Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 46, 1-2 (1995), 35-48
(c) 1995 Universitat de Barcelona

Congruences associated with inverse transversals

T. S. Blyth
Mathematical Institute, University of St Andrews, Scotland
M. H. Almeida Santos
Departamento de Matemática, F.C.T., Universidade Nova de Lisboa, Portugal
Dedicated to the memory of Monsieur le Professeur Paul Dubreil
Docteur ès Sciences, Officier de la Légion d'Honneur

Abstract

An inverse transversal of a regular semigroup S is an inverse subsemigroup of S that contains a unique inverse x° of every element x of S. Here we consider the congruences on such a semigroup, considered as an algebra of type $(2,1)$. The structure of such semigroups being known, with 'building bricks' the inverse subsemigroup S° and the sub-bands $\mathrm{I}=\left\{x x^{\circ} ; x \in S\right\}, \Lambda=\left\{x^{\circ} x ; x \in\right.$ $S\}$, we investigate how congruences on S are related to congruences on these building bricks.

Throughout this paper ${ }^{1}$ we shall be concerned with a regular semigroup S with an inverse transversal. Basically, an inverse transversal is an inverse subsemigroup T of S with the property that $|T \cap V(x)|=1$ for every $x \in S$, where $V(x)$ denotes as usual the set of inverses of x in S. Defining x° by $T \cap V(x)=\left\{x^{\circ}\right\}$, we can write T as $S^{\circ}=\left\{x^{\circ} ; x \in S\right\}$. The structure of regular semigroups having inverse transversals has been determined by Saito [4]. Here we shall be interested in congruences on
${ }^{1}$ NATO Collaborative Research Grant 910765 is gratefully acknowledged.
such semigroups. We denote by Con S the complete lattice of congruences on S. We shall say that $\vartheta \in \operatorname{Con} S$ is a ${ }^{\circ}$-congruence if

$$
(a, b) \in \vartheta \Rightarrow\left(a^{\circ}, b^{\circ}\right) \in \vartheta .
$$

The set of ${ }^{\circ}$-congruences on S, i.e. the set of congruences on the algebra $\left(S, \cdot{ }^{\circ}\right)$, will be denoted by $\overline{\mathrm{Con}} S$. It is readily seen that $\overline{\mathrm{Con}} S$ is a complete sublattice of $\overline{\mathrm{Con}} S$. In order to investigate $\overline{\mathrm{Con}} S$ we require the following known facts.

If $E(S)$ is the set of idempotents of S then, as established by Tang [6],

$$
\mathrm{I}=\left\{x x^{\circ} ; x \in S\right\}=\left\{e \in E(S) ; e=e e^{\circ}\right\}
$$

is a sub-band of S; moreover, it is left regular [i.e. $(\forall i, j \in \mathrm{I}) i j i=i j$]. Dually

$$
\Lambda=\left\{x^{\circ} x ; x \in S\right\}=\left\{f \in E(S) ; f=f^{\circ} f\right\}
$$

is a sub-band of S; moreover, it is right regular [i.e. $(\forall e, f \in \Lambda) e f e=f e]$. We have that I $\cap \Lambda=E\left(S^{\circ}\right)$, the semilattice of idempotents of S° and an inverse transversal of both I, Λ.

Important properties of the operation $x \mapsto x^{\circ}$ are:

$$
\begin{equation*}
(\forall x \in S) x^{000}=x^{\circ} . \tag{1}
\end{equation*}
$$

In fact, both $x^{00 \circ}$ and x° belong to $S^{\circ} \cap V\left(x^{\circ \circ}\right)$.

$$
\begin{equation*}
S \text { is orthodox if and only if }(x y)^{\circ}=y^{\circ} x^{\circ} \text { for all } x, y \in S . \tag{2}
\end{equation*}
$$

This is established in [4].

$$
\begin{equation*}
(\forall x, y \in S)(x y)^{\circ}=\left(x^{\circ} x y\right)^{\circ} x^{\circ}=y^{\circ}\left(x y y^{\circ}\right)^{\circ} . \tag{3}
\end{equation*}
$$

This is established in [3].

$$
\begin{equation*}
(\forall x, y \in S)\left(x^{\circ} y\right)^{\circ}=y^{\circ} x^{\circ \circ} \quad \text { and } \quad\left(x y^{\circ}\right)^{\circ}=y^{\circ \circ} x^{\circ} . \tag{4}
\end{equation*}
$$

In view of the above result of Tang, this follows from [5, Proposition 2.2]. It may also be proved directly. For example, since I is left regular we have

$$
y^{\circ} x^{\circ \circ} \cdot x^{\circ} y \cdot y^{\circ} x^{\circ \circ}=y^{\circ} y y^{\circ} x^{\circ \circ} x^{\circ} y y^{\circ} x^{\circ \circ}=y^{\circ} y y^{\circ} x^{\circ \circ} x^{\circ} x^{\circ \circ}=y^{\circ} x^{\circ \circ},
$$

and similarly $x^{\circ} y \cdot y^{\circ} x^{\circ \circ} \cdot x^{\circ} y=x^{\circ} y$. It follows that $y^{\circ} x^{\circ \circ} \in S^{\circ} \cap V\left(x^{\circ} y\right)$ and therefore $y^{\circ} x^{\circ \circ}=\left(x^{\circ} y\right)^{\circ}$.

Theorem 1

Let S be a regular semigroup with an inverse transversal S°. If $X \in\left\{I, S^{\circ}, \Lambda\right\}$ then Con $X=\overline{\operatorname{Con}} X$.

Proof. It is well known that on an inverse semigroup every congruence ϑ is such that $(a, b) \in \vartheta$ implies $\left(a^{-1}, b^{-1}\right) \in \vartheta$. It follows immediately that Con $S^{\circ}=\overline{\operatorname{Con}} S^{\circ}$.

Suppose now that $\imath \in$ Con I. If $(i, j) \in \imath$ then $\left(i^{\circ}, i^{\circ} j\right)=\left(i^{\circ} i, i^{\circ} j\right) \in \imath$ whence $\left(i^{\circ} j^{\circ}, i^{\circ} j\right)=\left(i^{\circ} j^{\circ}, i^{\circ} j j^{\circ}\right) \in \imath$ and therefore $\left(i^{\circ}, i^{\circ} j^{\circ}\right) \in \imath$. Interchanging i, j and using the fact that $i^{\circ}, j^{\circ} \in E\left(S^{\circ}\right)$ and therefore commute, we obtain $\left(i^{\circ}, j^{\circ}\right) \in \imath$. Hence Con $I=\overline{\mathrm{Con}} \mathrm{I}$, and similarly Con $\Lambda=\overline{\mathrm{Con}} \Lambda$.

