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Abstract

Let C denote an acute convex open cone in R
n with an apex at the origin and

let T (C) = R
n + iC be the corresponding tube in C

n. We define a space of
holomorphic functions f(z) of exponential type in T (C) which have boundary
valuesf0(x), asy → 0, y ∈ C , satisfying some inequality. We obtain Fourier-
Laplace integral representation of these functions. As a consequence a weighted
version of the edge of the wedge theorem and Fourier-Laplace representation of
entire functions of exponential type (with more general growth characteristics
than in [2]) are obtained.

1. Introduction

A weighted generalization of theorems of Paley-Wiener [5] and Plancherel-Polya [6],
concerning the integral representation of entire functions of exponential type was
established in [2]. Also the Fourier-Laplace representation of functions of exponential
type in an octant in C

n and as a consequence a weighted version of the edge of the
wedge theorem was obtained there.

In this paper results of [2] are extended to holomorphic functions in tube do-
mains over acute convex open cones in R

n and entire functions of exponential type
with more general growth characteristics. This became possible due to a simple
useful statement, namely the lemma below.
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Throughout this paper, nonnegative locally integrable functions on R
n will be

called weight functions. We write f ∈ Lp
w(Rn), w a weight function, if f w1/p ∈

Lp(Rn) and ‖f‖p,w = ‖w1/pf‖p, where ‖ ‖p denotes the norm of Lp.
For ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ C

n or R
n we set 〈ξ, η〉 = ξ1η1+. . .+ξnηn.

The euclidean norm in C
n or R

n is denoted by ‖ ‖. B̄ will denote the closure of
B ⊂ C

n, respectively, R
n.

If C is a cone in R
n with an apex at the origin, then the projection of C is

pr C = {y ∈ C : ‖y‖ = 1}, the dual cone is defined by C∗ = {ξ ∈ R
n : 〈ξ, y〉 ≥

0 for all y ∈ C}, and T (C) = R
n + iC is called a tube domain over cone C. If b

is a convex, continuous function on C which is positively homogeneous of order 1,
then we define

U(b, C) =
{
ξ ∈ R

n : −〈ξ, y〉 ≤ b(y) for all y ∈ C
}
.

It’s clear that U(b, C) is closed in R
n. Recall that a cone C is called acute if it

doesn’t contain any straight line.
For f ∈ L1(Rn)

f̂(x) =
∫

Rn

f(t) exp
(
− i〈x, t〉

)
dt , x ∈ R

n

is the Fourier transform of f .
The following definition was introduced in [2]:

Definition. Let u and v be weight functions on R
n. We say the pair (u, v) ∈

F p
q , p ≥ 1, q ≥ 1, if the inequality

‖f̂‖q,u ≤ c ‖f‖p,v , c = const > 0 (1)

is satisfied for any simple function on R
n.

As it is noted in [2] (1) permits us to define the Fourier transform in Lp
v(R

n).
A wide class of weight functions, satisfying the F p

q condition is described
in [2, 3].

2. Results

Let C be an open convex acute cone in R
n with apex at the origin ([8], p. 73). Let

a(z) be a convex continuous function on T (C̄) which is positively homogeneous of
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order 1. By Pa(C) we denote the space of holomorphic functions on T (C) satisfying
inequality

|f(z)| ≤ cε exp
(
a(z) + ε‖z‖

)
, cε > 0

for any ε > 0.

Lemma

Let g ∈ Pa(C) and for any ξ ∈ R
n lim

z→ξ,z∈T (C)
|g(z)| ≤ M, then

|g(x+ iy)| ≤ M exp
(
a(iy)

)
, x+ iy ∈ T (C) . (2)

Proof. Note that for some σ > 0 a(z) ≤ σ‖z‖ , z ∈ T (C). Let us fix η =
(η1, . . . , ηn) ∈ pr C and define a linear operator A : C

n → C
n whose matrix has

the form 


η1 η2 ηn

a21 a22 a2n

. . . . . . . . . . . . . . . . . .

an1 an2 ann




,

where the elements akj ∈ R are chosen so that A is unitary. Then g(x + iηs) =
g
(
A(u1 + is, u2, . . . , un)

)
, where u = (u1, u2, . . . , un) = A−1x, s > 0. Fix

u1 = (u2, . . . , un). Then function ϕ(u1 + is) = g
(
A(u1 + is, u1)

)
is analytic in

the upper half-plane G = {w ∈ C : Imw > 0} . Using the unitary of the operator A
we obtain the estimate on G

∣∣ϕ(u1 + is)
∣∣ ≤ cε exp

(
(σ + ε)‖u1‖ + (σ + ε)|u1| + (σ + ε)s

)

and by the Phragmen-Lindelöf principle ([7], p. 120) we get

∣∣ϕ(u1 + is)
∣∣ ≤ M exp(σs) , u1 + is ∈ G . (3)

Using convexity of function a(z) we have for x+ iηs ∈ T (C) and any ε > 0

∣∣g(x+ iηs)
∣∣ ≤ cε exp

(
a(x) + ε‖x‖ + (a(iη) + ε)s

)
.

