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Abstract

Let Ik be the k−th meander of an ideal I in a lattice L with 0 and 1. Define m
to be the smallest nonnegative integer such that Im = Im+2 if such a number
exists; in this case we put l(I) = m+1; otherwise we set l(I) = 0. We show:
(i) l(I) = 1 for any semiprime ideal I of a lattice satisfying the ascending chain
condition (briefly (ACC)); (ii) l(I) = 1 for any ideal I of a distributive lattice
satisfying the (ACC); (iii) l(I) ≤ 2 for any ideal I of a modular lattice having
no infinite chains; and (iv) given any nonnegative integer n, there exists an ideal
I such that l(I) = n.

I. Introduction

A study of the relationship between ideals and the corresponding first meanders
was undertaken by the author in [4], where, under appropriate conditions, it was
shown that the semiprimeness or the primeness of an ideal determinates the same
property for its first meander; and vice versa. In this paper, intended as a sequel
to [4], we investigate in further detail the n−th meanders for n ≥ 2. As in [4], the
chain conditions play a particularly fruitful role.

Throughout this paper, we use the letter L to denote a lattice with 0 and 1.
We refer the reader to [5] and [2] for the basic definitions and results used in

this paper. Some concepts from the author’s paper [3] may also be useful.
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Figure 1

The key notion of the n−th meander, due to the author [4], can be defined as
follows: Let I = I0 be an ideal of L. The set

I1 = {b ∈ L;∀c ∈ L b ∧ c ∈ I ⇒ c ∈ I}

is called the first meander (or simply meander) of I. Given a filter F of L, its first
meander F 1 is defined dually. Then one can define recursively the second meander
I2 of I as the set (I1)1, the third meander I3 as the set (I2)1 and so on.

If there exists a nonnegative integer k such that Ik = Ik+2 and if k0 is the
smallest number with respect to this property, then k0 + 1 is called the length of I

and we write l(I) = k0 + 1. If there is no such k, we set l(I) = 0.

Given a filter F of L, its length l(F ) is defined dually.
Examples 1.1: Consider the lattice illustrated in Figure 1. It is the subgroup
lattice of a group (cf. [6], the subgroup number 51 in the diagram 32.39) and it is
modular.

We list in tabular form the first three meanders of typical ideals in this lattice
(see Table 1). The corresponding lengths are given in the last column.
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Note that I1 = I3 for any ideal I of this lattice as it also follows from our Main
Theorem.

I = I0 I1 I2 I3 l(I)
(0] [8) (0] [8) 1
(1] [0) (1] [0) 1
(2] [12) (2] [12) 1
(3] [13) (3] [13) 1
(5] [12) (2] [12) 2
(6] [12) (2] [12) 2
(7] [13) (3] [13) 2
(8] [1) (8] [1) 1
(12] [1) (8] [1) 2
(13] [1) (8] [1) 2

Table 1

2. Second meanders

Recall that an ideal I of a lattice T is called semiprime [7] if

(x ∧ y ∈ I & x ∧ z ∈ I) ⇒ x ∧ (y ∨ z) ∈ I

for any x, y, z ∈ T.
In this section we first prove the following technical lemmas.

Lemma 2.1
If I is a semiprime ideal of a lattice L, then I ⊂ I2.

Proof. Let i ∈ I. We want to prove that i ∈ I2, i.e.,

∀x ∈ L i ∨ x ∈ I1 ⇒ x ∈ I1.

Were this false, then there would exist x such that

i ∨ x ∈ I1 & x /∈ I1.

Consequently, there exists y for which

x ∧ y ∈ I & y /∈ I.

Now, by Lemma 2.1 of [3], (i ∨ (x ∧ y), (i ∨ x) ∧ (i ∨ y)) ∈ Ĉ(L). Thus by the
definition of the congruence Ĉ(L) and by [4, Proposition 1.1 (ii)], (i∨x)∧(i∨y) ∈ I.

Since i∨x ∈ I1, the definition of the meander I1 implies that i∨y ∈ I. Therefore,
y ∈ I, a contradiction. �
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It is understood that the remark on the use of the maximal condition made in
[4] applies to the proof of Lemma 2.2 and to that of Theorem 3.1.

Lemma 2.2

If I is a semiprime ideal of a lattice L satisfying the (ACC), then I2 ⊂ I.

Proof. We may assume with no loss of generality that I = L.

Choose b ∈ I2, i.e.

(2.1) ∀x ∈ L b ∨ x ∈ I1 ⇒ x ∈ I1.

We claim that b ∈ I. Were this false, we would have b /∈ I1 by Lemma 2.1 of [4] and
its dual. Consequently, there exists x1 such that

b ∧ x1 ∈ I & x1 /∈ I.

