Collect. Math. 46, 1-2 (1995), 21-33
(c) 1995 Universitat de Barcelona

Length of ideals in lattices

Ladislav Beran
Department of Algebra, Charles University, Sokolovská 83, 18600 Prague 8, Czech Republic

Dedicated to the memory of Professor M.-L. Dubreil-Jacotin

Abstract

Let I^{k} be the k-th meander of an ideal I in a lattice L with 0 and 1 . Define m to be the smallest nonnegative integer such that $I^{m}=I^{m+2}$ if such a number exists; in this case we put $l(I)=m+1$; otherwise we set $l(I)=0$. We show: (i) $l(I)=1$ for any semiprime ideal I of a lattice satisfying the ascending chain condition (briefly (ACC)); (ii) $l(I)=1$ for any ideal I of a distributive lattice satisfying the (ACC); (iii) $l(I) \leq 2$ for any ideal I of a modular lattice having no infinite chains; and (iv) given any nonnegative integer n, there exists an ideal I such that $l(I)=n$.

I. Introduction

A study of the relationship between ideals and the corresponding first meanders was undertaken by the author in [4], where, under appropriate conditions, it was shown that the semiprimeness or the primeness of an ideal determinates the same property for its first meander; and vice versa. In this paper, intended as a sequel to [4], we investigate in further detail the n-th meanders for $n \geq 2$. As in [4], the chain conditions play a particularly fruitful role.

Throughout this paper, we use the letter L to denote a lattice with 0 and 1 .
We refer the reader to [5] and [2] for the basic definitions and results used in this paper. Some concepts from the author's paper [3] may also be useful.

Figure 1

The key notion of the n-th meander, due to the author [4], can be defined as follows: Let $I=I^{0}$ be an ideal of L . The set

$$
I^{1}=\{b \in L ; \forall c \in L b \wedge c \in I \Rightarrow c \in I\}
$$

is called the first meander (or simply meander) of I. Given a filter F of L, its first meander F^{1} is defined dually. Then one can define recursively the second meander I^{2} of I as the set $\left(I^{1}\right)^{1}$, the third meander I^{3} as the set $\left(I^{2}\right)^{1}$ and so on.

If there exists a nonnegative integer k such that $I^{k}=I^{k+2}$ and if k_{0} is the smallest number with respect to this property, then $k_{0}+1$ is called the length of I and we write $l(I)=k_{0}+1$. If there is no such k, we set $l(I)=0$.

Given a filter F of L, its length $l(F)$ is defined dually.
Examples 1.1: Consider the lattice illustrated in Figure 1. It is the subgroup lattice of a group (cf. [6], the subgroup number 51 in the diagram 32.39) and it is modular.

We list in tabular form the first three meanders of typical ideals in this lattice (see Table 1). The corresponding lengths are given in the last column.

Note that $I^{1}=I^{3}$ for any ideal I of this lattice as it also follows from our Main Theorem.

$I=I^{0}$	I^{1}	I^{2}	I^{3}	$l(I)$
$(0]$	$[8)$	$(0]$	$[8)$	1
$(1]$	$[0)$	$(1]$	$[0)$	1
$(2]$	$[12)$	$(2]$	$[12)$	1
$(3]$	$[13)$	$(3]$	$[13)$	1
$(5]$	$[12)$	$(2]$	$[12)$	2
$(6]$	$[12)$	$(2]$	$[12)$	2
$(7]$	$[13)$	$(3]$	$[13)$	2
$(8]$	$[1)$	$(8]$	$[1)$	1
$(12]$	$[1)$	$(8]$	$[1)$	2
$(13]$	$[1)$	$(8]$	$[1)$	2

Table 1

2. Second meanders

Recall that an ideal I of a lattice T is called semiprime [7] if

$$
(x \wedge y \in I \& x \wedge z \in I) \Rightarrow x \wedge(y \vee z) \in I
$$

for any $x, y, z \in T$.
In this section we first prove the following technical lemmas.

