Collect. Math. 45, 3 (1994), 277-285 (c) 1995 Universitat de Barcelona # On some geometric properties in C(K,X) and $C(K,X)^*$ spaces ### Antonio Aizpuru Departamento de Matemáticas, Universidad de Cádiz, Apartado 40. Puerto Real, (Cádiz). Spain Received September 6, 1994. Revised December 20, 1994 ### Abstract In this paper we relate the Bade property with some new geometric properties, similar to the λ -property (but certainly different), on C(K,X) spaces. We also study the Bade property and the λ -property in the $C(K,X)^*$ spaces. ## 1. Introduction Given a normed space X, B_X denotes its closed unit ball, S_X the unit sphere of X, and $\operatorname{Ext} B_X$ the set of extreme points of B_X . The space X is said to have the Bade–property (B.P.) if $\overline{\operatorname{Co}(\operatorname{Ext} B_X)} = B_X$. The following concepts were introduced by R.M. Aron and R.H. Lohman [2]: if $x \in B_X$, a triple (e, y, λ) is said to be amenable to x if $e \in \operatorname{Ext} B_X$, $y \in B_X$, $0 < \lambda < 1$ and $x = \lambda e + (1 - \lambda)y$. In this case, we define $\lambda(x) = \sup\{\lambda: (e, y, \lambda) \text{ is amenable to } x\}$. X is said to have the λ -property if each $x \in B_X$ admits an amenable triple. If, in addition, $\lambda(X) = \inf\{\lambda(x): x \in B_X\} > 0$, then X is said to have the uniform λ -property. Let K be a compact Hausdorff space and let X be a normed space. By C(K, X) we denote the Banach space of all continuous X-valued functions f on K, endowed with the uniform norm. The space $C(K, \mathbb{R})$ will be denoted by C(K). Bade's theorem ([4]) states that C(K) has the Bade property if and only if K is 0-dimensional. In [2], it is shown that if K has the K-property then K has the Bade property, but it's also shown that the converse assertion is false by means of K where K is the unit ball of \mathbb{C} . In [5], it's shown that if K is a compact Hausdorff space, then 278 Aizpuru C(K) has the λ -property if and only if K is 0-dimensional and, in this particular case, C(K) has the uniform λ -property and λ (C(K)) = $\frac{1}{2}$. The λ -property on the sum of normed spaces is studied in [8] and [9]. In [3], it is shown that X has the λ -property if and only if B_X is the sequentially-convex hull of its extreme points; that is to say, for every $x \in B_X$, there exist sequences $(\alpha_n)_n$ of positive reals and $(e_n)_n \subset \operatorname{Ext} B_X$ with $x = \sum_{i=1}^{\infty} \alpha_i e_i$ and $\sum_{i=1}^{\infty} \alpha_i = 1$. As a consequence, if K is a compact Hausdorff space, then $B_{C(K)}$ is the sequentially-convex hull of its extreme points if and only if K is 0-dimensional. This result also appears in [12]. Given a normed space X, the space of convergent sequences in X, endowed with the supreme norm, will be denoted by c(X). # 2. The λ -property in C(K, X) spaces It is well known that if K is a compact Hausdorff space and X is a Banach space, then for every closed subset M of K and every continuous function $g: M \to X$ there exists a continuous function $f: K \to X$ such that $f|_M = g$ ([10]). From this result, we obtain: #### Lemma 2.1 Let K be a 0-dimensional compact Hausdorff space and let X be a Banach space. For every closed subset M of K and every continuous function $g: M \to S_X$ there exists a continuous function $f: K \to S$ such that $f|_M = g$. Proof. By the previous remark, there exists a continuous function $h: K \to X$ such that $h|_M = g$. Let A be a clopen