By the definition of the meander I1, x1 /∈ I1.

We now construct a chain in L recursively, as follows. Let n ∈ N. Suppose
x1, x2, · · · , xn are such that

(2.2) x1 < x2 < · · · < xn;

(2.3) ∀i = 1, 2, · · · , n xi /∈ I1;

(2.4) ∀i = 1, 2, · · · , n b ∧ xi ∈ I & xi /∈ I.

We shall show that there is xn+1 for which

(2.5) xn < xn+1;

(2.6) xn+1 /∈ I1;

(2.7) b ∧ xn+1 ∈ I & xn+1 /∈ I.

First, one observes that b ∨ xn /∈ I1.

Indeed, if b ∨ xn belongs to I1, then xn ∈ I1 by (2.1), yet by (2.3) this is
impossible.
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Therefore there exists yn such that

(2.8) (b ∨ xn) ∧ yn ∈ I & yn /∈ I.

Let xn+1 := xn ∨ yn. Suppose xn+1 = xn. Then xn ≥ yn and (2.8) yields
yn = (b ∨ xn) ∧ yn ∈ I, a contradiction. Hence (2.5) is proved.

By (2.4), b ∧ xn ∈ I, and, by (2.8), b ∧ yn ∈ I. Since I is semiprime,

(2.9) b ∧ xn+1 = b ∧ (xn ∨ yn) ∈ I.

Suppose xn+1 ∈ I. Then xn ≤ xn+1 would imply xn ∈ I, contradicting (2.4).
Thus, xn+1 /∈ I1 and this proves (2.7).

Assume xn+1 ∈ I1. Then, by (2.9), b ∈ I, a contradiction. Consequently, (2.6)
holds.

Hence, recursively, we could construct an infinite chain x1 < x2 < · · · , contrary
to hypothesis. This proves Lemma 2.2. �

The following theorems summarize the preceding lemmas.

Theorem 2.3
Let L be a lattice satisfying the (ACC). Then I2 = I for every semiprime ideal

I of L.

Theorem 2.4
Let L be a distributive lattice satisfying the (ACC). Then I2 = I for every ideal

I of L.
In other words, the length of every ideal in L is equal to 1.

We conclude this section with one example.

Examples 2.5: Both Theorem 2.3 and Theorem 2.4 are false without the assump-
tion that L satisfies the (ACC). This shows the distributive lattice L = (N0, |), where
N0 denotes the set of all the nonnegative integers and ”|” is the usual divisibility
relation on N0. The set

I = {m ∈ N;∃e ∈ N0 m = 2e}
is an ideal of L for which I1 = {0} and I2 = N = I.

3. Meanders in modular lattices

We first prove the following theorem which plays a crucial role in the proof of our
Main Theorem.

Theorem 3.1
Let I be an ideal of a modular lattice L satisfying the (ACC). Then I2 ⊂ I.



26 Beran

Proof. Suppose by way of contradiction that there exists w such that

(3.1) w ∈ I2 & w /∈ I.

Note that w /∈ I1. To prove this assertion it suffices to observe that w ∈ I1 would
imply w ∈ I1 ∩ I2. By the dual of Lemma 2.1 in [4], I1 = L, and so I ∩ I1 = I = ∅.
According to the same Lemma, I = L which is absurd since w /∈ I.

Set I = (i0] and let w0 := w ∨ i0, z0 := i0. Then w0 /∈ I1. Were this false, we
would have

w0 = w ∨ i0 ∈ I1 & w ∈ I2.

By the definition of I2, i0 ∈ I ∩ I1. From the same Lemma as above we conclude
that I = L. This contradicts (3.1).

We assume by induction that n is a nonnegative integer and that there are
elements z0, z1, · · · , zn such that the elements zi and wj := w ∨ ∨j

i=0 zi satisfy

(3.2) z0 < z1 < · · · < zn;

(3.3) wj/zj ↘ w0/z0

for every j = 1, 2, · · · , n;

(3.4) wj /∈ I1

for every j = 0, 1, · · · , n.

We shall prove that there exists zn+1 such that

(3.5) zn < zn+1;

(3.6) wn+1/zn+1 ↘ w0/z0;

(3.7) wn+1 /∈ I1.

In fact, by (3.4) wn /∈ I1. Hence there exists yn+1 for which

(3.8) wn ∧ yn+1 ∈ I & yn+1 /∈ I.

Set zn+1 := zn ∨ yn+1 and wn+1 := wn ∨ zn+1.
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Clearly zn+1 cannot equal to zn; otherwise we would have zn ≥ yn+1 and (3.8)
would imply

I � wn ∧ yn+1 = (w ∨ z0 ∨ · · · ∨ zn) ∧ yn+1 = yn+1.