Definition. Given $\imath \in \mathrm{Con} \mathrm{I}, \pi \in \operatorname{Con} S^{\circ}, \lambda \in \operatorname{Con} \Lambda$ we shall say that (\imath, π, λ) is a linked triple if, for all $i_{1}, i_{2} \in \mathrm{I}$ all $x_{1}, x_{2} \in S^{\circ}$, and all $l_{1}, l_{2} \in \Lambda$,

$$
\begin{align*}
& \left(i_{1}, i_{2}\right) \in \imath,\left(l_{1}, l_{2}\right) \in \lambda \Rightarrow\left\{\begin{array}{l}
\left(l_{1} i_{1}\left(l_{1} i_{1}\right)^{\circ}, l_{2} i_{2}\left(l_{2} i_{2}\right)^{\circ}\right) \in \imath \\
\left(\left(l_{1} i_{1}\right)^{\circ},\left(l_{2} i_{2}\right)^{\circ}\right) \in \pi \\
\left(\left(l_{1} i_{1}\right)^{\circ} l_{1} i_{1},\left(l_{2} i_{2}\right)^{\circ} l_{2} i_{2}\right) \in \lambda
\end{array}\right. \\
& \left(i_{1}, i_{2}\right) \in \imath,\left(x_{1}, x_{2}\right) \in \pi \Rightarrow\left(x_{1} i_{1} x_{1}^{\circ}, x_{2} i_{2} x_{2}^{\circ}\right) \in \imath \\
& \left(l_{1}, l_{2}\right) \in \lambda,\left(x_{1}, x_{2}\right) \in \pi \Rightarrow\left(x_{1}^{\circ} l_{1} x_{1}, x_{2}^{\circ} l_{2} x_{2}\right) \in \lambda
\end{align*}
$$

To observe that (δ) and (ϵ) are meaningful, it suffices to show that, for example, if $i \in \mathrm{I}$ then $x^{\circ \circ} i x^{\circ} \in \mathrm{I}$ for every $x \in S$. This follows from the fact that

$$
\begin{array}{rlr}
x^{\circ \circ} i x^{\circ}\left(x^{\circ \circ} i x^{\circ}\right)^{\circ} & =x^{\circ \circ} i x^{\circ} x^{\circ \circ}\left(x^{\circ \circ} i x^{\circ} x^{\circ \circ}\right)^{\circ} \\
& =x^{\circ \circ} i x^{\circ} x^{\circ \circ}\left(i x^{\circ} x^{\circ \circ}\right)^{\circ} x^{\circ} \\
& =x^{\circ \circ} i x^{\circ} x^{\circ \circ} x^{\circ} x^{\circ \circ} i^{\circ} x^{\circ} \quad \text { since I is orthodox } \\
& =x^{\circ \circ} i i^{\circ} x^{\circ} \\
& =x^{\circ \circ} i x^{\circ}
\end{array}
$$

We shall denote by $\operatorname{LT}(S)$ the set of linked triples. It is clear that $\operatorname{LT}(S)$ is a subset of Con $\mathrm{I} \times \operatorname{Con} S^{\circ} \times$ Con Λ and as such inherits the cartesian order of the latter.

Guided by property (β) above, we introduce the following notion.
Definition. We shall say that $\vartheta \in \operatorname{Con} S$ is braided if, for all $i_{1}, i_{2} \in \mathrm{I}$ and all $l_{1}, l_{2} \in \Lambda$,

$$
\left.\left(i_{1}, i_{2}\right) \in \vartheta\right|_{\mathrm{I}},\left.\left.\left(l_{1}, l_{2}\right) \in \vartheta\right|_{\Lambda} \Rightarrow\left(\left(l_{1} i_{1}\right)^{\circ},\left(l_{2} i_{2}\right)^{\circ}\right) \in \vartheta\right|_{S^{\circ}} .
$$

We shall denote the set of braided congruences on S by $\mathrm{BrCon} S$. It is readily seen that $\operatorname{BrCon} S$ is a complete sublattice of Con S. Clearly, we have

$$
\overline{\mathrm{Con}} S \subseteq \operatorname{BrCon} S \subseteq \operatorname{Con} S
$$

To each $(\imath, \pi, \lambda) \in \operatorname{Con} \mathrm{I} \times \operatorname{Con} S^{\circ} \times$ Con Λ we associate the relation $\Psi(\imath, \pi, \lambda)$ defined on S by

$$
(a, b) \in \Psi(\imath, \pi, \lambda) \Longleftrightarrow\left(a a^{\circ}, b b^{\circ}\right) \in \imath,\left(a^{\circ}, b^{\circ}\right) \in \pi,\left(a^{\circ} a, b^{\circ} b\right) \in \lambda
$$

Theorem 2

$$
\text { If }(\imath, \pi, \lambda) \in \operatorname{LT}(S) \text { then } \Psi(\imath, \pi, \lambda) \in \operatorname{BrCon} S
$$

Proof. Suppose that $(a, b) \in \Psi(\imath, \pi, \lambda)$. Then $\left(a^{\circ}, b^{\circ}\right) \in \pi$ and, for every $x \in S$,

$$
\begin{array}{rlr}
(a x)^{\circ} & =x^{\circ}\left(a^{\circ} a x x^{\circ}\right)^{\circ} a^{\circ} \\
& \stackrel{\pi}{\equiv} x^{\circ}\left(b^{\circ} b x x^{\circ}\right)^{\circ} b^{\circ} \quad \text { by }(\beta) \\
& =(b x)^{\circ} .
\end{array}
$$

Similarly, $\left((x a)^{\circ},(x b)^{\circ}\right) \in \pi$.
Now (α) gives

$$
a^{\circ} a x x^{\circ}\left(a^{\circ} a x x^{\circ}\right)^{\circ} \stackrel{\imath}{=} b^{\circ} b x x^{\circ}\left(b^{\circ} b x x^{\circ}\right)^{\circ}
$$

whence, by (δ), we obtain

$$
a^{\circ \circ} a^{\circ} a x x^{\circ}\left(a^{\circ} a x x^{\circ}\right)^{\circ} a^{\circ} \stackrel{\imath}{=} b^{\circ \circ} b^{\circ} b x x^{\circ}\left(b^{\circ} b x x^{\circ}\right)^{\circ} b^{\circ} .
$$

Since $\left(a a^{\circ}, b b^{\circ}\right) \in \imath$ we therefore have

$$
a x(a x)^{\circ}=a a^{\circ} \cdot a^{\circ \circ} a^{\circ} a x x^{\circ}\left(a^{\circ} a x x^{\circ}\right)^{\circ} a^{\circ} \xlongequal{\imath} b b^{\circ} \cdot b^{\circ \circ} b^{\circ} b x x^{\circ}\left(b^{\circ} b x x^{\circ}\right)^{\circ} b^{\circ}=b x(b x)^{\circ} .
$$

Similarly, $\left(x a(x a)^{\circ}, x b(x b)^{\circ}\right) \in \imath$.
Using (γ) and (ϵ) we can show likewise that

$$
\left((a x)^{\circ} a x,(b x)^{\circ} b x\right) \in \lambda, \quad\left((x a)^{\circ} x a,(x b)^{\circ} x b\right) \in \lambda .
$$

Consequently, $\Psi(\imath, \pi, \lambda) \in \operatorname{Con} S$.
To prove that $\Psi(\imath, \pi, \lambda)$ is braided, suppose that $\left.\left(i_{1}, i_{2}\right) \in \Psi(\imath, \pi, \lambda)\right|_{\mathrm{I}}$ and $\left.\left(l_{1}, l_{2}\right) \in \Psi(\imath, \pi, \lambda)\right|_{\Lambda}$. Then $\left(i_{1}, i_{2}\right) \in \imath$ and $\left(l_{1}, l_{2}\right) \in \lambda$ and so, by $(\alpha),(\gamma)$ and Theorem 1, we have

$$
\begin{align*}
& \left(\left(l_{1} i_{1}\right)^{\circ \circ}\left(l_{1} i_{1}\right)^{\circ},\left(l_{2} i_{2}\right)^{\circ \circ}\left(l_{2} i_{2}\right)^{\circ}\right)=\left(\left[l_{1} i_{1}\left(l_{1} i_{1}\right)^{\circ}\right]^{\circ},\left[l_{2} i_{2}\left(l_{2} i_{2}\right)^{\circ}\right]^{\circ}\right) \in \tau ; \tag{1}\\
& \left(\left(l_{1} i_{1}\right)^{\circ}\left(l_{1} i_{1}\right)^{\circ \circ},\left(l_{2} i_{2}\right)^{\circ}\left(l_{2} i_{2}\right)^{\circ \circ}\right)=\left(\left[\left(l_{1} i_{1}\right)^{\circ} l_{1} i_{1}\right]^{\circ},\left[\left(l_{2} i_{2}\right)^{\circ} l_{2} i_{2}\right]^{\circ}\right) \in \lambda .
\end{align*}
$$

