). �

Corollary 3

There is a lattice isomorphism Con S � (BrCon S)/ ∼ . �

As Corollary 1 above shows, every ϑ ∈ Con S determines uniquely, and is
uniquely determined by, a balanced linked triple. Moreover, given π ∈ Con S◦,
there is a balanced linked triple whose middle component is π if and only if π can be
extended to a ◦-congruence on S; and a similar statement holds for a given ı ∈ Con I
or λ ∈ Con Λ.

It is instructive at this juncture to give an example of a congruence on S◦ that
does not extend to a ◦-congruence on S.

Example 1: Let Sing2×2R be the semigroup of singular real 2×2 matrices and let
Sing∗2×2R be the subsemigroup of those matrices whose leading element (i.e. that
in the (1,1)-position) is non-zero. Observe that Sing∗2×2R consists of matrices of the
form [

a b
c a−1bc

]
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where a, b, c,∈ R with a �= 0. Let M be the set Sing∗2×2R with the 2× 2 zero matrix
adjoined. Then, as is shown in [1, Example 9], M is a regular semigroup and if we
define [

a b
c a−1bc

]◦
=

[
a−1 0
0 0

]
,

[
0 0
0 0

]◦
=

[
0 0
0 0

]
then the subset

M◦ =
{[

x 0
0 0

]
;x �= 0

}
∪

{[
0 0
0 0

]}
is a inverse transversal of M . If M1 denotes M with the 2×2 identity matrix adjoined
then an inverse transversal of M1 is (M1)◦ = (M◦)1. Consider the partition of (M1)◦

with classes {[
x 0
0 0

]
;x �= 0

}
∪

{[
1 0
0 1

]}
and

{[
0 0
0 0

]}
.

Clearly, this defines a congruence ≡ on (M1)◦. However, ≡ has no extension that
is a congruence on M1, hence no extension that is a ◦-congruence on M1. To
see this, suppose that there is such an extension which we denote also by ≡ .

Observe that
[

1 0
0 0

]
≡

[
1 0
0 1

]
gives, on multiplication on the right by

[
1 0
x 0

]
,

the equivalence
[

1 0
0 0

]
≡

[
1 0
x 0

]
. Thus in particular, for every x,

[
1 0
x 0

]
≡[

1 0
x− 1 0

]
. Multiplying on the left by

[
x −1
0 0

]
, we obtain the contradiction[

0 0
0 0

]
≡

[
1 0
0 0

]
.

Definition. We shall say that π ∈ Con S◦ is special if it has an extension in Con S;
equivalently, if it is the middle component of some balanced linked triple.

The set of special congruences on S◦ will be denoted by SpCon S◦

Theorem 5

π ∈ Con S◦ is special if and only if

(x1, x2) ∈ π ⇒ (∀i ∈ I)(∀l ∈ Λ)
(
(lx1i)◦, (lx2i)◦

)
∈ π .

Proof. If π is special let ı ∈ Con I and λ ∈ Con Λ be a such that (ı, π, λ) ∈ BLT(S).
For all i ∈ I, x = x◦◦ ∈ S◦, l ∈ Λ we have, since I is left regular and Λ is right
regular,

lxi = lxx◦xi = xx◦lxx◦xix◦x = x · x◦lx · x◦ · xix◦ · x .
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If now (x1, x2) ∈ π then it follows, using properties (δ), (ε) and the fact that the
restrictions of Ψ(ı, π, λ) to I, S◦,Λ are ı, π, λ respectively, that

(lx1i, lx2i) ∈ Ψ(ı, π, λ) ,

and consequently
(
(lx1i)◦, (lx2i)◦

)
∈ π .

Conversely, suppose that π satisfies the above condition and consider the rela-
tion π̂ defined on S by

(a, b) ∈ π̂ ⇐⇒ (∀i ∈ I)(∀l ∈ Λ)
(
(lai)◦, (lbi)◦

)
∈ π .

Clearly, we have π ⊆ π̂|S◦ . Given (a, b) ∈ π̂ and x ∈ S we have, for all i ∈ I and
l ∈ Λ,

(laxi)◦ = (xi)◦
(
laxi(xi)◦)◦

π≡ (xi)◦
(
lbxi(xi)◦

)◦ = (lbxi)◦;

(lxai)◦ =
(
(lx)◦lxai

)◦(lx)◦
π≡

(
(lx)◦lxbi

)◦(lx)◦ = (lxbi)◦ .