Lemma 2.1

If I is a semiprime ideal of a lattice L, then $I \subset I^{2}$.
Proof. Let $i \in I$. We want to prove that $i \in I^{2}$, i.e.,

$$
\forall x \in L i \vee x \in I^{1} \Rightarrow x \in I^{1}
$$

Were this false, then there would exist x such that

$$
i \vee x \in I^{1} \quad \& \quad x \notin I^{1} .
$$

Consequently, there exists y for which

$$
x \wedge y \in I \quad \& \quad y \notin I .
$$

Now, by Lemma 2.1 of $[3],(i \vee(x \wedge y),(i \vee x) \wedge(i \vee y)) \in \hat{C}(L)$. Thus by the definition of the congruence $\hat{C}(L)$ and by [4, Proposition 1.1 (ii)], $(i \vee x) \wedge(i \vee y) \in I$.

Since $i \vee x \in I^{1}$, the definition of the meander I^{1} implies that $i \vee y \in I$. Therefore, $y \in I$, a contradiction.

It is understood that the remark on the use of the maximal condition made in [4] applies to the proof of Lemma 2.2 and to that of Theorem 3.1.

Lemma 2.2

If I is a semiprime ideal of a lattice L satisfying the (ACC), then $I^{2} \subset I$.
Proof. We may assume with no loss of generality that $I \neq L$.
Choose $b \in I^{2}$, i.e.

$$
\begin{equation*}
\forall x \in L b \vee x \in I^{1} \Rightarrow x \in I^{1} . \tag{2.1}
\end{equation*}
$$

We claim that $b \in I$. Were this false, we would have $b \notin I^{1}$ by Lemma 2.1 of [4] and its dual. Consequently, there exists x_{1} such that

$$
b \wedge x_{1} \in I \& x_{1} \notin I
$$

By the definition of the meander $I^{1}, x_{1} \notin I^{1}$.
We now construct a chain in L recursively, as follows. Let $n \in \mathbb{N}$. Suppose $x_{1}, x_{2}, \cdots, x_{n}$ are such that

$$
\begin{gather*}
x_{1}<x_{2}<\cdots<x_{n} ; \tag{2.2}\\
\forall i=1,2, \cdots, n \quad x_{i} \notin I^{1} ; \tag{2.3}\\
\forall i=1,2, \cdots, n \quad b \wedge x_{i} \in I \quad \& \quad x_{i} \notin I . \tag{2.4}
\end{gather*}
$$

We shall show that there is x_{n+1} for which

$$
\begin{gather*}
x_{n}<x_{n+1} ; \tag{2.5}\\
x_{n+1} \notin I^{1} ; \tag{2.6}\\
b \wedge x_{n+1} \in I \& x_{n+1} \notin I . \tag{2.7}
\end{gather*}
$$

First, one observes that $b \vee x_{n} \notin I^{1}$.
Indeed, if $b \vee x_{n}$ belongs to I^{1}, then $x_{n} \in I^{1}$ by (2.1), yet by (2.3) this is impossible.

Therefore there exists y_{n} such that

$$
\begin{equation*}
\left(b \vee x_{n}\right) \wedge y_{n} \in I \quad \& \quad y_{n} \notin I \tag{2.8}
\end{equation*}
$$

Let $x_{n+1}:=x_{n} \vee y_{n}$. Suppose $x_{n+1}=x_{n}$. Then $x_{n} \geq y_{n}$ and (2.8) yields $y_{n}=\left(b \vee x_{n}\right) \wedge y_{n} \in I$, a contradiction. Hence (2.5) is proved.

By (2.4), $b \wedge x_{n} \in I$, and, by (2.8), $b \wedge y_{n} \in I$. Since I is semiprime,

$$
\begin{equation*}
b \wedge x_{n+1}=b \wedge\left(x_{n} \vee y_{n}\right) \in I \tag{2.9}
\end{equation*}
$$

Suppose $x_{n+1} \in I$. Then $x_{n} \leq x_{n+1}$ would imply $x_{n} \in I$, contradicting (2.4). Thus, $x_{n+1} \notin I^{1}$ and this proves (2.7).

Assume $x_{n+1} \in I^{1}$. Then, by (2.9), $b \in I$, a contradiction. Consequently, (2.6) holds.

Hence, recursively, we could construct an infinite chain $x_{1}<x_{2}<\cdots$, contrary to hypothesis. This proves Lemma 2.2.

The following theorems summarize the preceding lemmas.