It follows from (1), (2), and (β) that $\left.\left(\left(l_{1} i_{1}\right)^{\circ \circ},\left(l_{2} i_{2}\right)^{\circ \circ}\right) \in \Psi(\imath, \pi, \lambda)\right|_{S^{\circ}}$ and therefore, by Theorem 1 again, $\left.\left(\left(l_{1} i_{1}\right)^{\circ},\left(l_{2} i_{2}\right)^{\circ}\right) \in \Psi(\imath, \pi, \lambda)\right|_{S^{\circ}}$. Hence $\Psi(\imath, \pi, \lambda)$ is braided.
Definition. A triple $(\imath, \pi, \lambda) \in \operatorname{Con} \mathrm{I} \times \operatorname{Con} S^{\circ} \times \mathrm{Con} \Lambda$ will be called balanced if

$$
\left.\imath\right|_{E\left(S^{\circ}\right)}=\left.\pi\right|_{E\left(S^{\circ}\right)}=\left.\lambda\right|_{E\left(S^{\circ}\right)} .
$$

We shall denote the ordered set of balanced linked triples by $\operatorname{BLT}(S)$.

Theorem 3

If $(\imath, \pi, \lambda) \in \operatorname{BLT}(S)$ then $\Psi(\imath, \pi, \lambda) \in \overline{\operatorname{Con}} S$.

Proof. Given $(\imath, \pi, \lambda) \in \operatorname{BLT}(S)$ we have that $(a, b) \in \Psi(\imath, \pi, \lambda)$ implies $\left(a^{\circ}, b^{\circ}\right) \in$ π whence $\left(a^{\circ \circ}, b^{\circ \circ}\right) \in \pi$ and therefore $\left.\left(a^{\circ \circ} a^{\circ}, b^{\circ \circ} b^{\circ}\right) \in \pi\right|_{E\left(S^{\circ}\right)}=\left.\imath\right|_{E\left(S^{\circ}\right)}$ and $\left.\left(a^{\circ} a^{\circ \circ}, b^{\circ} b^{\circ \circ}\right) \in \pi\right|_{E\left(S^{\circ}\right)}=\left.\lambda\right|_{E\left(S^{\circ}\right)}$. Consequently we see that $(a, b) \in \Psi(\imath, \pi, \lambda)$ implies $\left(a^{\circ}, b^{\circ}\right) \in \Psi(\imath, \pi, \lambda)$, whence the result follows by Theorem 2 .

Theorem 4

The mapping $\Psi: \operatorname{BLT}(S) \rightarrow \operatorname{BrCon} S$ described by $(\imath, \pi, \lambda) \mapsto \Psi(\imath, \pi, \lambda)$ is injective and residuated, with residual Ψ^{+}given by $\Psi^{+}(\vartheta)=\left(\left.\vartheta\right|_{\mathrm{I}},\left.\vartheta\right|_{S^{\circ}},\left.\vartheta\right|_{\Lambda}\right)$.

Proof. If $\vartheta \in \operatorname{BrCon} S$ then taking $\imath=\left.\vartheta\right|_{\mathrm{I}}, \pi=\left.\vartheta\right|_{S^{\circ}}, \lambda=\left.\vartheta\right|_{\Lambda}$ we see that (β), hence (α) and (γ), and $(\delta),(\epsilon)$ are satisfied. Consequently, $\left(\left.\vartheta\right|_{\mathrm{I}},\left.\vartheta\right|_{S^{\circ}},\left.\vartheta\right|_{\Lambda}\right)$ is a linked triple which is clearly balanced. We can therefore define a mapping $\Phi^{+}: \operatorname{BrCon} S \rightarrow$ $\operatorname{BLT}(S)$ by $\Psi^{+}(\vartheta)=\left(\left.\vartheta\right|_{\mathrm{I}},\left.\vartheta\right|_{S^{\circ}},\left.\vartheta\right|_{\Lambda}\right)$. It is clear that Ψ and Ψ^{+}are isotone. Now

$$
\begin{aligned}
(a, b) \in \Psi \Psi^{+}(\vartheta) & \left.\Rightarrow\left(a a^{\circ}, b b^{\circ}\right) \in \vartheta\right|_{\mathrm{I}},\left.\left(a^{\circ}, b^{\circ}\right) \in \vartheta\right|_{S^{\circ}},\left.\left(a^{\circ} a, b^{\circ} b\right) \in \vartheta\right|_{\Lambda} \\
& \Rightarrow a=a a^{\circ} \cdot a^{\circ \circ} \cdot a^{\circ} a \xlongequal{\equiv} b b^{\circ} \cdot b^{\circ \circ} \cdot b^{\circ} b=b
\end{aligned}
$$

so $\Psi \Psi^{+}(\vartheta) \subseteq \vartheta$ and therefore $\Psi \Psi^{+} \leq$id.
Observe next that for $i, j \in \mathrm{I}$ we have

$$
(i, j) \in \Psi(\imath, \pi, \lambda) \Longleftrightarrow(i, j) \in \imath,\left(i^{\circ}, j^{\circ}\right) \in \pi, \quad\left(i^{\circ}, j^{\circ}\right) \in \lambda
$$

But, by Theorem 1 and the hypothesis that $(\imath, \pi, \lambda) \in \operatorname{BLT}(S)$, we have

$$
\left.(i, j) \in \imath \Rightarrow\left(i^{\circ}, j^{\circ}\right) \in \imath\right|_{E\left(S^{\circ}\right)}=\left.\pi\right|_{E\left(S^{\circ}\right)}=\left.\lambda\right|_{E\left(S^{\circ}\right)} .
$$

Hence we see that $\left.\Psi(\imath, \pi, \lambda)\right|_{\mathrm{I}}=\imath$. Similarly, $\left.\Psi(\imath, \pi, \lambda)\right|_{\Lambda}=\lambda$ and $\left.\Psi(\imath, \pi, \lambda)\right|_{S^{\circ}}=\pi$. It follows from these observations that $\Psi^{+} \Psi(\imath, \pi, \lambda)=(\imath, \pi, \lambda)$ and therefore $\Psi^{+} \Psi=\mathrm{id}$.

Hence Ψ is injective and residuated, with residual Ψ^{+}.

Corollary 1

$\operatorname{BLT}(S)$ forms a lattice that is isomorphic to $\overline{\operatorname{Con}} S=\operatorname{Im} \Psi$.
Proof. It follows from Theorem 3 that $\operatorname{Im} \Psi \subseteq \overline{\operatorname{Con}} S$. But for every $\vartheta \in \overline{\operatorname{Con}} S$ we have

$$
\begin{aligned}
(a, b) \in \vartheta & \left.\Rightarrow\left(a a^{\circ}, b b^{\circ}\right) \in \vartheta\right|_{\mathrm{I}},\left.\left(a^{\circ}, b^{\circ}\right) \in \vartheta\right|_{S^{\circ}},\left.\left(a^{\circ} a, b^{\circ} b\right) \in \vartheta\right|_{\Lambda} \\
& \Rightarrow(a, b) \in \Psi \Psi^{+}(\vartheta)
\end{aligned}
$$

so $\vartheta \subseteq \Psi \Psi^{+}(\vartheta)$, whence we have equality. It follows that $\overline{\operatorname{Con}} S \subseteq \operatorname{Im} \Psi$ and therefore $\overline{\operatorname{Con}} S=\operatorname{Im} \Psi$. Now since Ψ^{+}is the residual of Ψ we have $\Psi \Psi^{+} \Psi=\Psi$.