set in K such that $\{t \in K: h(t) = 0\} \subset A$ and $M \subset A^c$. Let $g \in X$ be such that $\|g\| > \|h\|$. The function $f: K \to X$ defined by $f(t) = \frac{\chi_A(t)g + h(t)}{\|\chi_A(t)g + h(t)\|}$ verifies that $f(K) \subset S_X$ and $f|_M = g$. \square Remark 2.2. A similar result, when K is a compact metric space and X an infinite-dimensional normed space, appears in [7]. The following results, when K is a compact metric space instead of a 0-dimensional compact space, are essentially, proved in [2], and can be proved by using similar techniques. #### Proposition 2.3 Let K be a compact Hausdorff space and let X be a strictly convex Banach space. - 1. If $f \in B_{C(K,X)}$ has an amenable triple, then $\lambda(f) \leq \frac{1+m_f}{2}$, where $m_f = \inf\{\|f(t)\|: t \in K\}$. - 2. If $f \in B_{C(K,X)}$ and $m_f > 0$, then f has an amenable triple, $\lambda(f) = \frac{1+m_f}{2}$ and $\lambda(f)$ is attained. - 3. If K is 0-dimensional, then C(K,X) has the uniform λ -property and $\lambda(f) \leq \frac{1+m_f}{2}$, for every $f \in B_{C(K,X)}$. Remark 2.4. From proposition 2.3.3 we deduce that c(X) has the uniform λ -property when X is a strictly convex Banach space, since c(X) is isometric to $C(\gamma\omega, X)$, where $\gamma\omega$ is the Alexandroff compactification of the discrete space ω . In [1], it is proved that c(X) has the Bade property if and only if X has it. We shall see, in 3.8, that this result does not hold for the λ -property. Remark 2.5. Let K be a compact Hausdorff space and let X be a normed space. Let S be the subspace of C(K,X) of the finite-valued functions. A function $f \in S$ can be written as $f = \sum_{i=1}^{n} x_i \chi_{A_i}$ where $\{x_1, \ldots, x_n\} \subset X$ and $\{A_1, \ldots, A_n\}$ is a family of disjoint clopen sets in K whose union is K. It is well known that when $X = \mathbb{R}$, K is 0-dimensional if and only if S is dense in $C(K,\mathbb{R})$. From this result it follows that, for an arbitrary normed space X, K is 0-dimensional if and only if S is dense in C(K,X). In this case we also have that $S \cap S_{C(K,X)}$ is dense in $S_{C(K,X)}$. ### 3. Definition and study of a new geometric property Let X be a normed linear space such that $\operatorname{Ext} B_X \neq \emptyset$. We denote by T_X , or when no doubt exists by T, the subset of B_X of the points that have an amenable triple. For every $\alpha \in (0,1]$, we denote by T_α the set of points $x \in T$ such that $\lambda(x) > \alpha$. Since $B_X \setminus S_X \subset T$, T is dense in B_X . DEFINITION 3.1. Let X be a normed space. We shall say that: - 1. X has the dense λ -property (D λ P) if $T \cap S_X$ is dense in S_X . - 2. X has the uniform dense λ -property (UD λ P) if, for some $\alpha \in (0,1]$, $T_{\alpha} \cap S_X$ is dense in S_X . - 3. X has the weak uniform dense λ -property (WUD λ P) if for some $\alpha > 0$ T_{α} is dense in B_X . In this case we shall denote $\lambda W = \sup\{\alpha > 0 : T_{\alpha} \text{ is dense in } B_X\}.$ It is straightforward to prove that if X has the UD λ P, then X has the WUD λ P. We don't know if the WUD λ P implies the UD λ P. ### Proposition 3.2 If X is a normed space with the WUD λP then X has the Bade property. 