Theorem 2.3

Let L be a lattice satisfying the (ACC). Then $I^{2}=I$ for every semiprime ideal I of L.

Theorem 2.4

Let L be a distributive lattice satisfying the (ACC). Then $I^{2}=I$ for every ideal I of L.

In other words, the length of every ideal in L is equal to 1 .
We conclude this section with one example.
Examples 2.5: Both Theorem 2.3 and Theorem 2.4 are false without the assumption that L satisfies the (ACC). This shows the distributive lattice $L=\left(\mathbb{N}_{0}, \mid\right)$, where \mathbb{N}_{0} denotes the set of all the nonnegative integers and " $\mid "$ is the usual divisibility relation on \mathbb{N}_{0}. The set

$$
I=\left\{m \in \mathbb{N} ; \exists e \in \mathbb{N}_{0} \quad m=2^{e}\right\}
$$

is an ideal of L for which $I^{1}=\{0\}$ and $I^{2}=\mathbb{N} \neq I$.

3. Meanders in modular lattices

We first prove the following theorem which plays a crucial role in the proof of our Main Theorem.

Theorem 3.1

Let I be an ideal of a modular lattice L satisfying the (ACC). Then $I^{2} \subset I$.

Proof. Suppose by way of contradiction that there exists w such that

$$
\begin{equation*}
w \in I^{2} \quad \& w \notin I . \tag{3.1}
\end{equation*}
$$

Note that $w \notin I^{1}$. To prove this assertion it suffices to observe that $w \in I^{1}$ would imply $w \in I^{1} \cap I^{2}$. By the dual of Lemma 2.1 in [4], $I^{1}=L$, and so $I \cap I^{1}=I \neq \emptyset$. According to the same Lemma, $I=L$ which is absurd since $w \notin I$.

Set $I=\left(i_{0}\right]$ and let $w_{0}:=w \vee i_{0}, z_{0}:=i_{0}$. Then $w_{0} \notin I^{1}$. Were this false, we would have

$$
w_{0}=w \vee i_{0} \in I^{1} \quad \& \quad w \in I^{2}
$$

By the definition of $I^{2}, i_{0} \in I \cap I^{1}$. From the same Lemma as above we conclude that $I=L$. This contradicts (3.1).

We assume by induction that n is a nonnegative integer and that there are elements $z_{0}, z_{1}, \cdots, z_{n}$ such that the elements z_{i} and $w_{j}:=w \vee \bigvee_{i=0}^{j} z_{i}$ satisfy

$$
\begin{gather*}
z_{0}<z_{1}<\cdots<z_{n} ; \tag{3.2}\\
w_{j} / z j \searrow w_{0} / z_{0} \tag{3.3}
\end{gather*}
$$

for every $j=1,2, \cdots, n$;

$$
\begin{equation*}
w_{j} \notin I^{1} \tag{3.4}
\end{equation*}
$$

for every $j=0,1, \cdots, n$.
We shall prove that there exists z_{n+1} such that

$$
\begin{gather*}
z_{n}<z_{n+1} ; \tag{3.5}\\
w_{n+1} / z_{n+1} \searrow w_{0} / z_{0} ; \tag{3.6}\\
w_{n+1} \notin I^{1} . \tag{3.7}
\end{gather*}
$$

In fact, by (3.4) $w_{n} \notin I^{1}$. Hence there exists y_{n+1} for which

$$
\begin{equation*}
w_{n} \wedge y_{n+1} \in I \quad \& \quad y_{n+1} \notin I . \tag{3.8}
\end{equation*}
$$

Set $z_{n+1}:=z_{n} \vee y_{n+1}$ and $w_{n+1}:=w_{n} \vee z_{n+1}$.

Clearly z_{n+1} cannot equal to z_{n}; otherwise we would have $z_{n} \geq y_{n+1}$ and (3.8) would imply

$$
I \ni w_{n} \wedge y_{n+1}=\left(w \vee z_{0} \vee \cdots \vee z_{n}\right) \wedge y_{n+1}=y_{n+1}
$$

This contradicts (3.8) and so (3.5) holds.
Further, by modularity and since $z_{n} \leq w_{n}$ it follows that

$$
w_{n} \wedge z_{n+1}=w_{n} \wedge\left(z_{n} \vee y_{n+1}\right)=z_{n} \vee\left(w_{n} \wedge y_{n+1}\right)
$$

From (3.8) we see that $w_{n} \wedge y_{n+1} \leq i_{0}=z_{0} \leq z_{n}$. Hence $w_{n} \wedge z_{n+1}=z_{n}$ and $w_{n+1} / z_{n+1} \searrow w_{n} / z_{n}$. Applying (3.3), we have $w_{n+1} / z_{n+1} \searrow w_{0} / z_{0}$. This establishes (3.6).