Thus $\Psi \Psi^{+}$acts as the identity on $\operatorname{Im} \Psi$. More precisely, if Ψ_{*}^{+}is the restriction of Ψ^{+} to $\operatorname{Im} \Psi$ and if $\Psi_{*}: \operatorname{BLT}(S) \rightarrow \operatorname{Im} \Psi$ is the mapping induced by Ψ i.e. $\Psi_{*}(\imath, \pi, \lambda)=$ $\Psi(\imath, \pi, \lambda)]$ then Ψ_{*}^{+}and Ψ_{*} are mutually inverse isomorphisms. Consequently we have the order isomorphism $\operatorname{Im} \Psi \simeq \operatorname{BLT}(S)$.

Corollary 2

The relation \sim defined on BrCon S by

$$
\left.\vartheta \sim \varphi \Longleftrightarrow \vartheta\right|_{\mathrm{I}}=\left.\varphi\right|_{\mathrm{I}},\left.\vartheta\right|_{S^{\circ}}=\varphi_{S^{\circ}},\left.\vartheta\right|_{\Lambda}=\left.\varphi\right|_{\Lambda}
$$

is a dual closure equivalence. The smallest element in the \sim-class of ϑ is $\Psi \Psi^{+}(\vartheta)$.
Proof. Since Ψ is residuated, $\Psi \Psi^{+}$is a dual closure on $\operatorname{BrCon} S$ and the equality $\Psi^{+}=\Psi^{+} \Psi \Psi^{+}$gives

$$
\vartheta \sim \varphi \Longleftrightarrow \Psi^{+}(\vartheta)=\Psi^{+}(\varphi) \Longleftrightarrow \Psi \Psi^{+}(\vartheta)=\Psi \Psi^{+}(\varphi) .
$$

Also, the equality $\Psi \Psi^{+} \Psi=\Psi$ gives $\operatorname{Im} \Psi=\operatorname{Im} \Psi \Psi^{+}$. It follows by Corollary 1 that the fixed points of the dual closure $\Psi \Psi^{+}$are precisely the elements of $\overline{\text { Con }} S$. If $\vartheta \in$ BrCon S then the smallest element in the \sim-class of ϑ relative to this dual closure is clearly $\Psi \Psi^{+}(\vartheta)$.

Corollary 3

There is a lattice isomorphism $\overline{\mathrm{Con}} S \simeq(\operatorname{BrCon} S) / \sim$.
As Corollary 1 above shows, every $\vartheta \in \operatorname{Con} S$ determines uniquely, and is uniquely determined by, a balanced linked triple. Moreover, given $\pi \in \operatorname{Con} S^{\circ}$, there is a balanced linked triple whose middle component is π if and only if π can be extended to a ${ }^{\circ}$-congruence on S; and a similar statement holds for a given $\imath \in$ Con I or $\lambda \in \operatorname{Con} \Lambda$.

It is instructive at this juncture to give an example of a congruence on S° that does not extend to a ${ }^{\circ}$-congruence on S.

Example 1: Let $\operatorname{Sing}_{2 \times 2} \mathbb{R}$ be the semigroup of singular real 2×2 matrices and let $\operatorname{Sing}_{2 \times 2}^{*} \mathbb{R}^{\mathbb{R}}$ be the subsemigroup of those matrices whose leading element (i.e. that in the (1,1)-position) is non-zero. Observe that $\operatorname{Sing}_{2 \times 2}^{*} \mathbb{R}$ consists of matrices of the form

$$
\left[\begin{array}{cc}
a & b \\
c & a^{-1} b c
\end{array}\right]
$$

where $a, b, c, \in \mathbb{R}$ with $a \neq 0$. Let M be the set $\operatorname{Sing}_{2 \times 2}^{*} \mathbb{R}$ with the 2×2 zero matrix adjoined. Then, as is shown in [1, Example 9], M is a regular semigroup and if we define

$$
\left[\begin{array}{cc}
a & b \\
c & a^{-1} b c
\end{array}\right]^{\circ}=\left[\begin{array}{cc}
a^{-1} & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]^{\circ}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

then the subset

$$
M^{\circ}=\left\{\left[\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right] ; x \neq 0\right\} \cup\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}
$$

is a inverse transversal of M. If M^{1} denotes M with the 2×2 identity matrix adjoined then an inverse transversal of M^{1} is $\left(M^{1}\right)^{\circ}=\left(M^{\circ}\right)^{1}$. Consider the partition of $\left(M^{1}\right)^{\circ}$ with classes

$$
\left\{\left[\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right] ; x \neq 0\right\} \cup\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \quad \text { and } \quad\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}
$$

Clearly, this defines a congruence \equiv on $\left(M^{1}\right)^{\circ}$. However, \equiv has no extension that is a congruence on M^{1}, hence no extension that is a ${ }^{\circ}$-congruence on M^{1}. To see this, suppose that there is such an extension which we denote also by \equiv. Observe that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ gives, on multiplication on the right by $\left[\begin{array}{ll}1 & 0 \\ x & 0\end{array}\right]$, the equivalence $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ x & 0\end{array}\right]$. Thus in particular, for every $x,\left[\begin{array}{ll}1 & 0 \\ x & 0\end{array}\right] \equiv$ $\left[\begin{array}{cc}1 & 0 \\ x-1 & 0\end{array}\right]$. Multiplying on the left by $\left[\begin{array}{cc}x & -1 \\ 0 & 0\end{array}\right]$, we obtain the contradiction $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Definition. We shall say that $\pi \in \operatorname{Con} S^{\circ}$ is special if it has an extension in $\overline{\mathrm{Con}} S$; equivalently, if it is the middle component of some balanced linked triple.

The set of special congruences on S° will be denoted by $\mathrm{SpCon} S^{\circ}$

Theorem 5

$\pi \in \operatorname{Con} S^{\circ}$ is special if and only if

$$
\left(x_{1}, x_{2}\right) \in \pi \Rightarrow(\forall i \in \mathrm{I})(\forall l \in \Lambda) \quad\left(\left(l x_{1} i\right)^{\circ},\left(l x_{2} i\right)^{\circ}\right) \in \pi
$$

Proof. If π is special let $\imath \in$ Con I and $\lambda \in$ Con Λ be a such that $(\imath, \pi, \lambda) \in \operatorname{BLT}(S)$. For all $i \in \mathrm{I}, x=x^{\circ \circ} \in S^{\circ}, l \in \Lambda$ we have, since I is left regular and Λ is right regular,

$$
l x i=l x x^{\circ} x i=x x^{\circ} l x x^{\circ} x i x^{\circ} x=x \cdot x^{\circ} l x \cdot x^{\circ} \cdot x i x^{\circ} \cdot x
$$

If now $\left(x_{1}, x_{2}\right) \in \pi$ then it follows, using properties $(\delta),(\epsilon)$ and the fact that the restrictions of $\Psi(\imath, \pi, \lambda)$ to I, S°, Λ are \imath, π, λ respectively, that

$$
\left(l x_{1} i, l x_{2} i\right) \in \Psi(\imath, \pi, \lambda),
$$

and consequently $\left(\left(l x_{1} i\right)^{\circ},\left(l x_{2} i\right)^{\circ}\right) \in \pi$.
Conversely, suppose that π satisfies the above condition and consider the relation $\hat{\pi}$ defined on S by

$$
(a, b) \in \hat{\pi} \Longleftrightarrow(\forall i \in \mathrm{I})(\forall l \in \Lambda) \quad\left((l a i)^{\circ},(l b i)^{\circ}\right) \in \pi .
$$