280 Aizpuru Proof. Let $f: X \to \mathbb{R}$ a continuous linear form and let $\epsilon > 0$. We know that, for some $\beta > 0$, T_{β} is dense in B_X and hence there exist a $z \in T_{\beta}$ such that $\sup_{x \in B_X} f(x) - \beta \epsilon < f(z)$ where $z = \beta e + (1 - \beta)y$, $e \in \operatorname{Ext} B_X$ and $y \in B_X$. Hence $\sup_{x \in B_X} f(x) - \beta \epsilon < f(z) \le \beta f(e) + (1 - \beta) \sup_{x \in B_X} f(x)$ and $\sup_{x \in B_X} f(x) - \epsilon < f(e)$. This result clearly implies that $\sup_{x \in B_X} f(x) = \sup_{x \in \operatorname{Ext} B_X} f(x)$. \square The Bade property is not equivalent to the WUD λ P (see 3.7) the following result does display the difference. ## Proposition 3.3 The following properties on a normed space X are equivalent: - (i) X has the $WUD\lambda P$. - (ii) There exists $\alpha > 0$ such that for every $x \in B_X$ and $\epsilon > 0$ there exists an element $\sum_{i=1}^n a_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $\|\sum_{i=1}^n a_i e_i x\| < \epsilon$ and $a_i > \alpha$ for some $i \in \{1, 2, ..., n\}$. Proof. Suppose i), let $\alpha > 0$ be such that T_{α} is dense in $B_X = \overline{\operatorname{Co}(\operatorname{Ext} B_X)}$. For every $x \in B_X$ and $\epsilon > 0$ there exists a $y \in T_{\alpha}$ such that $\|x - y\| < \frac{\epsilon}{2}$. We can write $y = \alpha e + (1 - \alpha)z$ for some $e \in \operatorname{Ext} B_X$ and $z \in B_X$. Choose $\sum_{i=2}^{n} b_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $||z - \sum_{i=2}^{n} b_i e_i|| < \frac{\epsilon}{2(1-\alpha)}$. If we take $a_1 = \alpha$, $e_1 = e$ and $a_i = (1-\alpha)b_i$, for i > 1, then $\sum_{i=1}^{n} a_i e_i \in \text{Co}(\text{Ext}B_X)$ and $||x - \sum_{i=1}^{n} a_i e_i|| < \epsilon$. Conversely, suppose ii). For a given $x \in B_X$ and $\epsilon > 0$, choose $\sum_{i=1}^n a_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $a_1 > \alpha$ and $\|x - \sum_{i=1}^n a_i e_i\| < \epsilon$, then (e_1, z, α) is an amenable triple for $\sum_{i=1}^n a_i e_i$ where $z = \frac{1}{1-\alpha}(a_1 - \alpha)e_1 + \frac{1}{1-\alpha}(\sum_{i=1}^n a_i e_i)$. \square ### Proposition 3.4 Let K be a compact Hausdorff space and let X be a normed space. - (a) If X has the λ -property, then there exists an amenable triple for every finite-valued function $f \in B_{C(K,X)}$. If $\lambda(X) > \beta$ then $\lambda(f) > \beta$. - (b) If K is 0-dimensional and X has the λ -property (resp. the uniform λ -property), then C(K, X) has the $D\lambda P$ (resp. the $UD\lambda P$). Proof. a) Let $f = \sum_{i=1}^n x_i \chi_{A_i}$ where A_1, \ldots, A_n are disjoint clopen sets with $A_1 \cup \ldots \cup A_n = K$ and $\{x_1, \ldots, x_n\} \subset B_X$. Let $0 < \lambda < \min_{1 \le i \le n} \lambda(x_i)$. For every $i \in \{1, \ldots, n\}$ there exists an amenable triple (e_i, y_i, λ) for x_i . Hence (e, g, λ) is an amenable triple for f, where $e = \sum_{i=1}^n e_i \chi_{A_i}$ and $g = \sum_{i=1}^n y_i \chi_{A_i}$. The proof of b) is obvious. \square Remark 3.5. If X has the D λ P (resp. the UD λ P), it is straightforward to prove that C(K, X) has the D λ P (resp. UD λ P), for any 0-dimensional compact Hausdorff space K. Examples 3.6: There exists a normed space X with the D λ P which lacks the λ -property: Let X_1 (resp. X_2) be a normed space without (resp. with) the λ -property. Let $X = X_1 \times X_2$ endowed with the norm $\|(x_1, x_2)\| = \|x_1\| + \|x_2\|$. It is clear that $\operatorname{Ext} B_X = \{(e_1, 0) : e_1 \in \operatorname{Ext} B_{X_1}\} \cup \{(0, e_2) : e_2 \in \operatorname{Ext} B_{X_1}\}$. Since X_1 does not have the λ -property, X does not have it either. Nevertheless, we are going to prove that X has the $D\lambda P$. Let $x = (x_1, x_2) \in S_X$ and $\epsilon > 0$. - (a) If $||x_1|| = 1$, then $x_2 = 0$. Let $e_2 \in \text{Ext} B_{X_2}$ and let $y = ((1 \frac{\epsilon}{3})x_1, \frac{\epsilon}{3}x_2)$. We have that $||x y|| = \frac{2\epsilon}{3} < \epsilon$, ||y|| = 1 and $y = \frac{\epsilon}{3}(0, e_2) + (1 \frac{\epsilon}{3})(x_1, 0)$. - (b) If $||x_1|| < 1$ then $x_2 \neq 0$ and if $x_2 \in \operatorname{Ext} B_{X_2}$ then $x \in \operatorname{Ext} B_X$. When $x_2 \notin \operatorname{Ext} B_{X_2}$ it is straightforward to prove that there exists an amenable triple (e_2, y_2, λ) for x_2 such that $||x_2|| = \lambda + (1 \lambda)||y_2||$. Hence $(x_1, x_2) = \lambda(0, e_2) + (1 \lambda)(\frac{1}{1 \lambda}x_1, y_2)$ and x has an amenable triple. Let us observe that, in this case, if B_{X_1} does not have extreme points then X does not have the Bade property since $\overline{\text{Co}(\text{Ext}B_X)} \subset \{0\} \times X_2$. Hence the $D\lambda P$ does not imply the Bade property. EXAMPLES 3.7: It is well know that ℓ_1 has the λ -property (hence, the Bade property) but lacks the uniform λ -property (Cf. [2]). We now prove that ℓ_1 lacks the WUD λ P. If there exists an $\alpha \in (0,1)$ such that T_{α} is dense in B_{ℓ_1} , then we can choose $n \in \mathbb{N}$ such that $\frac{2n-1}{n^2} < \alpha$. Let $X = (x_i)_{i \in \mathbb{N}}$ be the sequence defined by $$x_i = \begin{cases} \frac{1}{n} & \text{if} \quad i \le n \\ 0 & \text{if} \quad i > n \end{cases}$$ Let $z \in T_{\alpha}$ be such that $||x - z|| < \frac{1}{n^2}$ and let (e, y, α) be an amenable triple for z. Since $e = (e_i)_{i \in \mathbb{N}} \in \operatorname{Ext} B_{\ell_1}$, there exists $p \in \mathbb{N}$ such that $$e_i = \begin{cases} \delta & \text{if} \quad i = p \\ 0 & \text{if} \quad i \neq p. \end{cases}$$ where δ is either +1 or -1. Since $||x-z|| < \frac{1}{n^2}$, $\sum_{i \neq p} \left| \frac{1}{n} - (1-\alpha)y_i \right| < \frac{1}{n^2}$ and hence $y_i > \frac{n-1}{n^2(1-\alpha)}$, for every $i \neq p$. This contradiction proves our assertion. 282 AIZPURU EXAMPLES 3.8: There exists a normed space with the WUD λ P which lacks the λ -property. The normed space that we use is considered in [2]. Let C^1 denote the convex hull of the union of the sets $\{(x,y,0): |x|,|y| \leq 1\}$ and $\{(x,0,z): x^2+z^2=1, z\geq 0\}$ in \mathbb{R}^3 . Let $C=(0,0,1)+C^1$ and let $\|\cdot\|$ denote the norm on \mathbb{R}^3 whose unit ball is $B=\operatorname{Co}(C\cup -C)$. Let $X=(\mathbb{R}^3,\|\cdot\|)$. The space X has the uniform λ -property since X is finite dimensional. Nevertheless, Navarro [11] proved that c(X) does not have the λ -property (the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_{2n}=\left(\cos\frac{\pi}{2n},0,1+\sin\frac{\pi}{2n}\right)$ and $x_{2n-1}=(1,\frac{1}{n},1)$, does not have an amenable triple). As a consequence of 3.4 we can say that c(X) has the UD λ P and hence, the WUD λ P. # 4. The Bade and the λ -property in $C(K,X)^*$ spaces In [5], it is shown that the following properties on a compact Hausdorff space are equivalent: a) K is dispersed; b) $C(K)^*$ has the λ -property; c) $C(K)^*$ has the Bade property. Now we investigate the Banach spaces X such that a similar result holds by considering the spaces C(K,X) instead of the spaces C(K). Let T be a set and let X be a normed space. We consider the space $\ell_1(T, X) = \{(x_t)_{t \in T} : \sum_{t \in T} ||x_t|| < \infty\}$ endowed with the norm $||(x_t)_{t \in T}|| = \sum_{t \in T} ||x_t||$. If $T = \mathbb{N}$ we write $\ell_1(X)$ instead