Finally, we claim that $w_{n+1} \notin I^{1}$. For if this were not the case then I^{1} would contain $w \vee z_{0} \vee z_{1} \vee \cdots \vee z_{n} \vee z_{n+1}$. Putting together (3.2) and (3.5), we obtain $w \vee z_{n+1} \in I^{1}$. Since $w \in I^{2}$, we get from the definition of I^{2} that $z_{n+1} \in I^{1}$. By (3.6), $w_{0} \wedge z_{n+1}=z_{0} \in I$. Therefore, by the definition of $I^{1}, w_{0}=w \vee i_{0} \in I$. Now I is an ideal, and so we would have $w \in I$, contradicting (3.1). Hence (3.7) is true.

In summary, we obtain an infinite sequence $z_{1}<z_{2}<\cdots$, contradicting the (ACC). Thus, our proof has been completed.

Remark 3.2. The ideal I of the lattice mentioned in Remark 2.10.B of [4] is such that $I \varsubsetneqq L \backslash\{1\}=I^{2}$. Hence the hypothesis of the (ACC) in Theorem 3.1 is essential.

Definition 3.3. (cf. [1]): Let I be an ideal of a lattice T. An element $a \in T$ is said to be an I-atom if
(i) $a \notin I$
and if
(ii) for all $m \in T, \quad m<a \Rightarrow m \in I$.

Dually is defined an F-atom for a given filter F of T.
To determine the first meander of an ideal is not always easy to practise. However, for the case where L has no infinite chains we have the following useful result:

Theorem 3.4

Let I be an ideal of a lattice L which has no infinite chains and let i_{1} be the join of all the I-atoms. Then $I^{1}=\left[i_{1}\right)$.

Proof. If $I=L$, then the join is equal to 0 and the assertion holds.
Suppose $I \neq L$ and set $H:=\left[i_{1}\right)$.
First, we show that for any $h \in H$ and any $x \in L$ such that $h \wedge x \in I$ we necessarily have $x \in I$.

Indeed, if $x \notin I$, then there would exist an I-atom x_{0} such that $x_{0} \leq x$. Since x_{0} is an I-atom, $x_{0} \notin I$. On the other hand, we have $x_{0} \leq i_{1} \leq h$ and so $x_{0}=h \wedge x_{0} \leq h \wedge x \in I$ which gives $x_{0} \in I$, a contradiction. Consequently, $H \subset I^{1}$.

Conversely, let $y \in I^{1}$. We want to show that $y \in H$, i.e. that $a \leq y$ for every I-atom a. If $a \wedge y<a$, then $a \wedge y \in I$, since a is an I-atom. Notice that $y \in I^{1}$ implies $a \in I$, a contradiction. Hence $a=a \wedge y \leq y$.

The following lemma (whose trivial proof is omitted) can be proved.

Lemma 3.5

Let $I=\left(i_{0}\right]$ be a principal ideal of a lattice T and let a be an I-atom of T. Then the element $a_{0}:=a \wedge i_{0}$ is the greatest element which is contained in a.

With the above definition of an I-atom in hand we are prepared to prove the main theorem of this paper.

Theorem 3.6 (Main theorem)
Let L be a modular lattice which has no infinite chains. Then $I^{1}=I^{3}$ for every ideal I of L.

In other words, there is no ideal in L having its length greater than 2.
Proof. By the dual of Theorem 3.1, $I^{3} \subset I^{1}$.
Set $I^{1}=\left[i_{1}\right)$. To finish the proof, it remains to show that $I^{1} \subset I^{3}$, or more precisely, that $i_{1} \in I^{3}$.