Clearly, we have $\left.\pi \subseteq \hat{\pi}\right|_{S^{\circ}}$. Given $(a, b) \in \hat{\pi}$ and $x \in S$ we have, for all $i \in \mathrm{I}$ and $l \in \Lambda$,

$$
\begin{aligned}
& (l a x i)^{\circ}=(x i)^{\circ}\left(l a x i(x i)^{\circ}\right)^{\circ} \stackrel{\pi}{=}(x i)^{\circ}\left(l b x i(x i)^{\circ}\right)^{\circ}=(l b x i)^{\circ} ; \\
& (l x a i)^{\circ}=\left((l x)^{\circ} l x a i\right)^{\circ}(l x)^{\circ} \stackrel{\pi}{=}\left((l x)^{\circ} l x b i\right)^{\circ}(l x)^{\circ}=(l x b i)^{\circ} .
\end{aligned}
$$

Consequently $(a x, b x) \in \hat{\pi}$ and $(x a, x b) \in \hat{\pi}$, so we have that $\hat{\pi} \in \operatorname{Con} S$.
Observe now that

$$
(a, b) \in \hat{\pi} \Rightarrow\left(a^{\circ}, b^{\circ}\right) \in \pi
$$

In fact, if $(a, b) \in \hat{\pi}$ then taking $i=e \in E\left(S^{\circ}\right)$ and $l=f \in E\left(S^{\circ}\right)$ in the definition of $\hat{\pi}$ we obtain $\left(e^{\circ} a^{\circ} f^{\circ}, e^{\circ} b^{\circ} f^{\circ}\right) \in \pi$. Choosing in particular $e^{\circ}=a^{\circ} a^{\circ \circ}$ and $f^{\circ}=a^{\circ \circ} a^{\circ}$, we have $\left(a^{\circ}, a^{\circ} a^{\circ \circ} b^{\circ} a^{\circ \circ} a^{\circ}\right) \in \pi$ whence $\left(a^{\circ \circ}, a^{\circ \circ} b^{\circ} a^{\circ \circ}\right) \in \pi$. Interchanging a and b we have likewise $\left(b^{\circ \circ}, b^{\circ \circ} a^{\circ} b^{\circ \circ}\right) \in \pi$ whence $\left(b^{\circ}, b^{\circ} a^{\circ \circ} b^{\circ}\right) \in \pi$. Since S° / π is an inverse semigroup we see, on passing to quotients, that $\left[b^{\circ}\right]=\left[a^{\circ \circ}\right]^{-1}=\left[a^{\circ}\right]$ and hence that $\left(a^{\circ}, b^{\circ}\right) \in \pi$.

It follows from this implication that $\left.\hat{\pi}\right|_{S^{\circ}} \subseteq \pi$, whence $\left.\hat{\pi}\right|_{S^{\circ}}=\Pi$, and that $\hat{\pi} \in \overline{\mathrm{Con}} S$. Hence π is special.

Corollary 1

Given $\pi \in \operatorname{SpCon} S^{\circ}$ there is a biggest $\vartheta \in \overline{\operatorname{Con}} S$ that corresponds to a balanced linked triple of the form $(-, \pi,-)$, namely the relation $\hat{\pi}$ defined on S by

$$
(a, b) \in \hat{\pi} \Longleftrightarrow(\forall i \in \mathrm{I})(\forall l \in \Lambda) \quad\left((l a i)^{\circ},(l b i)^{\circ}\right) \in \pi
$$

Proof. If π is special let $\imath \in \operatorname{Con}$ I and $\lambda \in \operatorname{Con} \Lambda$ be such that $(\imath, \pi, \lambda) \in \operatorname{BLT}(S)$. For all $i_{1}, i_{2} \in \mathrm{I}$ we have, by (β),

$$
\left.\left(i_{1}, i_{2}\right) \in \imath \Rightarrow(\forall i \in \mathrm{I})\left(i_{1} i, i_{2} i\right) \in \imath \Rightarrow(\forall i \in \mathrm{I})(\forall l \in \Lambda)\left(\left(l i_{1} i\right)^{\circ}\right),\left(l i_{2} i\right)^{\circ}\right) \in \pi
$$

which shows that $\left.\imath \subseteq \hat{\pi}\right|_{\mathrm{I}}$. Similarly we have $\left.\lambda \subseteq \hat{\pi}\right|_{\Lambda}$. It follows that

$$
(\imath, \pi, \lambda) \leq\left(\left.\hat{\pi}\right|_{\mathrm{I}},\left.\hat{\pi}\right|_{S^{\circ}},\left.\hat{\pi}\right|_{\Lambda}\right)=\Psi^{+}(\hat{\pi})
$$

and therefore $\Psi(\imath, \pi, \lambda) \subseteq \Psi \Psi^{+}(\hat{\pi})=\hat{\pi}$, whence the result follows.

Corollary 2

If $\pi \in \operatorname{SpCon} S^{\circ}$ then the biggest balanced linked triple with middle component π is $\left(\left.\hat{\pi}\right|_{\mathrm{I}}, \pi,\left.\hat{\pi}\right|_{\Lambda}\right)$.

Theorem 6

The mapping $\Phi_{S^{\circ}}: \overline{\operatorname{Con}} S \rightarrow$ SpCon S° given by $\Phi_{S^{\circ}}(\vartheta)=\left.\vartheta\right|_{S^{\circ}}$ is surjective and residuated, with residual $\Phi_{S^{\circ}}^{+}$given by $\Phi_{S^{\circ}}^{+}(\pi)=\hat{\pi}$.

Proof. Clearly, both $\Phi_{S^{\circ}}$ and $\Phi_{S^{\circ}}^{+}$are isotone. For every $\pi \in \operatorname{SpCon} S^{\circ}$ we have

$$
\Phi_{S^{\circ}} \Phi_{S^{\circ}}^{+}(\pi)=\left.\hat{\pi}\right|_{S^{\circ}}=\pi
$$

so that $\Phi_{S^{\circ}} \Phi_{S^{\circ}}^{+}=\mathrm{id}$; and for every $\vartheta \in \overline{\mathrm{Con}} S$ we have, by Corollary 1 of Theorem 5,

$$
\Phi_{S^{\circ}}^{+} \Phi_{S^{\circ}}(\vartheta)=\widehat{\left.\vartheta\right|_{S^{\circ}}} \geq \vartheta
$$

so that $\Phi_{S^{\circ}}^{+} \Phi_{S^{\circ}} \geq$ id. Hence $\Phi_{S^{\circ}}$ is surjective and residuated with residual $\Phi_{S^{\circ}}^{+}$.

Corollary

The relation $\equiv S^{\circ}$ defined on $\overline{\mathrm{Con}} S$ by

$$
\left.\vartheta \equiv_{S^{\circ}} \varphi \Longleftrightarrow \vartheta\right|_{S^{\circ}}=\left.\varphi\right|_{S^{\circ}}
$$

is a closure equivalence. The biggest element in the $\equiv_{S^{\circ}}$-class of ϑ is $\widehat{\left.\vartheta\right|_{S^{\circ}}}$. Moreover, there is a lattice isomorphism SpCon $S^{\circ} \simeq(\overline{\mathrm{Con}} S) / \equiv S^{\circ}$.

