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Abstract

We provide a necessary and sufficient condition for the existence of bounded
imaginary powers of certain Hilbert space operators and study the growth of
‖Ait‖ when |t| → ∞.

1. Introduction, notations and definitions

In this paper we study Hilbert space operators A of type θ, which admit bounded
imaginary powers. When Ait forms a C0-group, its generator is the operator i logA.
In Section 2 we estimate the norm of the resolvent of i logA and show that the
growth bound of the group Ait coincides with the (minimal possible) type θ of A.
In Section 3 we find an integral representation of Hilbert space C0-groups, which
we apply to Ait. The main results in Section 4 include a necessary and sufficient
condition for the existence of the imaginary powers Ait and an explicit estimate of
‖Ait‖. Our technique is based on the vector-valued Plancherel theorem, true only
for Hilbert spaces. The paper, among other things, specifies and complements some
results in [1], [2], [4], [10] and [18].

Let now X be a complex Hilbert space and Sψ = {z ∈ C : |Arg(z)| < ψ} be an
open sector.

Definition 1.1 A closed, densely defined operator A on X is called an operator of
type θ, 0 ≤ θ < π , if σ(A) ⊂ Sθ and

‖λ(A + λ)−1‖ ≤ Mφ , ∀λ ∈ Sφ , ∀φ : 0 ≤ φ < π − θ . (1.1)
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Lemma 1.2 (cf. [5])

Let A be an invertible operator of type θ. Then A−1 and A∗ are also of type θ.

Proof. In a reflexive Banach space any one-to-one operator of type θ has dense range
[11, p. 295], therefore A−1 is densely defined. Further, for every φ < π−θ and every
z ∈ Sφ with λ = 1/z

∥∥∥ z

z + A−1

∥∥∥ =
∥∥∥ zA

zA + 1

∥∥∥ =
∥∥∥1 − 1

zA + 1

∥∥∥ ≤ 1 +
∥∥∥ λ

A + λ

∥∥∥ ≤ 1 + Mφ

since z ∈ Sφ if and only if λ ∈ Sφ. Thus A−1 is of type θ. The part about A∗ is left
to the reader. �

Throughout, A denotes an operator as described in the lemma. Note that in
this case D(A) ∩ D(A−1) is dense in X ([16, p. 431]) and A,A−1, A∗ are entirely
interchangeable in all formulas.

2. Imaginary powers and logarithms of operators

Complex powers of A are usually defined by the formula.

Azx =
sinπz

π

∫ +∞

0

λz−1(A + λ)−1Ax dλ

for 0 < Re(z) < 1 , x ∈ D(A). Integrating by parts here and setting Re (z) = 0 we
formally get

Ait =
sinhπt

πt

∫
R

λitA(A + λ)−2 dλ (t ∈ R) (2.1)

It is easy to see that the integral is absolutely convergent on the dense subspace
D(A) ∩D(A−1):

Let x ∈ D(A−1). Then x = Ay, y ∈ D(A) and

A

(λ + A)2
x =

A2y

(λ + A)2
=

( A

λ + A

)2

y =
(
1 − λ

λ + A

)2

y

which is bounded. For |λ| → ∞ and x ∈ D(A), we have

x = A−1 y, y ∈ D(A−1) so that
∥∥∥ Ax

(λ + A)2

∥∥∥ =
∥∥∥ 1

(λ + A)2
y
∥∥∥ ≤ M0‖y‖

λ2
.
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Sometimes, the imaginary powers Ait extend to bounded operators on the whole
space X. In this case they constitute a C0-group of operators [8], [16]. The impor-
tance of Ait is demonstrated in [4], [7], [16].

The operator logarithm is defined by the formula (cf. Nollau [13])

(
logA

)
x =

∫ ∞

0

(A + λ)−1(Ax− x)
dλ

1 + λ
,

(
x ∈ D(A) ∩D(A−1)

)
.

In the same way as in [13, Satz 3], one can show that the linear operator logA is
closable and D(A) ∩ D(A−1) is a core for it. We shall keep the same notation for
its closure. Nollau proved that

logAx = lim
α→0+

Aαx− x

α

for x ∈ D(A)∩D(A−1) [13, Satz 4]. For every such x, the vector function Azx, with
A−zx = (A−1)zx, is holomorphic in the strip |Re(z)| < 1, which yields

i logAx = lim
t→0+

Aitx− x

t
(2.2)

since (d/dz)Azx = (d/dα)Aαx = (d/dit)Aitx.