Consequently (ax, bx) ∈ π̂ and (xa, xb) ∈ π̂, so we have that π̂ ∈ Con S .
Observe now that

(a, b) ∈ π̂ ⇒ (a◦, b◦) ∈ π .

In fact, if (a, b) ∈ π̂ then taking i = e ∈ E(S◦) and l = f ∈ E(S◦) in the definition of
π̂ we obtain (e◦a◦f◦, e◦b◦f◦) ∈ π. Choosing in particular e◦ = a◦a◦◦ and f◦ = a◦◦a◦,
we have (a◦, a◦a◦◦b◦a◦◦a◦) ∈ π whence (a◦◦, a◦◦b◦a◦◦) ∈ π. Interchanging a and b we
have likewise (b◦◦, b◦◦a◦b◦◦) ∈ π whence (b◦, b◦a◦◦b◦) ∈ π. Since S◦/π is an inverse
semigroup we see, on passing to quotients, that [b◦] = [a◦◦]−1 = [a◦] and hence that
(a◦, b◦) ∈ π.

It follows from this implication that π̂|S◦ ⊆ π, whence π̂|S◦ = Π, and that
π̂ ∈ Con S. Hence π is special. �

Corollary 1
Given π ∈ SpCon S◦ there is a biggest ϑ ∈ Con S that corresponds to a balanced

linked triple of the form (−, π,−), namely the relation π̂ defined on S by

(a, b) ∈ π̂ ⇐⇒ (∀i ∈ I)(∀l ∈ Λ)
(
(lai)◦, (lbi)◦

)
∈ π .

Proof. If π is special let ı ∈ Con I and λ ∈ Con Λ be such that (ı, π, λ) ∈ BLT(S).
For all i1, i2 ∈ I we have, by (β),

(i1, i2) ∈ ı ⇒ (∀i ∈ I) (i1i, i2i) ∈ ı ⇒ (∀i ∈ I)(∀l ∈ Λ)
(
(li1i)◦), (li2i)◦

)
∈ π

which shows that ı ⊆ π̂|I. Similarly we have λ ⊆ π̂|Λ. It follows that

(ı, π, λ) ≤
(
π̂|I, π̂|S◦ , π̂|Λ

)
= Ψ+(π̂)

and therefore Ψ(ı, π, λ) ⊆ ΨΨ+(π̂) = π̂, whence the result follows. �

Corollary 2
If π ∈ SpCon S◦ then the biggest balanced linked triple with middle component

π is (π̂|I, π, π̂|Λ).
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Theorem 6

The mapping ΦS◦ : Con S → SpCon S◦ given by ΦS◦(ϑ) = ϑ|S◦ is surjective

and residuated, with residual Φ+
S◦ given by Φ+

S◦(π) = π̂ .

Proof. Clearly, both ΦS◦ and Φ+
S◦ are isotone. For every π ∈SpCon S◦ we have

ΦS◦Φ+
S◦(π) = π̂|S◦ = π

so that ΦS◦Φ+
S◦ = id; and for every ϑ ∈ Con S we have, by Corollary 1 of Theorem 5,

Φ+
S◦ΦS◦(ϑ) = ϑ̂|S◦ ≥ ϑ

so that Φ+
S◦ΦS◦ ≥ id. Hence ΦS◦ is surjective and residuated with residual Φ+

S◦ . �

Corollary

The relation ≡S◦ defined on Con S by

ϑ ≡S◦ ϕ ⇐⇒ ϑ|S◦ = ϕ|S◦

is a closure equivalence. The biggest element in the ≡S◦ -class of ϑ is ϑ̂|S◦ . Moreover,

there is a lattice isomorphism SpCon S◦ � (Con S)/ ≡S◦ .

Proof. Since ΦS◦ is residuated, Φ+
S◦ΦS◦ is a closure with associated equivalence

≡S◦ . Moreover, since ΦS◦ is surjective we have that Φ+
S◦ is injective, and therefore

SpCon S◦ � Im Φ+
S◦ = Im Φ+

S◦ΦS◦ , the set of closed elements. �

Given now ı ∈ Con I, consider the relation ı̂ defined on S by

(a, b) ∈ ı̂ ⇐⇒ (∀x ∈ S)
(
ax(ax)◦, bx(bx)◦

)
∈ ı .