This contradicts (3.8) and so (3.5) holds.
Further, by modularity and since zn ≤ wn it follows that

wn ∧ zn+1 = wn ∧ (zn ∨ yn+1) = zn ∨ (wn ∧ yn+1).

From (3.8) we see that wn ∧ yn+1 ≤ i0 = z0 ≤ zn. Hence wn ∧ zn+1 = zn and
wn+1/zn+1 ↘ wn/zn. Applying (3.3), we have wn+1/zn+1 ↘ w0/z0. This establishes
(3.6).

Finally, we claim that wn+1 /∈ I1. For if this were not the case then I1 would
contain w ∨ z0 ∨ z1 ∨ · · · ∨ zn ∨ zn+1. Putting together (3.2) and (3.5), we obtain
w ∨ zn+1 ∈ I1. Since w ∈ I2, we get from the definition of I2 that zn+1 ∈ I1. By
(3.6), w0 ∧ zn+1 = z0 ∈ I. Therefore, by the definition of I1, w0 = w ∨ i0 ∈ I. Now
I is an ideal, and so we would have w ∈ I, contradicting (3.1). Hence (3.7) is true.

In summary, we obtain an infinite sequence z1 < z2 < · · · , contradicting the
(ACC). Thus, our proof has been completed. �

Remark 3.2. The ideal I of the lattice mentioned in Remark 2.10.B of [4] is such that
I ⊂�= L \ {1} = I2. Hence the hypothesis of the (ACC) in Theorem 3.1 is essential.

Definition 3.3. (cf. [1]): Let I be an ideal of a lattice T. An element a ∈ T is said
to be an I−atom if

(i) a /∈ I

and if
(ii) for all m ∈ T, m < a ⇒ m ∈ I.

Dually is defined an F−atom for a given filter F of T.

To determine the first meander of an ideal is not always easy to practise. How-
ever, for the case where L has no infinite chains we have the following useful result:

Theorem 3.4

Let I be an ideal of a lattice L which has no infinite chains and let i1 be the

join of all the I−atoms. Then I1 = [i1).
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Proof. If I = L, then the join is equal to 0 and the assertion holds.
Suppose I = L and set H := [i1).
First, we show that for any h ∈ H and any x ∈ L such that h ∧ x ∈ I we

necessarily have x ∈ I.

Indeed, if x /∈ I, then there would exist an I−atom x0 such that x0 ≤ x.

Since x0 is an I−atom, x0 /∈ I. On the other hand, we have x0 ≤ i1 ≤ h and so
x0 = h∧ x0 ≤ h∧ x ∈ I which gives x0 ∈ I, a contradiction. Consequently, H ⊂ I1.

Conversely, let y ∈ I1. We want to show that y ∈ H, i.e. that a ≤ y for every
I−atom a. If a ∧ y < a, then a ∧ y ∈ I, since a is an I−atom. Notice that y ∈ I1

implies a ∈ I, a contradiction. Hence a = a ∧ y ≤ y. �

The following lemma (whose trivial proof is omitted) can be proved.

Lemma 3.5

Let I = (i0] be a principal ideal of a lattice T and let a be an I−atom of T.

Then the element a0 := a ∧ i0 is the greatest element which is contained in a.

With the above definition of an I−atom in hand we are prepared to prove the
main theorem of this paper.

Theorem 3.6 (Main theorem)

Let L be a modular lattice which has no infinite chains. Then I1 = I3 for every

ideal I of L.

In other words, there is no ideal in L having its length greater than 2.

Proof. By the dual of Theorem 3.1, I3 ⊂ I1.

Set I1 = [i1). To finish the proof, it remains to show that I1 ⊂ I3, or more
precisely, that i1 ∈ I3.

Were this false, then there would exist t ∈ L such that

i1 ∧ t ∈ I2 & t /∈ I2.

Since t /∈ I2, there exists an I2−atom t1 such that t1 ≤ t. Clearly, i1 ∧ t1 ∈ I2,

and, by Theorem 3.1, also i1 ∧ t1 ∈ I. Then, in view of i1 ∈ I1, t1 ∈ I. Hence, in
summary

(3.9) i1 ∧ t1 ∈ I2 & t1 /∈ I2 & t1 ∈ I.

Set I2 = (i2] and let t0 := i2 ∧ t1.
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Since t1 /∈ I2, there exists an element z such that

t1 ∨ z ∈ I1 & z /∈ I1.

