Collect. Math. 45, 3 (1994), 301-308

(c) 1995 Universitat de Barcelona

On the Fourier-Laplace representation of analytic functions in tube domains

I.KH. Musin

Institute of Mathematics with Computer Center, Ufa Scientific Center, Ufa, Chernyshevskii Str. 112, 450000, Russia

Received November 8, 1994. Revised February 16, 1995

Abstract

Let C denote an acute convex open cone in \mathbb{R}^n with an apex at the origin and let $T(C)=\mathbb{R}^n+iC$ be the corresponding tube in \mathbb{C}^n . We define a space of holomorphic functions f(z) of exponential type in T(C) which have boundary values $f_0(x)$, as $y\to 0,\ y\in C$, satisfying some inequality. We obtain Fourier-Laplace integral representation of these functions. As a consequence a weighted version of the edge of the wedge theorem and Fourier-Laplace representation of entire functions of exponential type (with more general growth characteristics than in [2]) are obtained.

1. Introduction

A weighted generalization of theorems of Paley-Wiener [5] and Plancherel-Polya [6], concerning the integral representation of entire functions of exponential type was established in [2]. Also the Fourier-Laplace representation of functions of exponential type in an octant in \mathbb{C}^n and as a consequence a weighted version of the edge of the wedge theorem was obtained there.

In this paper results of [2] are extended to holomorphic functions in tube domains over acute convex open cones in \mathbb{R}^n and entire functions of exponential type with more general growth characteristics. This became possible due to a simple useful statement, namely the lemma below.

Throughout this paper, nonnegative locally integrable functions on \mathbb{R}^n will be called weight functions. We write $f \in L^p_w(\mathbb{R}^n)$, w a weight function, if $f w^{1/p} \in L^p(\mathbb{R}^n)$ and $||f||_{p,w} = ||w^{1/p}f||_p$, where $|| ||_p$ denotes the norm of L^p .

For $\xi = (\xi_1, \dots, \xi_n), \eta = (\eta_1, \dots, \eta_n) \in \mathbb{C}^n$ or \mathbb{R}^n we set $\langle \xi, \eta \rangle = \xi_1 \eta_1 + \dots + \xi_n \eta_n$. The euclidean norm in \mathbb{C}^n or \mathbb{R}^n is denoted by $\| \|$. \bar{B} will denote the closure of $B \subset \mathbb{C}^n$, respectively, \mathbb{R}^n .

If C is a cone in \mathbb{R}^n with an apex at the origin, then the projection of C is $pr C = \{y \in C : ||y|| = 1\}$, the dual cone is defined by $C^* = \{\xi \in \mathbb{R}^n : \langle \xi, y \rangle \geq 0 \text{ for all } y \in C\}$, and $T(C) = \mathbb{R}^n + iC$ is called a tube domain over cone C. If b is a convex, continuous function on C which is positively homogeneous of order 1, then we define

$$U(b,C) = \left\{ \xi \in \mathbb{R}^n : -\langle \xi, y \rangle \leq b(y) \quad \text{for all} \quad y \in C \right\}.$$

It's clear that U(b, C) is closed in \mathbb{R}^n . Recall that a cone C is called acute if it doesn't contain any straight line.

For $f \in L^1(\mathbb{R}^n)$

$$\hat{f}(x) = \int_{\mathbb{R}^n} f(t) \exp(-i\langle x, t \rangle) dt, \ x \in \mathbb{R}^n$$

is the Fourier transform of f.

The following definition was introduced in [2]:

DEFINITION. Let u and v be weight functions on \mathbb{R}^n . We say the pair $(u,v) \in F_q^p$, $p \geq 1$, $q \geq 1$, if the inequality

$$\|\hat{f}\|_{q,u} \le c \|f\|_{p,v}, \quad c = \text{const} > 0$$
 (1)

is satisfied for any simple function on \mathbb{R}^n .

As it is noted in [2] (1) permits us to define the Fourier transform in $L_v^p(\mathbb{R}^n)$. A wide class of weight functions, satisfying the F_q^p condition is described in [2, 3].