Proposition 2.1

If the imaginary powers Ait(t ∈ R) form a C0-group, then its generator is the

operator i logA defined above.

Proof. According to (2.2), the generator, say, B of Ait coincides with i logA on the
dense set D(A)∩D(A−1). This set is invariant for Ait and therefore a core for B [6,
Theorem 1.9]. Since both operators are closed, they coincide. �

Conversely, we have also the following.

Proposition 2.2

If i logA is a generator of a C0-group, then this group is the extension of Ait

from D(A) ∩D(A−1) to X.

The proof is given in Section 5.
We remind some definitions. Given a C0-semigroup e−tB , t ≥ 0, then

ω(B) = lim
t→∞

(
log ‖e−tB‖/t

)
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is the exponential type (or growth bound) of that semigroup. If etB , t ∈ R, is a
group, then its exponential type is the number

ωg(B) = max
{
ω(B), ω(−B)

}
= lim

|t|→∞
sup

(
log ‖e−tB‖ / |t|

)
.

When Ais is a C0-group, an interesting question is how the growth bound ωg(i logA)
of that group is related to the type θ of the operator A. We shall prove here that
ωg ≤ θ.

First, we need a result that can be found in [15] or [12, p. 96].

Lemma 2.3

For any Hilbert space semigroup e−tB , t ≥ 0, we have

ω(B) = inf
{
λ ∈ R : λ + iR ⊂ ρ(−B) and ‖(λ + iµ + b)−1‖ is bounded ∀µ ∈ R

}
.

We combine this now with the following lemma, which is needed also for the
proof of the main theorem in Section 4.

Lemma 2.4

Suppose that A is an operator of type θ, 0 ≤ θ < π. Then for every ψ, θ <

ψ < π, the following estimate holds

∥∥∥ 1
ψ ± i logA + µ

∥∥∥ ≤ Kψ

Re(µ)
,

(
Re(µ) > 0

)
(2.3)

where Kψ = πMπ−ψ, (M as in (1.1)), depends only on ψ. The operators ψ± i logA

are of type π/2 and the spectrum of i logA lies in the strip |Re(z)| ≤ θ.

Note that the lemma is true for general Banach spaces. Its proof, for conve-
nience, is given in Section 5.

Corollary 2.5

Given the operator A of type θ, suppose that Ait forms a C0-group. Then

ωg ≤ θ, where ωg is the growth bound of that group. More precisely, ωg = inf
{
θ :

A is of type θ
}
.
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Proof. The inequality (2.3) implies, according to Lemma 2.3, that for every ε : 0 <

ε < π − θ we have ω(±i logA) ≤ θ + ε (take ψ = θ + ε/2, then ‖(λ± i logA)−1‖ is
uniformly bounded for Re(λ) ≥ θ + ε).

Therefore ωg ≤ θ. Pruss and Sohr [16, Theorem 2] proved that if Ait is a C0-
group of growth order ω, then A is of type at most ω. This completes the last part
of the statement. �

We note that this corollary can also be derived from [10].

3. Representation of groups of operators on a Hilbert space

For our main result we need an integral representation of Ait, which is a particular
case of the following general theorem.

Theorem 3.1

Let iB be the generator of the C0-group eitB , t ∈ R, on X with growth ‖eitB‖ ≤
M ea|t|, a ≥ 0. Then σ(B) ⊆ {z : |Im(z)| ≤ a} and for every c > a we have the

representation

e−itB = ec|t|
1
π

∫
R

eits
c

c2 + (B + s)2
ds (∀ t ∈ R) (3.1)

which is absolutely convergent in the weak operator topology.