Therefore,

lim
s→+∞

log |ϕ(is)|
s

≤ a(iη) .
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Applying the Phragmen-Lindelöf principle again ([4], p. 119) and (3) we obtain

log
∣∣ϕ(u1 + is)

∣∣ ≤ log M + a(iη)s , u1 + is ∈ G ,

that is, ∣∣g(x+ iηs)
∣∣ ≤ M exp

(
a(iy)

)
, x = A

(
u1, u

1
)
, s > 0 .

The right side of this last inequality does not depend on u1. This means that the
inequality holds for any x ∈ R

n. Since η ∈ pr C was arbitrary, (2) is proved. �

Let b(y) = a(iy) , y ∈ C , Br = {ξ ∈ R
n : ‖ξ‖ ≤ r} .

Theorem 1

Let (u, v) ∈ F p
q and suppose that the following conditions hold:

a) The inequality

∫
‖y‖≤1

v(x+ εy) dy ≤ c1 v(x) + c2 , c1 > 0 , c2 > 0

is satisfied on R
n for sufficiently small ε > 0.

b) The weight u is even and

u(x) ≥ cε exp
(
− ε‖x‖

)
, x ∈ R

n, cε > 0 (4)

holds for any ε > 0.

Suppose that f ∈ Pa(C) has boundary values

f0(x) = lim
y→0,y∈C

f(x+ iy)

a.e. in R
n and ∫

Rn

|f0(x)|p
(
1 + v(x)

)
dx < ∞ .

Then the following representation holds

f(z) =
∫

Rn

exp
(
− i〈z, t〉

)
g(t) dt , z ∈ T (C) ,

where g ∈ Lq
u(Rn) , supp g ⊆ −U(b, C).



On the Fourier-Laplace representation of analytic functions in tube domains 305

Proof. We follow the proof of Theorem 4 in [2], hence for this reason some details
are omitted. Let V be the volume of unit ball B1 in R

n. Set

Fε(z) =



V −1

∫
B

f(z + ε ξ) d ξ , z ∈ T (C)

V −1

∫
B

f(z + ε ξ) d ξ , z = x ∈ R
n ,

where ε > 0. Obviously, Fε ∈ Pa(C). Since f0 ∈ Lp(Rn) , Hölder’s inequality implies
that R

n |Fε(x)| ≤ Mε for some Mε > 0. By the Lebesgue dominated convergence
theorem it follows that Fε(z) is continuous at every point of R

n. From the lemma
we see that ∣∣Fε(x+ iy)

∣∣ ≤ Mε exp
(
a(iy)

)
, x+ iy ∈ T (C) .

Now let ϕ ∈ C∞
0 , such that, supp ϕ ⊆ int(−C∗) and

∫
Rn ϕ(t) dt = 1. Then

ψ(z) =
∫

Rn

exp
(
− i〈z, t〉

)
ϕ(t) dt

is an entire function satisfying the inequalities

∣∣ψ(z)
∣∣ ≤ cm

(
1 + ‖z‖

)−m
, z ∈ C

n , for all m ≥ 0 (5)

Setting

gε(t) = (2π)−n

∫
Rn

exp
(
i〈x, t〉

)
Fε(x) ψ(εx) dx , t ∈ R

n ,

It is obvious that, gε ∈ C∞(Rn) and gε is bounded on R
n. Arguing as in [1], [2] we

get

gε(t) = (2π)−n

∫
Rn

exp
(
i〈x+ iy, t〉

)
Fε(x+ iy)ψ(ε x+ iεy) dx (6)

where y ∈ C. And applying the estimate (5) we obtain

gε(t) ≤ Aε exp
(

inf
y∈C

(
− 〈y, t〉 + a(iy)

))
, Aε > 0 .

From this estimate it follows that gε(t) = 0 for t �∈ −U(b, C). Further, as in [2] it
can be shown that there exists a sequence {gεk} ⊂ Lq

u(Rn) such that {gεk} converges
weakly to some g ∈ Lq

u(Rn) in Lq
u(Rn), as εk → 0. Note that gε(t) exp

(
〈y, t〉

)
∈

L1(Rn), if y ∈ C. Indeed we know that gε(t) = 0 for t �∈ −U(b, C). Further,
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−U(b, C) ⊆ −C∗ +Br , where r = max
y∈pr C

b(y). But for t ∈ −C∗ +Br , y ∈ C the

following inequality holds ([8], p. 172):

〈y, t〉 ≤ −∆(y)
(
‖t‖ − r

)
θ
(
‖t‖ − r

)
+ r‖y‖ , (7)

where θ(µ) = 1 , µ > 0 , θ(µ) = 0 , µ < 0 , ∆(y) = inf
ξ∈pr C

〈ξ, y〉 ≥ cy‖y‖ , cy > 0 , so
∫
−U(b,C)

|gε(t)| exp
(
〈y, t〉

)
dt ≤

∫
(−C∗+Br)\Br

|gε(t)| exp
(
r‖y‖ − ∆(y)

(
‖t‖ − r)

)
dt

+
∫
Br

|gε(t)| exp
(
r‖y‖

)
dt < ∞ .