of $\ell_1(\mathbb{N}, X)$. The following result, in the case $T = \mathbb{N}$, appears in [2] and [8]. It can be proved by the same techniques. ### Lemma 4.1 (a) $(x_t)_{t\in T} \in \operatorname{Ext} B_{\ell_1(T,X)}$ if and only if there exists a $t_0 \in T$ such that $x_{t_0} \in \operatorname{Ext} B_X$ and $x_t = 0$ for $t \in T \setminus t_0$; (b) $\ell_1(T,X)$ has the λ -property if and only if X has it; (c) If T is an infinite set $\ell_1(T,X)$ does not have the uniform λ -property. ## Theorem 4.2 The space $\ell_1(T, X)$ has the Bade property if and only if X has the Bade property. *Proof.* X has the Bade property if and only if for every continuous linear form $h: X \to \mathbb{R}$ $$\sup_{x \in B_X} h(x) = \sup_{x \in \text{Ext} B_X} h(x).$$ Suppose X has the Bade property. For every $f \in \ell_1(T,X)^*$ let $f_{t_0}: X \to \mathbb{R}$ denote the continuous linear form defined by $f_{t_0}(x) = f(x^{t_0})$, where $x^{t_0} \in \ell_1(T,X)$ is given by $x_t^{t_0} = 0$ if $t \neq t_0$ and $x_t^{t_0} = x$ if $t = t_0$. We have $f((x_t)_{t \in T}) = \sum_{t \in T} f_t(x_t)$ for every $(x_t)_{t \in T} \in \ell_1(t,X)$. Let $M = \sup\{f((x_t)_{t \in T}): (x_t)_{t \in T} \in B_{\ell_1(T,X)}\}$ and, for every $t \in T$, let $M_t = \sup\{f_t(x): x \in B_X\}$. Clearly $M = \sup\{M_t: t \in T\}$. For a given $\epsilon > 0$, there exists a $p \in T$ such that $M_p + \frac{\epsilon}{2} \geq M$ and, since X has the Bade property, there exists an $e \in B_X$ such that $f_p(e) + \frac{\epsilon}{2} \geq M_p$. We have $f(e^p) + \epsilon \geq M$ and $e^p \in \operatorname{Ext} B_{\ell_1(T,X)}$. This proves that $\ell_1(T,X)$ has the Bade property. Suppose $\ell_1(T, X)$ has the Bade property. Let $g: X \to \mathbb{R}$ be a continuous linear form. We choose $t_0 \in T$ and we define $f: \ell_1(T, X) \to \mathbb{R}$ by $f((x_t)_{t \in T}) = g(x_{t_0})$. It can be proved that $$\sup \{g(x): x \in B_X\} = \sup \{f((x_t)_{t \in T}): (x_t)_{t \in T} \in \text{Ext} B_{\ell_1(T,X)}\}$$ and $\sup\{g(x): x \in \operatorname{Ext} B_X\} = \sup\{f((x_t)_{t \in T}): (x_t)_{t \in T} \in \operatorname{Ext} B_{\ell_1(T,X)}\}$. Since $\ell_1(T,X)$ has the Bade property we deduce that $$\sup \{g(x): x \in B_X\} = \sup \{g(x): x \in \operatorname{Ext} B_X\} \quad \Box$$ Remark 4.3. If X is a Banach space and K a compact Hausdorff space, it is well known ([6]) that $C(K,X)^* \simeq \operatorname{rcabv}(\Sigma,X^*)$ where Σ is the σ -field of Borel subsets of K and rcabv (Σ,X^*) is the Banach space of all regular countably additive measures F on Σ with values in X^* and of finite variation on K, endowed with the total variation norm (||F|| = |F|(K)). It can be proved that $\operatorname{Ext} B_{\operatorname{rcabv}(\Sigma,X)} = \{x\delta_t : x \in \operatorname{Ext} B_X, t \in K\}$, where $x\delta_t$ denote the measure $x\delta_t : S \to X$ defined for $A \in \Sigma$ by $x\delta_t(A) = x$ if $t \in A$ and $x\delta_t(A) = 0$ if $t \notin A$. ## Theorem 4.4 Let X be a Banach space and K a compact Hausdorff space. The following properties are equivalent: a) $C(K)^*$ and X^* have the Bade property; b) $C(K,X)^*$ has the Bade property. 