2. Results

Let C be an open convex acute cone in \mathbb{R}^n with apex at the origin ([8], p. 73). Let a(z) be a convex continuous function on $T(\bar{C})$ which is positively homogeneous of

order 1. By $P_a(C)$ we denote the space of holomorphic functions on T(C) satisfying inequality

$$|f(z)| \le c_{\varepsilon} \exp(a(z) + \varepsilon ||z||), \ c_{\varepsilon} > 0$$

for any $\varepsilon > 0$.

Lemma

Let $g \in P_a(C)$ and for any $\xi \in \mathbb{R}^n$ $\overline{\lim}_{z \to \xi, z \in T(C)} |g(z)| \leq M$, then

$$|g(x+iy)| \le M \exp(a(iy)), \ x+iy \in T(C).$$
 (2)

Proof. Note that for some $\sigma > 0$ $a(z) \leq \sigma ||z||$, $z \in T(C)$. Let us fix $\eta = (\eta_1, \ldots, \eta_n) \in pr C$ and define a linear operator $A : \mathbb{C}^n \to \mathbb{C}^n$ whose matrix has the form

$$\begin{pmatrix} \eta_1 & \eta_2 & \eta_n \\ a_{21} & a_{22} & a_{2n} \\ & \dots & & \\ a_{n1} & a_{n2} & a_{nn} \end{pmatrix},$$

where the elements $a_{kj} \in \mathbb{R}$ are chosen so that A is unitary. Then $g(x+i\eta s)=g(A(u_1+is,u_2,\ldots,u_n))$, where $u=(u_1,u_2,\ldots,u_n)=A^{-1}x$, s>0. Fix $u^1=(u_2,\ldots,u_n)$. Then function $\varphi(u_1+is)=g(A(u_1+is,u^1))$ is analytic in the upper half-plane $G=\{w\in\mathbb{C}: Im\,w>0\}$. Using the unitary of the operator A we obtain the estimate on G

$$|\varphi(u_1+is)| \le c_{\varepsilon} \exp((\sigma+\varepsilon)||u^1|| + (\sigma+\varepsilon)|u_1| + (\sigma+\varepsilon)s)$$

and by the Phragmen-Lindelöf principle ([7], p. 120) we get

$$\left|\varphi(u_1+is)\right| \le M \exp(\sigma s), \ u_1+is \in G.$$
 (3)

Using convexity of function a(z) we have for $x + i\eta s \in T(C)$ and any $\varepsilon > 0$

$$|g(x+i\eta s)| \le c_{\varepsilon} \exp(a(x) + \varepsilon ||x|| + (a(i\eta) + \varepsilon)s).$$

Therefore,

$$\overline{\lim}_{s \to +\infty} \frac{\log |\varphi(is)|}{s} \le a(i\eta).$$

Applying the Phragmen-Lindelöf principle again ([4], p. 119) and (3) we obtain

$$\log |\varphi(u_1 + is)| \le \log M + a(i\eta)s, \ u_1 + is \in G,$$

that is,

$$|g(x+i\eta s)| \le M \exp(a(iy)), \ x = A(u_1, u^1), \ s > 0.$$

The right side of this last inequality does not depend on u^1 . This means that the inequality holds for any $x \in \mathbb{R}^n$. Since $\eta \in pr C$ was arbitrary, (2) is proved. \square

Let
$$b(y) = a(iy), y \in C, B_r = \{ \xi \in \mathbb{R}^n : ||\xi|| \le r \}.$$

Theorem 1

Let $(u, v) \in F_q^p$ and suppose that the following conditions hold: a) The inequality

$$\int_{\|y\| \le 1} v(x + \varepsilon y) \, dy \le c_1 \, v(x) + c_2 \,, \ c_1 > 0 \,, \ c_2 > 0$$

is satisfied on \mathbb{R}^n for sufficiently small $\varepsilon > 0$.

b) The weight u is even and

$$u(x) \ge c_{\varepsilon} \exp(-\varepsilon ||x||), \ x \in \mathbb{R}^{n}, \ c_{\varepsilon} > 0$$
 (4)

holds for any $\varepsilon > 0$.