Proof. For every c > a we can write:

(
iB + c + is

)−1 =
∫ +∞

0

e−t(iB+c+is)dt =
∫ +∞

0

e−iste−cte−itB dt . (3.2)

By the Fourier (or Laplace) inversion we have

e−itBe−ct =
1
2π

∫
R

eist
(
iB + c + is

)−1
ds (t > 0) , (3.3)

0 =
1
2π

∫
R

eist
(
iB + c + is

)−1
ds (t < 0)

(the convergence we shall specify later). In the same way

(−iB + c− is)−1 =
∫ +∞

0

e−t(−iB+c−is)dt =
∫ +∞

0

eiste−cteitB dt (3.4)
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which implies

eitBe−ct =
1
2π

∫
R

e−ist
(
− iB + c− is

)−1
ds (t > 0) (3.5)

0 =
1
2π

∫
R

e−ist
(
− iB + c− is

)−1
ds (t < 0) .

The second integral can be rewritten as

0 =
1
2π

∫
R

eist
(
− iB + c− is

)−1
dt (t > 0) .

Combining this with (3.3) we get

e−itB e−ct =
1
2π

∫
R

eist
[
(c + iB + is)−1 + (c− iB − is)−1] ds

=
c

π

∫
R

eist
(
c2 + (B + s)2

)−1
ds , or

e−itB = ect
1
π

∫
R

eist
c

c2 + (B + s)2
ds (t > 0) (3.6)

In the same way, starting with the resolvents (iB + c− is)−1 and (−iB + c+ is)−1,
we come to the representation

eiuB = ecu
1
π

∫
R

eius
c

c2 + (B − s)2
ds (u > 0) .

Substituting here s by −s and u by −t we get

e−itB = e−ct
1
π

∫
R

eits
c

c2 + (B + s)2
ds (t < 0)

which in combination with (3.6) gives the representation (3.1).
Now convergence. Because of the estimate ‖e−ist e−ct e−itB‖ ≤ M e−(c−a)t the

integral in (3.2) is absolutely convergent in the uniform topology. The same is true
for the integral in (3.4). At the same time, we have for any Banach space.

Lemma 3.2
Suppose −T is the generator of the C0-semigroup e−sT with growth ‖e−tT ‖ ≤

M eat, (t ≥ 0). Then for every c > a

e−tTx =
1

2πi

∫ c+i∞

c−i∞
ezt(T + z)−1 xdz (t ≥ 0)

the integral being absolutely convergent for ∀x ∈ D(T 2) .
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(This is Corollary 7.5 in [14, Chapter 1]). Therefore, the integrals above, in (3.3)
and further, are convergent for all x ∈ D(B2). As we shall see now, in Hilbert spaces
the integral (3.1) is absolutely weakly convergent everywhere. First, formula (3.2)
says that for every x ∈ X the function (c+ i(B + s))−1x is the Fourier transform of
the function defined to be e−t(c+iB)x for t ≥ 0, and zero for t ≤ 0. By the vector
valued Plancherel theorem (which holds in Hilbert spaces – see [17, p. 139]) we have
the estimate

∫
R

∥∥(
c + i(B + s)

)−1
x
∥∥2

ds = 2π
∫ ∞

0

∥∥e−cte−itBx∥∥2
dt (3.7)

≤ 2π
∫ ∞

0

(
M e−ct ea|t|‖x‖

)2
dt = 2M2π‖x‖2

∫ ∞

0

e−2(c−a)t dt =
πM2

c− a
|x‖2 .

In the same way
∫ ∞
0

∥∥(
c + i(B∗ + s)

)−1
x‖2 ds ≤ πM2

c−a ‖x‖2 , since B∗ generates the
C0-group eitB

∗
and ‖eitB‖ = ‖(eitB)∗‖ = ‖e−itB∗‖ (∀ t ∈ R) . For every x, y ∈ X we

can write
∫

R

∣∣∣∣
〈 c

c2 + (B + s)2
x, y

〉∣∣∣∣ ds = c

∫
R

∣∣∣∣
〈 1
c− i(B + s)

· 1
c + i(B + 1)

x, y
〉∣∣∣∣ ds

= c

∫
R

∣∣∣∣
〈 1
c + i(B + s)

x ,
1

c + i(B∗ + s)
y

〉 ∣∣∣ ds

≤ c

∫
R

∥∥∥ 1
c + i(B + s)

x
∥∥∥

∥∥∥ 1
c + i(B∗ + s)

y
∥∥∥ ds

≤ c

[∫
R

∥∥∥ 1
c + i(B + s)

x
∥∥∥2

ds

]1/2 [∫
R

∥∥∥ 1
c + i(B∗ + s)

y
∥∥∥2

ds

]1/2

≤ c πM2

c− a
‖x‖ ‖y‖ .