Were this false, then there would exist $t \in L$ such that

$$
i_{1} \wedge t \in I^{2} \quad \& t \notin I^{2}
$$

Since $t \notin I^{2}$, there exists an I^{2}-atom t_{1} such that $t_{1} \leq t$. Clearly, $i_{1} \wedge t_{1} \in I^{2}$, and, by Theorem 3.1, also $i_{1} \wedge t_{1} \in I$. Then, in view of $i_{1} \in I^{1}, t_{1} \in I$. Hence, in summary

$$
\begin{equation*}
i_{1} \wedge t_{1} \in I^{2} \& t_{1} \notin I^{2} \& t_{1} \in I \tag{3.9}
\end{equation*}
$$

Set $I^{2}=\left(i_{2}\right]$ and let $t_{0}:=i_{2} \wedge t_{1}$.

Since $t_{1} \notin I^{2}$, there exists an element z such that

$$
t_{1} \vee z \in I^{1} \quad \& \quad z \notin I^{1}
$$

Let z_{1} be an I^{1}-atom for which $z \leq z_{1}$. As an immediate consequence of the fact that I^{1} is a filter we have

$$
\begin{equation*}
t_{1} \vee z_{1} \in I^{1} \quad \& \quad z_{1} \notin I^{1} \tag{3.10}
\end{equation*}
$$

From $z_{1} \notin I^{1}$ we see that there exists an element w for which

$$
z_{1} \wedge w \in I \quad \& \quad w \notin I
$$

Let w_{1} be an I-atom such that $w_{1} \leq w$. Since I is an ideal, we obtain

$$
\begin{equation*}
z_{1} \wedge w_{1} \in I \quad \& \quad w_{1} \notin I \tag{3.11}
\end{equation*}
$$

By Theorem 3.4, $w_{1} \leq i_{1}$ so that $w_{1} \leq i_{1} \vee t_{0}$. Now, $t_{0} \leq t_{1}$ and L is modular. Therefore,

$$
\begin{aligned}
\xi: & =\left[z_{1} \wedge\left(w_{1} \vee t_{1}\right)\right] \wedge\left(i_{1} \vee t_{0}\right)=z_{1} \wedge\left\{w_{1} \vee\left[t_{1} \wedge\left(i_{1} \vee t_{0}\right)\right]\right\} \\
& =z_{1} \wedge\left[w_{1} \vee t_{0} \vee\left(t_{1} \wedge i_{1}\right)\right]
\end{aligned}
$$

By (3.9), $i_{1} \wedge t_{1} \in I^{2}$ and, at the same time $i_{1} \wedge t_{1} \leq t_{1}$ where t_{1} is an I^{2}-atom. Using Lemma 3.5, we get $i_{1} \wedge t_{1} \leq t_{0}$. This implies that $\xi=z_{1} \wedge\left(w_{1} \vee t_{0}\right)$. By the dual of Theorem 3.4 (with I in the Theorem equal to the filter I^{1}), $i_{2} \leq z_{1}$, and, a fortiori, $t_{0} \leq z_{1}$. Since L is modular, ξ can be rewritten in the form $\xi=\left(z_{1} \wedge w_{1}\right) \vee t_{0}$. Moreover, by (3.11), $z_{1} \wedge w_{1} \in I$ and we know that $I^{2} \subset I$. Hence $t_{0} \leq i_{2} \leq i_{0} \in I$ and so $t_{0} \in I$. Thus $\xi \in I$. Now i_{1} belongs to the filter I^{1} and $i_{1} \leq i_{1} \vee t_{0}$. Therefore,

$$
\xi=\left[z_{1} \wedge\left(w_{1} \vee t_{1}\right)\right] \wedge\left(i_{1} \vee t_{0}\right) \in I \quad \& \quad i_{1} \vee t_{0} \in I^{1}
$$

Thus, by the definition of I^{1}, we get

$$
\begin{equation*}
z_{1} \wedge\left(w_{1} \vee t_{1}\right) \in I \tag{3.12}
\end{equation*}
$$