Proof. Since $\Phi_{S^{\circ}}$ is residuated, $\Phi_{S^{\circ}}^{+} \Phi_{S^{\circ}}$ is a closure with associated equivalence $\equiv_{S^{\circ}}$. Moreover, since $\Phi_{S^{\circ}}$ is surjective we have that $\Phi_{S^{\circ}}^{+}$is injective, and therefore SpCon $S^{\circ} \simeq \operatorname{Im} \Phi_{S^{\circ}}^{+}=\operatorname{Im} \Phi_{S^{\circ}}^{+} \Phi_{S^{\circ}}$, the set of closed elements.

Given now $\imath \in$ Con I, consider the relation $\hat{\imath}$ defined on S by

$$
(a, b) \in \hat{\imath} \Longleftrightarrow(\forall x \in S)\left(a x(a x)^{\circ}, b x(b x)^{\circ}\right) \in \imath .
$$

We observe in passing that in this definition the range of the quantifier can be reduced to I. In fact, if $\left(a i(a i)^{\circ}, b i(b i)^{\circ}\right) \in \imath$ for all $i \in \mathrm{I}$ then for every $x \in S$ we have

$$
\left(a x(a x)^{\circ}, b x(b x)^{\circ}\right)=\left(a x x^{\circ}\left(a x x^{\circ}\right)^{\circ}, b x x^{\circ}\left(b x x^{\circ}\right)^{\circ}\right) \in \imath .
$$

Theorem 7

If $\imath \in \operatorname{Con} \mathrm{I}$ then $\left.\hat{\imath}\right|_{\mathrm{I}}=\imath$.

Proof. For all $i, j \in \mathrm{I}$ we have $j i=j i(j i)^{\circ}$ and so, on the one hand, $\left(i_{1}, i_{2}\right) \in \imath$ implies $\left(i_{1}, i_{2}\right) \in \hat{\imath}$, whence $\left.\imath \subseteq \hat{\imath}\right|_{\mathrm{I}}$. On the other hand, if $\left.\left(i_{1}, i_{2}\right) \in \hat{\imath}\right|_{\mathrm{I}}$ then for all $i \in$ I we have $\left(i_{1} i, i_{2} i\right) \in \imath$. Taking $i=i_{1}$ we obtain $\left(i_{1}, i_{2} i_{1}\right) \in \imath$ which, on left multiplication by i_{1}, gives $\left(i_{1}, i_{1} i_{2}\right) \in \imath$; and taking $i=i_{2}$ we obtain $\left(i_{1} i_{2}, i_{2}\right) \in \imath$. Hence $\left(i_{1}, i_{2}\right) \in \imath$, and so we have the reverse inclusion $\hat{\imath}_{\mathrm{I}} \subseteq \imath$.

As the following example shows, not every congruence on I extends to a congruence on S.

Example 2: Relative to the inverse transversal M° of example 1 we have

$$
\mathrm{I}=\left\{\left[\begin{array}{ll}
1 & 0 \\
x & 0
\end{array}\right] ; x \in \mathbb{R}\right\} \cup\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}
$$

Consider the partition of I whose classes are:

$$
\left\{\left[\begin{array}{cc}
1 & 0 \\
x & 0
\end{array}\right] ; x \in \mathbb{R}\right\} \text { and }\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} .
$$

Clearly, this defines a congruence \equiv on I. However, \equiv has no extension that is a congruence on M, hence no extension that is a ${ }^{\circ}$-congruence on M. To see this, suppose that there is such an extension which we denote also by \equiv. Observe that $\left[\begin{array}{ll}1 & 0 \\ x & 0\end{array}\right] \equiv\left[\begin{array}{cc}1 & 0 \\ x-1 & 0\end{array}\right]$ gives, on multiplication on the left by $\left[\begin{array}{cc}x & -1 \\ 0 & 0\end{array}\right]$, the contradiction $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
Definition. We shall say that $\imath \in$ Con I is special if it an extension in $\overline{\text { Con }} S$; equivalently, if it is the first component of some balanced linked triple.

The set of special congruences on I will be denoted by SpCon I.

Theorem 8

If $\imath \in$ Con I the following statements are equivalent:
(1) $\imath \in$ SpCon I;
(2) $(i, j) \in \imath \Rightarrow(\forall x \in S)\left(x i(x i)^{\circ}, x j(x j)^{\circ}\right) \in \imath$;
(3) $\hat{\imath} \in \overline{\operatorname{Con}} S$.

Proof. (1) $\Rightarrow(2)$: If \imath is special then it is the first component of some balanced linked triple and so, for every $x \in S$, we have

$$
\begin{aligned}
i \stackrel{\imath}{\equiv} j & \Rightarrow x^{\circ} x i\left(x^{\circ} x i\right)^{\circ} \stackrel{\imath}{\equiv} x^{\circ} x j\left(x^{\circ} x j\right)^{\circ} \quad \text { by }(\alpha) \\
& \Rightarrow x^{\circ \circ} x^{\circ} x i\left(x^{\circ} x i\right)^{\circ} x^{\circ} \stackrel{\imath}{\equiv} x^{\circ \circ} x^{\circ} x j\left(x^{\circ} x j\right)^{\circ} x^{\circ} \quad \text { by }(\delta) \\
& \Rightarrow x i(x i)^{\circ}=x x^{\circ} x^{\circ \circ} x^{\circ} x i\left(x^{\circ} x i\right)^{\circ} x^{\circ} \stackrel{\imath}{\equiv} x x^{\circ} x^{\circ \circ} x^{\circ} x j\left(x^{\circ} x j\right)^{\circ} x^{\circ}=x j(x j)^{\circ} .
\end{aligned}
$$

$(2) \Rightarrow(3)$: It is clear that $\hat{\imath}$ is a right congruence. If $(a, b) \in \hat{\imath}$ then $\left(a x(a x)^{\circ}, b x(b x)^{\circ}\right) \in \imath$ whence (2) gives, for every $y \in S$,

$$
\operatorname{yax}(y a x)^{\circ}=\operatorname{yax}(a x)^{\circ}\left(y a x(a x)^{\circ}\right)^{\circ} \stackrel{\imath}{\equiv} y b x(b x)^{\circ}\left(y b x(b x)^{\circ}\right)^{\circ}=y b x(y b x)^{\circ}
$$

and so $\hat{\imath}$ is also a left congruence.
To see that $\hat{\imath} \in \overline{\operatorname{Con}} S$, let $(a, b) \in \hat{\imath}$. Then

$$
\left(a a^{\circ}, b a^{\circ} a^{\circ \circ} b^{\circ}\right)=\left(a a^{\circ}\left(a a^{\circ}\right)^{\circ}, b a^{\circ}\left(b a^{\circ}\right)^{\circ}\right) \in \imath
$$

from which it follows on the one hand by Theorem 1 that

$$
\left(a^{\circ \circ} a^{\circ}, b^{\circ \circ} a^{\circ} a^{\circ \circ} b^{\circ}\right) \in \imath
$$

and on the other hand, taking $x=b^{\circ \circ} b^{\circ}$ in (2) using the fact that I is left regular and Λ is right regular, that $\left(b^{\circ \circ} b^{\circ} a a^{\circ}, b^{\circ \circ} a^{\circ} a^{\circ \circ} b^{\circ}\right) \in \imath$. It follows by Theorem 1 that

$$
\left(a^{\circ \circ} a^{\circ} b^{\circ \circ} b^{\circ}, b^{\circ \circ} a^{\circ} a^{\circ \circ} b^{\circ}\right) \in \imath
$$