That is:
∫

R

∣∣∣∣
〈 c

c2 + (B + s)2
x, y

〉∣∣∣∣ ds ≤ c πM2

c− a
‖x‖ ‖y‖

(
∀x, y ∈ X

)
(3.8)

and the proof is completed. �

Remark . For bounded groups of operators, the absolute convergence of the inte-
gral in (3.8), based on Plancherel’s theorem, was shown by Van Casteren [17]. He
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obtained this way a very nice characterization of operators, similar to self-adjoint.
The representation (3.1) seems to be new.

Suppose now that ω(iB) = lim sup|t|→∞
(
log ‖e−itB‖ / |t|

)
is the growth order

of the group. We see that for every b > ω(iB) there exists a constant Lb, depending
on b, such that

sup
c≥b

∫
R

∣∣∣∣
〈 c

c2 + (B + s)2
x, y

〉∣∣∣∣ ds ≤ Lb‖x‖ ‖y‖
(
∀x, y ∈ X

)
(3.9)

(simply take a =
(
b + ω(iB)

)
/2 in (3.8)).

The representation (3.1) suggests the following.

Theorem 3.3

Let B be a closed, densely defined linear operator on X. Let ω ≥ 0 be a number

such that σ(B) ⊆ {z : |Im(z)| ≤ ω} and for every b > ω there exists a constant Lb
for which the inequality (3.9) holds. Then iB generates (via (3.1)) a C0-group eitB

of growth order ω.

We omit the proof, which is similar to that of [17, Theorem 7.9]. Apply now
the representation (3.1) to Ait. In this case, B = logA and in view of theorems 3.1
and 3.3 we have the following.

Corollary 3.4

The imaginary powers Ait exist as a C0-group if and only if

∫
R

∣∣∣∣
〈 c

c2 + (logA + s)2
x, y

〉∣∣∣∣ ds ≤ Cθ‖x‖ ‖y‖
(
∀ c > θ, x, y ∈ X

)

in which case

Ait =
ec|t|

π

∫
R

eist
c

c2 + (logA + s)2
ds,

(
∀ c > θ

)
(3.10)

4. Main Results

Setting λ = eu in the representation (2.1) we get

Ait =
sinhπt

πt

∫
R

eituAeu(A + eu)−2 du (t ∈ R) .
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Under the condition
∫

R

∣∣∣∣
〈 Aeu

(A + eu)2
x, y

〉∣∣∣∣ du ≤ L‖x‖ ‖y‖
(
∀x, y ∈ X; L– a constant

)
(4.1)

the purely imaginary powers extend to a C0-group (e.g. [1]) with

‖Ait‖ ≤ L
sinhπt

πt
≤ Leπ|t| (4.2)

Therefore, (4.1) appears in a natural manner. The estimate (4.2) however, is very
rough. Since A is of type θ, the growth order of Ait is at most θ (Corollary 2.5). We
shall obtain now a better estimate of ‖Ait‖ in terms of the original constants.

Theorem 4.1

Condition (4.1) implies that Ait(t ∈ R) constitutes a C0-group of operators with

‖Ait‖ ≤ K(θ, ε) e(θ+ε)|t|(∀ ε, 0 < ε < π − θ
)

(4.3)

where K(θ, ε) = θ+ε
π

{
1 + 2

ε (2π − θ − ε)Mπ−θ−ε
}2

L2 ≤
(
1 + 4π

ε Mπ−θ−ε
)2

L2 and

Mπ−θ−ε is the constant appearing in (1.1).