Set $\eta:=t_{1} \vee\left[z_{1} \wedge\left(w_{1} \vee t_{1}\right)\right]$. In view of (3.9) and (3.12) it is easily seen that $\eta \in I$. By modularity, $\eta=\left(t_{1} \vee z_{1}\right) \wedge\left(w_{1} \vee t_{1}\right)$. Here z_{1} is an I^{1}-atom and, from (3.10) we have $z_{1} \leq t_{1} \vee z_{1} \in I^{1}$. Let $z_{0}:=i_{1} \vee z_{1}$. By the dual of Lemma 3.5, $t_{1} \vee z_{1} \geq z_{0}$. Therefore $\eta \geq z_{0} \wedge w_{1}$. It follows immediately from Theorem 3.4 that

Figure 2
$w_{1} \leq i_{1} \leq z_{0}$; hence $\eta \geq w_{1}$. Since $\eta \in I$ and I is an ideal, we get $w_{1} \in I$. This contradicts (3.11) and completes the proof.

4. Examples of ideals with a given length

In this section we give an explicit construction which makes clear the fact that for every nonnegative integer n there exists an ideal I such that $l(I)=n$.

We start with two lattices which will pave the way.
Let L_{1} be the lattice shown in Figure 2 and let $I=\left(c_{3}\right]$. From Theorem 3.4 it follows that $I^{1}=\left[c_{1}\right), I^{2}=\left(c_{4}\right], I^{3}=\left[c_{2}\right), I^{4}=I^{2}$. Thus $l(I)=3$ and $l\left(I^{1}\right)=2$.

To simplify the following diagrams, we shall use a more concise way to denote the groups of elements such as $a, x, x^{\prime}, x^{\prime \prime}, c_{0}$ or $b, y, y^{\prime}, y^{\prime \prime}, c_{0}$ or $c_{3}, c_{2}, c_{2}^{\prime}, c_{3}^{\prime \prime}, c_{1}$ as it is depicted in Figure 3. With this convention Diagram in Figure 3 represents the same lattice as Figure 2.

Now let L_{2} be the lattice of Figure 4. Then L_{2} contains L_{1} as a sublattice and the ideal $I=\left(c_{3}\right]$ is such that $I^{1}=\left[c_{1}\right), I^{2}=\left(c_{4}\right], I^{3}=\left[c_{2}\right), I_{4}=\left(c_{5}\right], I_{5}=\left[c_{4}\right)$, $I_{6}=I_{4}$. Hence $l(I)=5$ and $l\left(I^{1}\right)=4$.

It is possible to proceed recursively along these lines, to obtain a more general result:

Indeed, if L_{n} has been defined, let L_{n+1} be constructed in the way indicated in Figure 5.

A glance at Figure 5 shows that $L_{1} \subset L_{2} \subset \cdots \subset L_{n} \subset L_{n+1}$ and that for the ideal $I=\left(c_{3}\right]$ of L_{n+1} we have $l(I)=2 n+3$ and $l\left(I^{1}\right)=2 n+2$.

Figure 3

We end this section with the following consequence of the preceding examples: Let $S_{\infty}:=\bigcup\left\{L_{n} ; n \in \mathbb{N}\right\}$ and let L^{*} be the lattice we get from the lattice S_{∞} by adjoining a zero 0 , and a unit 1 to S_{∞}.

Then the ideal $I=\left(c_{3}\right]$ of L^{*} satisfies $l(I)=0$.
Acknowledgement. The author would like to thank Professor L. Lesieur for his critical reading of the manuscript and for valuable comments.

Figure 4

Figure 5

References

1. L. Beran, Lattice socles and radicals described by a Galois connection, Acta Univ. Carolinae 12 (1971), 55-63.
2. L. Beran, Othomodular Lattices (Algebraic Approach), Reidel, Dordrecht, 1985.
3. L. Beran, On semiprime ideals in lattices, Journ. Pure Appl. Algebra 64 (1990), 223-227.
4. L. Beran, Meanders in lattices (this volume).
5. G. Grätzer, General Lattice Theory, Academic Press, New York, N.Y.; Birkhäuser Verlag, Basel; Akademie Verlag, Berlin, 1978.
6. J. Neubüser, Die Untergruppenverbände der Gruppen der Ordnung ≤ 100 mit Ausnahme der Ordnungen 64 und 96, Kiel, 1967.
7. Y. Rav, Semiprime ideals in general lattices, Journ. Pure Appl. Algebra 56 (1989), 105-118.