Suppose that $f \in P_a(C)$ has boundary values

$$f_0(x) = \lim_{y \to 0, y \in C} f(x + iy)$$

a.e. in \mathbb{R}^n and

$$\int_{\mathbb{R}^n} |f_0(x)|^p (1+v(x)) dx < \infty.$$

Then the following representation holds

$$f(z) = \int_{\mathbb{R}^n} \exp\left(-i\langle z, t\rangle\right) g(t) dt, \ z \in T(C),$$

where $g \in L_u^q(\mathbb{R}^n)$, supp $g \subseteq -U(b, C)$.

Proof. We follow the proof of Theorem 4 in [2], hence for this reason some details are omitted. Let V be the volume of unit ball B_1 in \mathbb{R}^n . Set

$$F_{\varepsilon}(z) = \begin{cases} V^{-1} \int_{B} f(z + \varepsilon \, \xi) \, d \, \xi \,, & z \in T(C) \\ V^{-1} \int_{B} f(z + \varepsilon \, \xi) \, d \, \xi \,, & z = x \in \mathbb{R}^{n} \,, \end{cases}$$

where $\varepsilon > 0$. Obviously, $F_{\varepsilon} \in P_a(C)$. Since $f_0 \in L^p(\mathbb{R}^n)$, Hölder's inequality implies that $\mathbb{R}^n |F_{\varepsilon}(x)| \leq M_{\varepsilon}$ for some $M_{\varepsilon} > 0$. By the Lebesgue dominated convergence theorem it follows that $F_{\varepsilon}(z)$ is continuous at every point of \mathbb{R}^n . From the lemma we see that

$$|F_{\varepsilon}(x+iy)| \le M_{\varepsilon} \exp(a(iy)), x+iy \in T(C).$$

Now let $\varphi \in C_0^{\infty}$, such that, supp $\varphi \subseteq \operatorname{int}(-C^*)$ and $\int_{\mathbb{R}^n} \varphi(t) dt = 1$. Then

$$\psi(z) = \int_{\mathbb{R}^n} \exp(-i\langle z, t \rangle) \varphi(t) dt$$

is an entire function satisfying the inequalities

$$|\psi(z)| \le c_m (1 + ||z||)^{-m}, \ z \in \mathbb{C}^n, \quad \text{for all} \quad m \ge 0$$
 (5)

Setting

$$g_{\varepsilon}(t) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp(i\langle x, t \rangle) F_{\varepsilon}(x) \psi(\varepsilon x) dx, \ t \in \mathbb{R}^n,$$

It is obvious that, $g_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ and g_{ε} is bounded on \mathbb{R}^n . Arguing as in [1], [2] we get

$$g_{\varepsilon}(t) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp\left(i\langle x + iy, t\rangle\right) F_{\varepsilon}(x + iy) \,\psi(\varepsilon \, x + i\varepsilon y) \, dx \tag{6}$$

where $y \in C$. And applying the estimate (5) we obtain

$$g_{\varepsilon}(t) \leq A_{\varepsilon} \exp\left(\inf_{y \in C} \left(-\langle y, t \rangle + a(iy)\right)\right), \ A_{\varepsilon} > 0.$$

From this estimate it follows that $g_{\varepsilon}(t) = 0$ for $t \notin -U(b, C)$. Further, as in [2] it can be shown that there exists a sequence $\{g_{\varepsilon_k}\} \subset L_u^q(\mathbb{R}^n)$ such that $\{g_{\varepsilon_k}\}$ converges weakly to some $g \in L_u^q(\mathbb{R}^n)$ in $L_u^q(\mathbb{R}^n)$, as $\varepsilon_k \to 0$. Note that $g_{\varepsilon}(t) \exp(\langle y, t \rangle) \in L^1(\mathbb{R}^n)$, if $y \in C$. Indeed we know that $g_{\varepsilon}(t) = 0$ for $t \notin -U(b, C)$. Further,