Proof. Take ε : 0 < ε < π − θ and set c = θ + ε, ψ = θ + ε/2, µ = ε/2, so that
c = ψ + µ. For every x ∈ X we have

∥∥(
c + is + i logA

)−1
x
∥∥ =

∥∥∥2π + is + i logA

c + is + i logA

(
2π + is + i logA

)−1
x
∥∥∥

≤
∥∥∥1 +

2π − c

c + is + i logA

∥∥∥ ∥∥(
2π + is + i logA

)−1
x
∥∥

and since
∥∥ 2π−c
c+is+i logA

∥∥ =
∥∥ 2π−θ−ε
ψ+µ+is+i logA

∥∥ ≤ 2
ε

(
2π − θ − ε

)
Mπ−θ−ε according

to (2.3), we get

∥∥(c + is + i logA)−1 x
∥∥ ≤ C(θ, ε)

∥∥(2π + is + i logA)−1 x
∥∥

where C(θ, ε) = 1 + 2
ε (2π − θ − ε)Mπ−θ−ε .

The same holds with (logA)∗ in the place of logA, since

∥∥∥ 2π − c

c + is + i(logA)∗

∥∥∥ =
∥∥∥( 2π − c

c− is− i logA

)∗∥∥∥ =
∥∥∥ 2π − c

c− is− i logA

∥∥∥ ≤ C(θ, ε) .
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In view of (3.10), with the above choice of c and ∀x, y ∈ X ,

∣∣〈Aitx, y〉∣∣ ≤ c ec|t|

π

∫
R

∣∣∣∣
〈 1
c2 + (logA + s)2

x, y
〉∣∣∣∣ ds

=
c ec|t|

π

∫
R

∣∣∣∣
〈 1
c + is + i logA

x,
1

c + is + i(logA)∗
y
〉∣∣∣∣ ds

≤ c ec|t|

π

∫
R

∥∥∥ 1
c + is + i logA

x
∥∥∥

∥∥∥ 1
c + is + i(logA)∗

y
∥∥∥ ds

≤ c ec|t|

π

∫
R

∥∥∥ 1
c + is + i logA

x
∥∥∥

∥∥∥ 1
c + is + i(logA)∗

y
∥∥∥ ds

≤ C2(θ, ε)
c ec|t|

π

{∫
R

∥∥∥ 1
2π + is + i logA

x
∥∥∥2

ds

}1/2 {∫
R

∥∥∥ 1
2π + is + i(logA)∗

y
∥∥∥2

ds

}1/2

≤ C2(θ, ε)
c ec|t|

π
L2‖x‖ ‖y‖

For the last inequality we use (3.7) with c = 2π, a = π, B = logA, (logA∗) and
also (4.2). This brings to (4.3). The proof is completed. �

In a sense, the converse is also true.

Proposition 4.2

Suppose that the imaginary powers of A constitute a C0-group with growth

‖Ait‖ ≤ M ea|t| for some a < π. Then (4.1) holds with L = 2πM2/(π − a).

Proof. For every x ∈ X we have ([3, Corollary 3.5])

A1/2er/2

A + er
x = A1/2er/2(A + er)−1 x =

∫
R

Airsx

2 cosh(πs)
e−irs ds

By Plancherel’s theorem

∫
R

∥∥∥A1/2er/2

A + er
x
∥∥∥2

dr = 2π
∫

R

∥∥∥ Airsx

2 cosh(πs)

∥∥∥2

ds ≤ 2πM2‖x‖2

∫
R

eas

2 cosh(πs)
ds

≤ 2πM2‖x‖2

∫ ∞

0

e−(π−a)sds =
2πM2‖x‖2

π − a
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The same is true if we replace A by A∗. For every x, y ∈ X

∫
R

∣∣∣∣
〈 Aer

(A + er)2
x, y

〉∣∣∣∣ dr =
∫

R

∣∣∣∣
〈A1/2er/2

A + er
x,

(A∗)1/2er/2

A∗ + er
y
〉∣∣∣∣ dr

≤
∫

R

∥∥∥A1/2er/2

A + er
x
∥∥∥

∥∥∥ (A∗)1/2er/2

A∗ + er
y
∥∥∥ dr

≤
{∫

R

∥∥∥A1/2er/2

A + er
x
∥∥∥2

dr

}1/2 {∫
R

∥∥∥ (A∗)1/2er/2

A∗ + er
y
∥∥∥2

dr

}1/2

≤ 2πM2

π − a
‖x‖ ‖y‖ .