284 Aizpuru Proof. That a) implies b) is a consequence of the fact that if K is dispersed then reaby $(\Sigma, X^*)^* \sim \ell_1(K, X^*)$. In order to prove that b) implies a) we note that if K is not dispersed then there exist an atomless measure $\mu: \Sigma \to [0,1]$ such that $\mu(K) = 1$. We choose an $x^* \in S_{X^*}$ and let $F: \Sigma \to X^*$ be the measure defined for $A \in \Sigma$ by $F(A) = \mu(A)x^*$. We have that $|F| = \mu$. If $\epsilon \in (0, \frac{1}{2})$, there exists $\sum_{i=1}^n \alpha_i x_i^* \delta_{t_i} \in \operatorname{Co}\left(\operatorname{Ext} B_{\operatorname{reaby}(\Sigma, X^*)}\right)$ such that $|F - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}| < \epsilon$. Hence $\mu(K \setminus \{t_1, \ldots, t_n\}) < \epsilon$, which implies that $\mu(K) < \epsilon$. This contradiction proves that K must be dispersed. Let $x^* \in B_{X^*}$ and $\epsilon > 0$. Let $t_0 \in K$ be arbitrary. Since $C(K, X^*)$ has the Bade property there exists $\sum_{i=1}^n \alpha_i x_i^* \delta_{t_i} \in \operatorname{Co}\left(\operatorname{Ext} B_{\operatorname{reaby}(\Sigma, X^*)}\right)$ such that $||x^* \delta_{t_0} - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}|| < \epsilon$. Therefore $||x^* \delta_{t_0}(K) - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}(K)|| = ||x^* - \sum_{i=1}^n \alpha_i x_i^*|| < \epsilon$. \square ### Corollary 4.5 Let K be a compact Hausdorff space and X a Banach space such that X^* has the λ -property. Then the following properties are equivalent: a) K is dispersed; b) $C(K,X)^*$ has the Bade property; c) $C(K,X)^*$ has the λ -property. Remark 4.6. If K is an infinite set $C(K,X)^*$ does not have the uniform λ -property. ## Corollary 4.7 Let K be a compact Hausdorff space and X an arbitrary Banach space. The following properties are equivalent: a) $C(K,X)^*$ has the λ -property; b) $C(K)^*$ and X^* have the λ -property. Remark 4.8. By means of the former results we can conclude that the Banach space $X = C(\gamma \omega, Y)$, where Y is the space of the example 3.8. is such that X has the Bade property, X^* has the λ -property but X fails to have the λ -property. In the bibliography we have not found any Banach space with these characteristics #### References - 1. A. Aizpuru and F. Benítez, The Bade property and the λ -property in spaces of convergent sequences, *Collect. Math.* **42**, 3 (1991), 245–251. - 2. R.M. Aron and R.H. Lohman, A geometric function determined by extreme points of the unit ball of a normed spaces, *Pacific Journal of Math.* **2** (1987), 209–231. - 3. R.M. Aron, R.H. Lohman and A. Suarez, Problem Related to the Convex Series Representation Property and Rotundity in Banach Spaces, (1990) *Proc. Amer. Math. Soc.* **111**, 1 (1991), 151–155. - 4. W.G. Bade, *The Banach space C(S)*, Aarhus Univ. Lecture Notes **26**, section 1 (1971). - 5. F. Benítez, Estudio de los espacios C(K,R) con K compactificación 0-dimensional de ω , Universidad de Sevilla, 1989. - 6. J. Brooks and P. Lewis, Linear operators and vector measures, *Trans. of the Amer. Math. Soc.* **192** (1974), 139–162. - 7. Dugundji, An extension of Tietze's theorem, *Pacific J. Math.* (1951), 353–367. - 8. R.H. Lohman and T.J. Shura, Calculation of the λ -function for several classes of normed linear spaces, *Proceedings in Honor of Ky Fan* (Marcel Dekker L.N.) 1987. - 9. R.H. Lohman and T.J. Shura, The λ -property for generalized direct sums of normed spaces, *Bull. Australian Math. Soc.* **41** (1990), 441–450. - 10. J. Nagata, Modern General Topology, North-Holland Math. 33, (1985). - 11. J.C. Navarro Pascual, Sobre la λ -propiedad en espacios de sucesiones convergentes, *XV Jornadas Luso-Españolas de Matemáticas*, 1990. Evora. Portugal. - 12. D. Oates, A sequentially convex hull, Bull. London Math. Soc. 22 (1990), 467–468.