If X(t) is the characteristic function of the set −U(b, C), then, taking into account
(4) and (7), we can show that function X(t) exp

(
− i〈z, t〉

)
belongs to dual for

Lq
u(Rn), z ∈ T (C).

From (6) and the Fourier inversion formula

Fε(z)ψ(εz) =
∫
−U(b,C)

exp
(
− i〈z, t〉

)
gε(t) dt , z ∈ T (C) .

Note that Fε(z) → f(z), and ψ(εz) → 1 , as ε → 0. Replacing ε by εk and letting
εk → 0, we get

f(z) =
∫
−U(b,C)

exp
(
− i〈z, t〉

)
g(t) dt , z ∈ T (C)

where g ∈ Lq
u(Rn), supp g ⊆ −U(b, C). This proves the result. �

Theorem 2
Let a1, a2 be nonnegative convex continuous functions on T (C̄), respectively,

T (−C̄), which are positively homogeneous of order 1. Let f1 ∈ Pa1(C), f2 ∈
Pa2(−C) and suppose the limits

lim
y→0,y∈C

f1(x+ iy) = f̃1(x) ,

lim
y→0,y∈−C

f2(x+ iy) = f̃2(x)

exist a.e. in R
n. Let f̃1 = f̃2 a.e. in R

n, and f̃1(x), f̃2(x), u and v satisfy the
conditions of Theorem 1.

Then f1(z) and f2(z) are analytically continuable to entire function f(z) and

f(z) =
∫
K

exp
(
− i〈z, t〉

)
g(t) dt , z ∈ C

n ,

where K =
(
− U(b1, C)

)
∩

(
− U(b2, C)

)
, g ∈ Lq

u(Rn) and supp g ⊆ K.



On the Fourier-Laplace representation of analytic functions in tube domains 307

Proof. By Theorem 1 the functions fj(z), j = 1, 2, have representation

fj(z) =
∫

Rn

exp
(
− i〈z, t〉

)
gj(t) dt , z ∈ R

n + i(−1)j+1 C ,

where gj(t), j = 1, 2, satisfy the conditions of Theorem 1. Since f̃1 = f̃2 a.e. in
R

n, then as in Lemma 6 of [1], it may be shown that g1(t) = g2(t) a.e. in R
n.

Set g(t) = g1(t) = g2(t). Then supp g ⊆
(
− U(b1, C)

)
∩

(
− U(b2, C)

)
. Let

R = maxy∈prC

(
b1(y), b2(y)

)
. Then K ⊆ (−C∗ + Br) ∩ (C∗ + Br). Since C∗ is an

acute convex cone ([8], p. 74) the set (−C∗ + Br) ∩ (C∗ + Br) is bounded in R
n.

Hence, f(z) is entire and f(z) = f1(z), z ∈ T (C), f(z) = f2(z), z ∈ T (−C). Besides
that, |f(z)| ≤ C exp(HK(Imz)), z ∈ C

n, where HK(y) = max
t∈K

〈y, t〉 is the support
function of convex compact K. �

Theorem 3
Let a(z) be a nonnegative convex continuous function on C

n which is positively
homogeneous of order 1, and u and v as in Theorem 1. Suppose the entire function
f(z) satisfies

|f(z)| ≤ Cε exp
(
a(z) + ε‖z‖

)
, Cε > 0 , z ∈ C

n

and ∫
Rn

|f(x)|p
(
1 + v(x)

)
dx < ∞ .

Then

f(z) =
∫
K

exp
(
− i〈z, t〉

)
g(t) dt , z ∈ C

n ,

where K = {t ∈ R
n : −〈t, y〉 ≤ a(iy) , for all y ∈ R

n} , g ∈ Lq
u(Rn) , supp

g ≤ K .

Proof. Let Cj , j = 1, 2, . . . ,m , be acute convex open cones in R
n, such that ∪

j=1
C̄j =

R
n. By Theorem 1

f(z) =
∫

Rn

exp
(
− i〈z, t〉

)
gj(t) dt , z ∈ R

n + iCj ,

gj ∈ Lq
u(Rn), supp gj ⊆ −U(b, Cj), j = 1, 2, . . . ,m. As in Lemma 6 of [1] we have∫

Rn

gj(t)ϕ(t) dt = (2π)−n

∫
Rn

f(x) ϕ̂(−x) dx ,

for any ϕ ∈ C∞
0 (Rn). From this equality it follows that functions gj(t),

j = 1, 2, . . . ,m, as elements of Lq
u(Rn) coincide. Now our statement follows. �
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