This way, (4.1) is a necessary and sufficient condition for the existence of boundary

imaginary powers. �

5. Appendix

Proof of Lemma 2.4. The following representation is convergent in the uniform

topology [13, Satz 7, p. 170]:

(logA− z)−1 =
∫ ∞

0

(A + t)−1 dt

π2 + (log t− z)2
, |Im(z)| > π .

We replace here z by −iλ and set t = eu to get

1
i logA− λ

=
∫ +∞

−∞

eu

A + eu
du

π2 − (λ− iu)2
, |Re(λ)| > π . (5.1)

Now take φ : |φ| < π − θ. The operator Aeiφ is of type θ + |φ| and we have

log(Aeiφ) = logA + iφ ([13]). Substituting Aeiφ for A we get

1
i logA− φ− λ

=
∫

R

eu

Aeiφ + eu
du

π2 − (λ− iu)2
, |Re(λ)| > π .



298 Boyadzhiev

Setting λ = α + iβ we have the estimate

∥∥∥
∫

R

eu

Aeiφ + eu
1

π2 − (λ− iu)2
du

∥∥∥ ≤ Mφ

∫
R

∣∣∣ 1
π2 − (α + iβ − iu)2

∣∣∣ du

= Mφ

∫
R

∣∣∣ 1
π2 − (α− is)2

∣∣∣ ds (s = u− β) , and since

∣∣∣ 1
π2 − (α− is)2

∣∣∣ =
1∣∣π − (α− is)
∣∣ ∣∣π + (α− is)

∣∣

=
1∣∣is− (α− π)
∣∣ ∣∣is− (α + π)

∣∣ ≤ 1√
s2 +

(
|α| − π

)2
√

s2 +
(
|α| − π)2

=
1

s2 +
(
|α| − π

)2 (here use |α± π| ≥ |α| − π) , we finally get

∥∥∥ 1
i logA− φ− λ

∥∥∥ ≤ Mφ

∫
R

ds

s2 +
(
|α| − π

)2 =
Mφπ

|α| − π
, i.e.

∥∥∥ 1
i logA− φ− λ

∥∥∥ ≤ Mφπ

|Reλ| − π
,

(
|Reλ| > π

)
.

Since this is true for ± φ, it can be rewritten as

∥∥∥ 1
ψ ± i logA + µ

∥∥∥ ≤ πMπ−ψ
Re(µ)

,
(
Re(µ) > 0

)

∀ψ : θ < ψ < π with ±ψ = π − ψ, µ = ±(λ − π), which shows that the operators
ψ ± i logA are of type π/2 and also implies (2.3). �

Proof of Proposition 2.2. We start with the representation (5.1) above. In view of
the formula [9; 4.9. (1)]

1
π2 + (u + iλ)2

=
−1
π

∫ ∞

0

sinh(π t) e−λt eiut dt , λ > π , (5.2)
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we can write for every λ > π:

i

λ− i logA
=

∫
R

eu

A + eu

{∫ ∞

0

sinh(πt)
π

e−λt eiut dt

}
du

=
1
i

∫
R

eu

A + eu
d

du

{∫ ∞

0

sinh(πt)
πt

e−λt eiut dt

}
du

or, after integration by parts, in weak sense,

1
λ− i logA

=
∫

R

Aeu

(A + eu)2

{∫ ∞

0

sinh(πt)
πt

e−λt eiut
}

du

(note that the intermediate term is zero by the Riemann-Lebesgue lemma, since
eu(A + eu)−1 is bounded). Changing the order of integration, we get for every
x ∈ D(A) ∩D(A−1)

(
λ− i logA

)−1
x =

∫ ∞

0

e−λt
{

sinh(πt)
πt

∫
R

eiut
Aeu

(A + eu)2
x du

}
dt

=
∫ ∞

0

e−λtAit x dt . (5.3)

Suppose now that i logA generates a C0-group of operators, say T (t), of exponential
type ω. Then we have the standard Laplace representation

(
λ− i logA

)−1
x =

∫ ∞

0

e−λt T (t)x dt
(
∀λ > ω, ∀x ∈ X

)
.

Comparing this to (5.3) we find that T (t)x = Aitx for all t ≥ 0 and all x ∈ D(A) ∩
D(A−1). In a similar manner the equality is proved for all t < 0. We see that T (t)
extends Ait from D(A) ∩A(A−1) to X. �
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