We observe in passing that in this definition the range of the quantifier can be
reduced to I. In fact, if

(
ai(ai)◦, bi(bi)◦

)
∈ ı for all i ∈ I then for every x ∈ S we

have (
ax(ax)◦, bx(bx)◦

)
=

(
axx◦(axx◦)◦, bxx◦(bxx◦)◦

)
∈ ı .

Theorem 7

If ı ∈ Con I then ı̂|I = ı .



44 Blyth and Almeida Santos

Proof. For all i, j ∈ I we have ji = ji(ji)◦ and so, on the one hand, (i1, i2) ∈ ı

implies (i1, i2) ∈ ı̂, whence ı ⊆ ı̂|I. On the other hand, if (i1, i2) ∈ ı̂|I then for all
i ∈ I we have (i1i, i2i) ∈ ı. Taking i = i1 we obtain (i1, i2i1) ∈ ı which, on left
multiplication by i1, gives (i1, i1i2) ∈ ı; and taking i = i2 we obtain (i1i2, i2) ∈ ı.

Hence (i1, i2) ∈ ı, and so we have the reverse inclusion ı̂|I ⊆ ı. �

As the following example shows, not every congruence on I extends to a con-
gruence on S.

Example 2: Relative to the inverse transversal M◦ of example 1 we have

I =
{[

1 0
x 0

]
;x ∈ R

}
∪

{[
0 0
0 0

]}
.

Consider the partition of I whose classes are:

{[
1 0
x 0

]
;x ∈ R

}
and

{[
0 0
0 0

]}
.

Clearly, this defines a congruence ≡ on I. However, ≡ has no extension that is a
congruence on M, hence no extension that is a ◦-congruence on M. To see this,
suppose that there is such an extension which we denote also by ≡. Observe that[

1 0
x 0

]
≡

[
1 0

x− 1 0

]
gives, on multiplication on the left by

[
x −1
0 0

]
, the con-

tradiction
[

0 0
0 0

]
≡

[
1 0
0 0

]
.

Definition. We shall say that ı ∈ Con I is special if it an extension in Con S;
equivalently, if it is the first component of some balanced linked triple.

The set of special congruences on I will be denoted by SpCon I.

Theorem 8

If ı ∈ Con I the following statements are equivalent:

(1) ı ∈ SpCon I;
(2) (i, j) ∈ ı ⇒ (∀x ∈ S)

(
xi(xi)◦, xj(xj)◦

)
∈ ı;

(3) ı̂ ∈ Con S.

Proof. (1) ⇒ (2): If ı is special then it is the first component of some balanced
linked triple and so, for every x ∈ S, we have
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i
ı≡ j ⇒ x◦xi(x◦xi)◦

ı≡ x◦xj(x◦xj)◦ by (α)

⇒ x◦◦x◦xi(x◦xi)◦x◦ ı≡ x◦◦x◦xj(x◦xj)◦x◦ by (δ)

⇒ xi(xi)◦ = xx◦x◦◦x◦xi(x◦xi)◦x◦ ı≡ xx◦x◦◦x◦xj(x◦xj)◦x◦ = xj(xj)◦ .

(2) ⇒ (3): It is clear that ı̂ is a right congruence. If (a, b) ∈ ı̂ then(
ax(ax)◦, bx(bx)◦

)
∈ ı whence (2) gives, for every y ∈ S,

yax(yax)◦ = yax(ax)◦
(
yax(ax)◦

)◦ ı≡ ybx(bx)◦
(
ybx(bx)◦

)◦ = ybx(ybx)◦

and so ı̂ is also a left congruence.
To see that ı̂ ∈ Con S, let (a, b) ∈ ı̂. Then(

aa◦, ba◦a◦◦b◦
)

=
(
aa◦(aa◦)◦, ba◦(ba◦)◦

)
∈ ı ,

from which it follows on the one hand by Theorem 1 that

(1′)
(
a◦◦a◦, b◦◦a◦a◦◦b◦

)
∈ ı ,

and on the other hand, taking x = b◦◦b◦ in (2) using the fact that I is left regular
and Λ is right regular, that (b◦◦b◦aa◦, b◦◦a◦a◦◦b◦) ∈ ı. It follows by Theorem 1 that

(2′)
(
a◦◦a◦b◦◦b◦, b◦◦a◦a◦◦b◦

)
∈ ı .