 $-U(b,C) \subseteq -C^* + B_r$, where $r = \max_{y \in pr\,C} b(y)$. But for $t \in -C^* + B_r$, $y \in C$ the following inequality holds ([8], p. 172):

$$\langle y, t \rangle \le -\Delta(y) (\|t\| - r) \theta(\|t\| - r) + r\|y\|, \tag{7}$$

where $\theta(\mu) = 1$, $\mu > 0$, $\theta(\mu) = 0$, $\mu < 0$, $\Delta(y) = \inf_{\xi \in pr} \langle \xi, y \rangle \ge c_y ||y||, c_y > 0$, so

$$\int_{-U(b,C)} |g_{\varepsilon}(t)| \exp\left(\langle y, t \rangle\right) dt \le \int_{(-C^* + B_r) \setminus B_r} |g_{\varepsilon}(t)| \exp\left(r||y|| - \Delta(y)(||t|| - r)\right) dt$$

$$+ \int_{B_r} |g_{\varepsilon}(t)| \exp\left(r||y||\right) dt < \infty.$$

If X(t) is the characteristic function of the set -U(b,C), then, taking into account (4) and (7), we can show that function $X(t) \exp(-i\langle z, t \rangle)$ belongs to dual for $L_u^q(\mathbb{R}^n), z \in T(C)$.

From (6) and the Fourier inversion formula

$$F_{\varepsilon}(z) \, \psi(\varepsilon z) = \int_{-U(b,C)} \exp\left(-i\langle z, t \rangle\right) g_{\varepsilon}(t) \, dt \,, \ z \in T(C) \,.$$

Note that $F_{\varepsilon}(z) \to f(z)$, and $\psi(\varepsilon z) \to 1$, as $\varepsilon \to 0$. Replacing ε by ε_k and letting $\varepsilon_k \to 0$, we get

$$f(z) = \int_{-U(b,C)} \exp(-i\langle z, t \rangle) g(t) dt, \ z \in T(C)$$

where $g \in L_n^q(\mathbb{R}^n)$, supp $g \subseteq -U(b,C)$. This proves the result. \square

Theorem 2

Let a_1, a_2 be nonnegative convex continuous functions on $T(\bar{C})$, respectively, $T(-\bar{C})$, which are positively homogeneous of order 1. Let $f_1 \in P_{a_1}(C)$, $f_2 \in P_{a_2}(-C)$ and suppose the limits

$$\lim_{y \to 0, y \in C} f_1(x + iy) = \tilde{f}_1(x),$$

$$\lim_{y \to 0, y \in -C} f_2(x + iy) = \tilde{f}_2(x)$$

exist a.e. in \mathbb{R}^n . Let $\tilde{f}_1 = \tilde{f}_2$ a.e. in \mathbb{R}^n , and $\tilde{f}_1(x)$, $\tilde{f}_2(x)$, u and v satisfy the conditions of Theorem 1.

Then $f_1(z)$ and $f_2(z)$ are analytically continuable to entire function f(z) and

$$f(z) = \int_K \exp(-i\langle z, t \rangle) g(t) dt, \ z \in \mathbb{C}^n,$$

where $K = (-U(b_1, C)) \cap (-U(b_2, C)), g \in L_u^q(\mathbb{R}^n)$ and supp $g \subseteq K$.

Proof. By Theorem 1 the functions $f_i(z)$, j=1,2, have representation

$$f_j(z) = \int_{\mathbb{R}^n} \exp\left(-i\langle z, t \rangle\right) g_j(t) dt, \ z \in \mathbb{R}^n + i(-1)^{j+1} C,$$