We deduce from (1^{\prime}) and (2^{\prime}) that $\left(a^{\circ \circ} a^{\circ}, a^{\circ \circ} a^{\circ} b^{\circ \circ} b^{\circ}\right) \in \imath$. In a similar way we can show that $\left(b^{\circ \circ} b^{\circ}, b^{\circ \circ} b^{\circ} a^{\circ \circ} a^{\circ}\right) \in \imath$. Since $E\left(S^{\circ}\right)$ is a semilattice, it follows that

$$
\left(a^{\circ \circ} a^{\circ}, b^{\circ \circ} b^{\circ}\right) \in \imath
$$

We now have, using (3^{\prime}) and (δ),

$$
\left(a^{\circ} a^{\circ \circ}, a^{\circ} b^{\circ \circ} b^{\circ} a^{\circ \circ}\right)=\left(a^{\circ} a^{\circ \circ} a^{\circ} a^{\circ \circ}, a^{\circ} b^{\circ \circ} b^{\circ} a^{\circ \circ}\right) \in \imath
$$

Since $\hat{\imath}$ is a congruence we have that $\left(a^{\circ} a, a^{\circ} b\right) \in \hat{\imath}$, whence

$$
\left(a^{\circ} a b^{\circ} b^{\circ \circ}\left(a^{\circ} a b^{\circ} b^{\circ \circ}\right)^{\circ}, a^{\circ} b b^{\circ} b^{\circ \circ}\left(a^{\circ} b b^{\circ} b^{\circ \circ}\right)^{\circ}\right) \in \imath
$$

from which, using Theorem 1 again, we obtain

$$
\left(a^{\circ} a^{\circ \circ} b^{\circ} b^{\circ \circ}, a^{\circ} b^{\circ \circ} b^{\circ} a^{\circ \circ}\right) \in \imath
$$

It follows from (4^{\prime}) and (4^{\prime}) that $\left(a^{\circ} a^{\circ \circ}, a^{\circ} a^{\circ \circ} b^{\circ} b^{\circ \circ}\right) \in \imath$. Similarly, we have $\left(b^{\circ} b^{\circ \circ}, b^{\circ} b^{\circ \circ} a^{\circ} a^{\circ \circ}\right) \in \imath$. Since $E\left(S^{\circ}\right)$ is a semilattice it follows that

$$
\left(a^{\circ} a^{\circ \circ}, b^{\circ} b^{\circ \circ}\right) \in \imath
$$

Combining $\left(3^{\prime}\right),\left(6^{\prime}\right)$ and the hypothesis that $(a, b) \in \hat{\imath}$ we obtain

$$
\left(a^{\circ \circ}, b^{\circ \circ}\right)=\left.\left(a^{\circ \circ} a^{\circ} \cdot a \cdot a^{\circ} a^{\circ \circ}, b^{\circ \circ} b^{\circ} \cdot b \cdot b^{\circ} b^{\circ \circ}\right) \in \hat{\imath}\right|_{S^{\circ}} .
$$

It now follows by Theorem 1 that $\left(a^{\circ}, b^{\circ}\right) \in \hat{\imath}$ and hence that $\hat{\imath} \in \overline{\operatorname{Con}} S$.
$(3) \Rightarrow(1)$: This is immediate from Theorem 7 .

Corollary

Given $\imath \in$ SpCon I there is a biggest $\vartheta \in \overline{\mathrm{Con}} S$ that corresponds to a balanced linked triple of the form $(\imath,-,-)$, namely $\hat{\imath}$.

Proof. Suppose that $\vartheta \in \overline{\mathrm{Con}} S$ is such that $\left.\vartheta\right|_{\mathrm{I}}=\imath$. If $(a, b) \in \vartheta$ then for every $x \in S$ we have $(a x, b x) \in \vartheta$ whence $\left((a x)^{\circ},(b x)^{\circ}\right) \in \vartheta$ and therefore

$$
\left.\left(a x(a x)^{\circ}, b x(b x)^{\circ}\right) \in \vartheta\right|_{\mathrm{I}}=\imath
$$

which gives $(a, b) \in \hat{\imath}$. Hence $\vartheta \subseteq \hat{\imath}$.

Theorem 9

The mapping $\Phi_{\mathrm{I}}: \overline{\operatorname{Con}} S \rightarrow$ SpCon I given by $\Phi_{\mathrm{I}}(\vartheta)=\left.\vartheta\right|_{\mathrm{I}}$ is surjective and residuated with residual Φ_{I}^{+}given by $\Phi_{\mathrm{I}}^{+}(\imath)=\hat{\imath}$.

Proof. Given $\imath \in$ SpCon I we have, by Theorem $8, \hat{\imath} \in \overline{\operatorname{Con}} S$. Also, by Theorem 7 , $\left.\hat{\imath}\right|_{\mathrm{I}}=\imath$. It is clear that both Φ_{I} and Φ_{I}^{+}are isotone. Now since, for every $\imath \in \operatorname{SpCon}$ I

$$
\Phi_{\mathrm{I}} \Phi_{\mathrm{I}}^{+}(\imath)=\Phi_{\mathrm{I}}(\hat{\imath})=\left.\hat{\imath}\right|_{\mathrm{I}}=\imath
$$

we have $\Phi_{\mathrm{I}} \Phi_{\mathrm{I}}^{+}=\mathrm{id}$. Also, for every $\vartheta \in \overline{\mathrm{Con}} S$, it follows by Theorem 8 that

$$
\Phi_{\mathrm{I}}^{+} \Phi_{\mathrm{I}}(\vartheta)=\Phi_{\mathrm{I}}^{+}\left(\left.\vartheta\right|_{\mathrm{I}}\right)=\widehat{\left.\vartheta\right|_{\mathrm{I}}} \supseteq \vartheta
$$

so $\Phi_{\mathrm{I}}^{+} \Phi_{\mathrm{I}} \geq$ id. Hence Φ_{I} is surjective and residuated with residual Φ_{I}^{+}.

Corollary

The relation \equiv_{I} defined on $\overline{\operatorname{Con}} S$ by

$$
\left.\vartheta \equiv_{\mathrm{I}} \varphi \Longleftrightarrow \vartheta\right|_{\mathrm{I}}=\left.\varphi\right|_{\mathrm{I}}
$$

is a closure equivalence. The biggest element in the $\equiv_{\mathrm{I}^{-c l a s s ~}}$ of ϑ is $\widehat{\left.\vartheta\right|_{\mathrm{I}}}$. Moreover, there is a lattice isomorphism $\mathrm{SpCon} \mathrm{I} \simeq(\overline{\mathrm{Con}} S) / \equiv_{\mathrm{I}}$.

We can of course consider likewise special congruences on Λ. In so doing we obtain dual results to Theorem 7, 8, 9 .

We recall now that an inverse transversal S° is said to be multiplicative [2] if $\Lambda \mathrm{I}=E\left(S^{\circ}\right)$. When S° is multiplicative, certain simplifications arise. For example, in this case we have $l i=(l i)^{\circ}$ for all $l \in \Lambda, i \in \mathrm{I}$ whence it follows immediately that every $\vartheta \in \operatorname{Con} S$ braided, so that $\operatorname{BrCon} S=\operatorname{Con} S$. Combining this observation with Corollaries 2, 3 of Theorem 4, we obtain:

Theorem 10

Let S be a regular semigroup with an inverse transversal S°. If S° is multiplicative then $\overline{\operatorname{Con}} S \simeq(\operatorname{Con} S) / \sim$ where \sim is the dual closure equivalence given by

$$
\left.\vartheta \sim \varphi \Longleftrightarrow \vartheta\right|_{\mathrm{I}}=\left.\varphi\right|_{\mathrm{I}},\left.\vartheta\right|_{S^{\circ}}=\left.\varphi\right|_{S^{\circ}},\left.\vartheta\right|_{\Lambda}=\left.\varphi\right|_{\Lambda} .
$$

Definition. The elements of SpCon $\mathrm{I} \times \operatorname{SpCon} S^{\circ} \times \operatorname{SpCon} \Lambda$ will be called special triples.