We deduce from (1′) and (2′) that (a◦◦a◦, a◦◦a◦b◦◦b◦) ∈ ı. In a similar way we can
show that (b◦◦b◦, b◦◦b◦a◦◦a◦) ∈ ı. Since E(S◦) is a semilattice, it follows that

(3′) (a◦◦a◦, b◦◦b◦) ∈ ı.

We now have, using (3′) and (δ),

(4′) (a◦a◦◦, a◦b◦◦b◦a◦◦) = (a◦a◦◦a◦a◦◦, a◦b◦◦b◦a◦◦) ∈ ı .

Since ı̂ is a congruence we have that (a◦a, a◦b) ∈ ı̂, whence(
a◦ab◦b◦◦(a◦ab◦b◦◦)◦, a◦bb◦b◦◦(a◦bb◦b◦◦)◦

)
∈ ı

from which, using Theorem 1 again, we obtain

(5′)
(
a◦a◦◦b◦b◦◦, a◦b◦◦b◦a◦◦

)
∈ ı.
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It follows from (4′) and (4′) that (a◦a◦◦, a◦a◦◦b◦b◦◦) ∈ ı. Similarly, we have
(b◦b◦◦, b◦b◦◦a◦a◦◦) ∈ ı. Since E(S◦) is a semilattice it follows that

(6′) (a◦a◦◦, b◦b◦◦) ∈ ı .

Combining (3′), (6′) and the hypothesis that (a, b) ∈ ı̂ we obtain

(a◦◦, b◦◦) =
(
a◦◦a◦ · a · a◦a◦◦, b◦◦b◦ · b · b◦b◦◦

)
∈ ı̂|S◦ .

It now follows by Theorem 1 that (a◦, b◦) ∈ ı̂ and hence that ı̂ ∈ Con S.
(3) ⇒ (1) : This is immediate from Theorem 7. �

Corollary
Given ı ∈ SpCon I there is a biggest ϑ ∈ Con S that corresponds to a balanced

linked triple of the form (ı,−,−), namely ı̂.

Proof. Suppose that ϑ ∈ Con S is such that ϑ|I = ı. If (a, b) ∈ ϑ then for every
x ∈ S we have (ax, bx) ∈ ϑ whence

(
(ax)◦, (bx)◦

)
∈ ϑ and therefore(

ax(ax)◦, bx(bx)◦
)
∈ ϑ|I = ı

which gives (a, b) ∈ ı̂. Hence ϑ ⊆ ı̂. �

Theorem 9
The mapping ΦI : Con S → SpCon I given by ΦI(ϑ) = ϑ|I is surjective and

residuated with residual Φ+
I given by Φ+

I (ı) = ı̂.

Proof. Given ı ∈ SpCon I we have, by Theorem 8, ı̂ ∈ Con S. Also, by Theorem 7,
ı̂|I = ı. It is clear that both ΦI and Φ+

I are isotone. Now since, for every ı ∈ SpCon I

ΦIΦ
+
I (ı) = ΦI(̂ı) = ı̂|I = ı

we have ΦIΦ
+
I = id. Also, for every ϑ ∈ Con S, it follows by Theorem 8 that

Φ+
I ΦI(ϑ) = Φ+

I (ϑ|I) = ϑ̂|I ⊇ ϑ ,

so Φ+
I ΦI ≥ id. Hence ΦI is surjective and residuated with residual Φ+

I . �

Corollary
The relation ≡I defined on Con S by

ϑ ≡I ϕ ⇐⇒ ϑ|I = ϕ|I

is a closure equivalence. The biggest element in the ≡I-class of ϑ is ϑ̂|I. Moreover,
there is a lattice isomorphism SpCon I � (Con S)/ ≡I .
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We can of course consider likewise special congruences on Λ. In so doing we
obtain dual results to Theorem 7, 8, 9.