where $g_j(t)$, j=1,2, satisfy the conditions of Theorem 1. Since $\tilde{f}_1=\tilde{f}_2$ a.e. in \mathbb{R}^n , then as in Lemma 6 of [1], it may be shown that $g_1(t)=g_2(t)$ a.e. in \mathbb{R}^n . Set $g(t)=g_1(t)=g_2(t)$. Then supp $g\subseteq \left(-U(b_1,C)\right)\cap \left(-U(b_2,C)\right)$. Let $R=\max_{y\in\operatorname{pr} C}\left(b_1(y),\,b_2(y)\right)$. Then $K\subseteq (-C^*+B_r)\cap (C^*+B_r)$. Since C^* is an acute convex cone ([8], p. 74) the set $(-C^*+B_r)\cap (C^*+B_r)$ is bounded in \mathbb{R}^n . Hence, f(z) is entire and $f(z)=f_1(z),\,z\in T(C),\,f(z)=f_2(z),\,z\in T(-C)$. Besides that, $|f(z)|\leq C\exp(H_K(Imz)),\,z\in\mathbb{C}^n$, where $H_K(y)=\max_{t\in K}\langle y,t\rangle$ is the support function of convex compact K. \square

Theorem 3

Let a(z) be a nonnegative convex continuous function on \mathbb{C}^n which is positively homogeneous of order 1, and u and v as in Theorem 1. Suppose the entire function f(z) satisfies

$$|f(z)| \le C_{\varepsilon} \exp(a(z) + \varepsilon ||z||), \ C_{\varepsilon} > 0, \ z \in \mathbb{C}^n$$

and

$$\int_{\mathbb{R}^n} |f(x)|^p (1 + v(x)) \, dx < \infty.$$

Then

$$f(z) = \int_K \exp(-i\langle z, t \rangle) g(t) dt, \ z \in \mathbb{C}^n,$$

where $K = \{t \in \mathbb{R}^n : -\langle t, y \rangle \leq a(iy), \text{ for all } y \in \mathbb{R}^n\}, g \in L_u^q(\mathbb{R}^n), \text{ supp } g \leq K.$

Proof. Let C_j , $j=1,2,\ldots,m$, be a cute convex open cones in \mathbb{R}^n , such that $\bigcup_{j=1} \bar{C}_j = \mathbb{R}^n$. By Theorem 1

$$f(z) = \int_{\mathbb{R}^n} \exp\left(-i\langle z, t\rangle\right) g_j(t) dt, \ z \in \mathbb{R}^n + iC_j,$$

 $g_j \in L_u^q(\mathbb{R}^n)$, supp $g_j \subseteq -U(b,C_j)$, $j=1,2,\ldots,m$. As in Lemma 6 of [1] we have

$$\int_{\mathbb{D}^n} g_j(t) \, \varphi(t) \, dt = (2\pi)^{-n} \int_{\mathbb{D}^n} f(x) \, \hat{\varphi}(-x) \, dx \,,$$

for any $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. From this equality it follows that functions $g_j(t)$, $j = 1, 2, \ldots, m$, as elements of $L_n^q(\mathbb{R}^n)$ coincide. Now our statement follows. \square

References

- 1. T.G. Genchev, A weighted version of the Paley-Wiener theorem, *Math. Proc. Cambridge Philos. Soc.* **105** (1989), 389–395.
- 2. T.G. Genchev and H.P. Heinig, The Paley-Wiener theorem with general weights, *J. Math. Anal. and Appl.* (2) **153** (1990), 460–469.
- 3. H.P. Heinig and G.J. Sinnamon, Fourier inequalities and integral representations of functions in weighted Bergman spaces over tube domains, *Indiana, Univ. Math. J.* **38** (1989), 603–628.
- 4. V.V. Napalkov, Convolution equations in multidimensional space, Nauka, 1982.
- 5. R.E.A.C. Paley and N. Wiener, Fourier transforms in the complex domain, *Amer. Math. Soc. Coll. Publ.* **19** 1934.
- 6. M. Plancherel and G. Polya, Fonctions entieres et integrales de Fourier multiples, *Comment. Math. Helv.* **9** (1937), 224–248.
- 7. L.I. Ronkin, Introduction to the theory of entire functions of many complex variables, Nauka, 1971
- 8. V.S. Vladimirov, Generalized functions in mathematical physics, Nauka, 1976.