Let z1 be an I1−atom for which z ≤ z1. As an immediate consequence of the
fact that I1 is a filter we have

(3.10) t1 ∨ z1 ∈ I1 & z1 /∈ I1.

From z1 /∈ I1 we see that there exists an element w for which

z1 ∧ w ∈ I & w /∈ I.

Let w1 be an I−atom such that w1 ≤ w. Since I is an ideal, we obtain

(3.11) z1 ∧ w1 ∈ I & w1 /∈ I.

By Theorem 3.4, w1 ≤ i1 so that w1 ≤ i1 ∨ t0. Now, t0 ≤ t1 and L is modular.
Therefore,

ξ : =
[
z1 ∧ (w1 ∨ t1)

]
∧ (i1 ∨ t0) = z1 ∧

{
w1 ∨ [t1 ∧ (i1 ∨ t0)]

}

= z1 ∧
[
w1 ∨ t0 ∨ (t1 ∧ i1)

]
.

By (3.9), i1 ∧ t1 ∈ I2 and, at the same time i1 ∧ t1 ≤ t1 where t1 is an I2−atom.
Using Lemma 3.5, we get i1 ∧ t1 ≤ t0. This implies that ξ = z1 ∧ (w1 ∨ t0). By the
dual of Theorem 3.4 (with I in the Theorem equal to the filter I1), i2 ≤ z1, and, a
fortiori, t0 ≤ z1. Since L is modular, ξ can be rewritten in the form ξ = (z1∧w1)∨t0.

Moreover, by (3.11), z1 ∧ w1 ∈ I and we know that I2 ⊂ I. Hence t0 ≤ i2 ≤ i0 ∈ I

and so t0 ∈ I. Thus ξ ∈ I. Now i1 belongs to the filter I1 and i1 ≤ i1∨ t0. Therefore,

ξ = [z1 ∧ (w1 ∨ t1)] ∧ (i1 ∨ t0) ∈ I & i1 ∨ t0 ∈ I1.

Thus, by the definition of I1, we get

(3.12) z1 ∧ (w1 ∨ t1) ∈ I.

Set η := t1 ∨ [z1 ∧ (w1 ∨ t1)]. In view of (3.9) and (3.12) it is easily seen that
η ∈ I. By modularity, η = (t1 ∨ z1) ∧ (w1 ∨ t1). Here z1 is an I1−atom and, from
(3.10) we have z1 ≤ t1 ∨ z1 ∈ I1. Let z0 := i1 ∨ z1. By the dual of Lemma 3.5,
t1 ∨ z1 ≥ z0. Therefore η ≥ z0 ∧ w1. It follows immediately from Theorem 3.4 that
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Figure 2

w1 ≤ i1 ≤ z0; hence η ≥ w1. Since η ∈ I and I is an ideal, we get w1 ∈ I. This
contradicts (3.11) and completes the proof. �

4. Examples of ideals with a given length

In this section we give an explicit construction which makes clear the fact that for
every nonnegative integer n there exists an ideal I such that l(I) = n.

We start with two lattices which will pave the way.
Let L1 be the lattice shown in Figure 2 and let I = (c3]. From Theorem 3.4 it

follows that I1 = [c1), I2 = (c4], I3 = [c2), I4 = I2. Thus l(I) = 3 and l(I1) = 2.

To simplify the following diagrams, we shall use a more concise way to denote
the groups of elements such as a, x, x′, x′′, c0 or b, y, y′, y′′, c0 or c3, c2, c

′
2, c

′′
3 , c1 as it

is depicted in Figure 3. With this convention Diagram in Figure 3 represents the
same lattice as Figure 2.



Length of ideals in lattices 31

Now let L2 be the lattice of Figure 4. Then L2 contains L1 as a sublattice and
the ideal I = (c3] is such that I1 = [c1), I2 = (c4], I3 = [c2), I4 = (c5], I5 = [c4),
I6 = I4. Hence l(I) = 5 and l(I1) = 4.

It is possible to proceed recursively along these lines, to obtain a more general
result:

Indeed, if Ln has been defined, let Ln+1 be constructed in the way indicated in
Figure 5.

A glance at Figure 5 shows that L1 ⊂ L2 ⊂ · · · ⊂ Ln ⊂ Ln+1 and that for the
ideal I = (c3] of Ln+1 we have l(I) = 2n + 3 and l(I1) = 2n + 2.

Figure 3
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We end this section with the following consequence of the preceding examples:
Let S∞ :=

⋃{Ln;n ∈ N} and let L∗ be the lattice we get from the lattice S∞ by
adjoining a zero 0, and a unit 1 to S∞.

Then the ideal I = (c3] of L∗ satisfies l(I) = 0.
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Figure 5
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