We recall now that an inverse transversal S◦ is said to be multiplicative [2] if
ΛI = E(S◦). When S◦ is multiplicative, certain simplifications arise. For example,
in this case we have li = (li)◦ for all l ∈ Λ, i ∈ I whence it follows immediately that
every ϑ ∈ Con S braided, so that BrCon S = Con S. Combining this observation
with Corollaries 2, 3 of Theorem 4, we obtain:

Theorem 10

Let S be a regular semigroup with an inverse transversal S◦. If S◦ is multi-

plicative then Con S � (Con S)/ ∼ where ∼ is the dual closure equivalence given

by

ϑ ∼ ϕ ⇐⇒ ϑ|I = ϕ|I, ϑ|S◦ = ϕ|S◦ , ϑ|Λ = ϕ|Λ .

Definition. The elements of SpCon I × SpCon S◦× SpCon Λ will be called special
triples.

We shall denote the set of balanced special triples by BSpT(S). Clearly, we
have the inclusion BLT(S) ⊆ BSpT(S). As the following result shows, when S◦ is
multiplicative the reverse inclusion holds.

Theorem 11

Let S be regular semigroup with an inverse transversal S◦. If S◦ is multiplicative

then every balanced special triple is a balanced linked triple.

Proof. Suppose that (ı, π, λ) ∈ BSpT(S) and consider the balanced linked triples
that correspond to ı̂, π̂, λ̂ ∈ Con S, namely

(ı, ı̂|S◦ , ı̂|Λ), (π̂|I, π, π̂|Λ), (λ̂|I, λ̂|S◦ , λ) .

Observe that
(1) π ⊆ ı̂|S◦ and π ⊆ λ̂|S◦

In fact, if (a, b) ∈ π|S◦ = π then by (δ), for every i ∈ I we have (aia◦, bib◦) ∈ π̂|I.
Since S◦ is in particular a quasi-ideal, i.e. S◦SS◦ ⊆ S◦ [3], we have aia◦ ∈ E(S◦)
and therefore (aia◦, bib◦) ∈ π̂|E(S◦) = π|E(S◦) = ı|E(S◦) whence it follows that
(a, b) ∈ ı̂|S◦ . Thus we see that π ⊆ ı̂|S◦ . Similarly, using (ε), we have π ⊆ λ̂|S◦ .

(2) ı ⊆ π̂|I and λ ⊆ π̂|Λ.
In fact, if (i1, i2) ∈ ı then, for every i ∈ I, we have (i1i, i2i) ∈ ı and so, by (β), for
every l ∈ Λ we have

(
(li1i)◦, (li2i)◦) ∈ π ⊆ ı̂|S◦ by (1). Since S◦ is multiplicative
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this gives ((li1i)◦, (li2i)◦) ∈ ı̂|E(S◦) = ı|E(S◦) = π|E(S◦) whence (i1, i2) ∈ π̂|I. Thus
we see that ı ⊆ π̂|I; and similarly λ ⊆ π̂|Λ.

(3) ı ⊆ λ̂|I and λ ⊆ ı̂|Λ.
In fact, if (i1, i2) ∈ ı then, by (γ), for every l ∈ Λ we have ((li1)◦li1, (li2)◦li2) ∈ ı̂|Λ.
Since S◦ is multiplicative this gives ((li1)◦li1, (li2)◦li2) ∈ ı̂|E(S◦) = ı|E(S◦) = λ|E(S◦)

whence (i1, i2) ∈ λ̂|I. Thus we see that ı ⊆ λ̂|I. Similarly, using (α), we have λ ⊆ ı̂|Λ.
It now follows from (1), (2), (3) that

(ı, π, λ) = (ı, ı̂|S◦ , ı̂|Λ) ∧ (π̂|I, π, π̂|Λ) ∧ (λ̂|I, λ̂|S◦ , λ) ∈ BLT(S)

as required. �

Corollary 1

If S◦ is multiplicative then Con S � BSpT(S)

Proof. This follows from Corollary 1 of Theorem 4. �

Corollary 2

If S◦ is multiplicative and (ı, π, λ) ∈ BLT(S) then Ψ(ı, π, λ) = ı̂ ∩ π̂ ∩ λ̂.

Corollary 3

If S◦ is multiplicative and ϑ ∈ Con S then ϑ = ϑ̂|I ∩ ϑ̂|S◦ ∩ ϑ̂|Λ .
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