We shall denote the set of balanced special triples by $\operatorname{BSpT}(S)$. Clearly, we have the inclusion $\operatorname{BLT}(S) \subseteq \operatorname{BSpT}(S)$. As the following result shows, when S° is multiplicative the reverse inclusion holds.

Theorem 11

Let S be regular semigroup with an inverse transversal S°. If S° is multiplicative then every balanced special triple is a balanced linked triple.

Proof. Suppose that $(\imath, \pi, \lambda) \in \operatorname{BSpT}(S)$ and consider the balanced linked triples that correspond to $\hat{\imath}, \hat{\pi}, \hat{\lambda} \in \overline{\mathrm{Con}} S$, namely

$$
\left(\imath,\left.\hat{\imath}\right|_{S^{\circ}},\left.\hat{\imath}\right|_{\Lambda}\right),\left(\left.\hat{\pi}\right|_{\mathbf{I}}, \pi,\left.\hat{\pi}\right|_{\Lambda}\right),\left(\left.\hat{\lambda}\right|_{\mathrm{I}},\left.\hat{\lambda}\right|_{S^{\circ}}, \lambda\right) .
$$

Observe that
(1) $\left.\pi \subseteq \hat{\imath}\right|_{S^{\circ}}$ and $\left.\pi \subseteq \hat{\lambda}\right|_{S^{\circ}}$

In fact, if $\left.(a, b) \in \pi\right|_{S^{\circ}}=\pi$ then by (δ), for every $i \in \mathrm{I}$ we have $\left.\left(a i a^{\circ}, b i b^{\circ}\right) \in \hat{\pi}\right|_{\mathrm{I}}$. Since S° is in particular a quasi-ideal, i.e. $S^{\circ} S S^{\circ} \subseteq S^{\circ}[3]$, we have aia ${ }^{\circ} \in E\left(S^{\circ}\right)$ and therefore $\left.\left(a i a^{\circ}, b i b^{\circ}\right) \in \hat{\pi}\right|_{E\left(S^{\circ}\right)}=\left.\pi\right|_{E\left(S^{\circ}\right)}=\left.\imath\right|_{E\left(S^{\circ}\right)}$ whence it follows that $\left.(a, b) \in \hat{\imath}\right|_{S^{\circ}}$. Thus we see that $\left.\pi \subseteq \hat{\imath}\right|_{S^{\circ}}$. Similarly, using (ε), we have $\left.\pi \subseteq \hat{\lambda}\right|_{S^{\circ}}$.
(2) $\left.\imath \subseteq \hat{\pi}\right|_{\mathrm{I}}$ and $\left.\lambda \subseteq \hat{\pi}\right|_{\Lambda}$.

In fact, if $\left(i_{1}, i_{2}\right) \in \imath$ then, for every $i \in \mathrm{I}$, we have $\left(i_{1} i, i_{2} i\right) \in \imath$ and so, by (β), for every $l \in \Lambda$ we have $\left.\left(\left(l i_{1} i\right)^{\circ},\left(l i_{2} i\right)^{\circ}\right) \in \pi \subseteq \hat{\imath}\right|_{S^{\circ}}$ by (1). Since S° is multiplicative
this gives $\left.\left(\left(l i_{1} i\right)^{\circ},\left(l i_{2} i\right)^{\circ}\right) \in \hat{\imath}\right|_{E\left(S^{\circ}\right)}=\left.\imath\right|_{E\left(S^{\circ}\right)}=\left.\pi\right|_{E\left(S^{\circ}\right)}$ whence $\left.\left(i_{1}, i_{2}\right) \in \hat{\pi}\right|_{\mathrm{I}}$. Thus we see that $\left.\imath \subseteq \hat{\pi}\right|_{\mathrm{I}}$; and similarly $\left.\lambda \subseteq \hat{\pi}\right|_{\Lambda}$.
(3) $\left.\imath \subseteq \hat{\lambda}\right|_{\mathrm{I}}$ and $\left.\lambda \subseteq \hat{\imath}\right|_{\Lambda}$.

In fact, if $\left(i_{1}, i_{2}\right) \in \imath$ then, by (γ), for every $l \in \Lambda$ we have $\left.\left(\left(l i_{1}\right)^{\circ} l i_{1},\left(l i_{2}\right)^{\circ} l i_{2}\right) \in \hat{\imath}\right|_{\Lambda}$. Since S° is multiplicative this gives $\left.\left(\left(l i_{1}\right)^{\circ} l i_{1},\left(l i_{2}\right)^{\circ} l i_{2}\right) \in \hat{\imath}\right|_{E\left(S^{\circ}\right)}=\left.\imath\right|_{E\left(S^{\circ}\right)}=\left.\lambda\right|_{E\left(S^{\circ}\right)}$ whence $\left.\left(i_{1}, i_{2}\right) \in \hat{\lambda}\right|_{\mathrm{I}}$. Thus we see that $\left.\imath \subseteq \hat{\lambda}\right|_{\mathrm{I}}$. Similarly, using (α), we have $\left.\lambda \subseteq \hat{\imath}\right|_{\Lambda}$.

It now follows from $(1),(2),(3)$ that

$$
(\imath, \pi, \lambda)=\left(\imath,\left.\hat{\imath}\right|_{S^{\circ}},\left.\hat{\imath}\right|_{\Lambda}\right) \wedge\left(\left.\hat{\pi}\right|_{\mathrm{I}}, \pi,\left.\hat{\pi}\right|_{\Lambda}\right) \wedge\left(\left.\hat{\lambda}\right|_{\mathrm{I}},\left.\hat{\lambda}\right|_{S^{\circ}}, \lambda\right) \in \operatorname{BLT}(S)
$$

as required.

Corollary 1

If S° is multiplicative then $\overline{\operatorname{Con}} S \simeq B S p T(S)$
Proof. This follows from Corollary 1 of Theorem 4.

Corollary 2

If S° is multiplicative and $(\imath, \pi, \lambda) \in B L T(S)$ then $\Psi(\imath, \pi, \lambda)=\hat{\imath} \cap \hat{\pi} \cap \hat{\lambda}$.

Corollary 3

If S° is multiplicative and $\vartheta \in \overline{\operatorname{Con}} S$ then $\vartheta=\widehat{\left.\vartheta\right|_{\mathrm{I}}} \cap \widehat{\left.\vartheta\right|_{S^{\circ}}} \cap \widehat{\left.\vartheta\right|_{\Lambda}}$.

References

1. T. S. Blyth and M. H. Almeida Santos, A simplistic approach to inverse transversals (to appear).
2. T. S. Blyth and R. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Roy. Soc. Edinburgh 92A (1982), 253-270.
3. D. B. McAlister and R. McFadden, Semigroups with inverse transversals as matrix semigroups, Quart. J. Math. Oxford 35 (1984), 455-474.
4. Tatsuhiko Saito, Construction of a class of regular semigroups with an inverse transversal, Proc. Edinburgh Math. Soc. 32 (1989), 41-51.
5. Tatsuhiko Saito, Construction of a class of regular semigroups with an inverse transversal, Math. Ges. D.D.R. Conference on the Theory and Applications of Semigroups, Griefswald, 1984, 108-112.
6. Xilin Tang, Regular semigroups with inverse transversals (preprint).
