Collect. Math. 45, 3 (1994), 277-285

(c) 1995 Universitat de Barcelona

On some geometric properties in C(K,X) and $C(K,X)^*$ spaces

Antonio Aizpuru

Departamento de Matemáticas, Universidad de Cádiz, Apartado 40. Puerto Real, (Cádiz). Spain

Received September 6, 1994. Revised December 20, 1994

Abstract

In this paper we relate the Bade property with some new geometric properties, similar to the λ -property (but certainly different), on C(K,X) spaces. We also study the Bade property and the λ -property in the $C(K,X)^*$ spaces.

1. Introduction

Given a normed space X, B_X denotes its closed unit ball, S_X the unit sphere of X, and $\operatorname{Ext} B_X$ the set of extreme points of B_X . The space X is said to have the Bade–property (B.P.) if $\overline{\operatorname{Co}(\operatorname{Ext} B_X)} = B_X$. The following concepts were introduced by R.M. Aron and R.H. Lohman [2]: if $x \in B_X$, a triple (e, y, λ) is said to be amenable to x if $e \in \operatorname{Ext} B_X$, $y \in B_X$, $0 < \lambda < 1$ and $x = \lambda e + (1 - \lambda)y$. In this case, we define $\lambda(x) = \sup\{\lambda: (e, y, \lambda) \text{ is amenable to } x\}$. X is said to have the λ -property if each $x \in B_X$ admits an amenable triple. If, in addition, $\lambda(X) = \inf\{\lambda(x): x \in B_X\} > 0$, then X is said to have the uniform λ -property.

Let K be a compact Hausdorff space and let X be a normed space. By C(K, X) we denote the Banach space of all continuous X-valued functions f on K, endowed with the uniform norm. The space $C(K, \mathbb{R})$ will be denoted by C(K). Bade's theorem ([4]) states that C(K) has the Bade property if and only if K is 0-dimensional. In [2], it is shown that if K has the K-property then K has the Bade property, but it's also shown that the converse assertion is false by means of K where K is the unit ball of \mathbb{C} . In [5], it's shown that if K is a compact Hausdorff space, then

278 Aizpuru

C(K) has the λ -property if and only if K is 0-dimensional and, in this particular case, C(K) has the uniform λ -property and λ (C(K)) = $\frac{1}{2}$. The λ -property on the sum of normed spaces is studied in [8] and [9]. In [3], it is shown that X has the λ -property if and only if B_X is the sequentially-convex hull of its extreme points; that is to say, for every $x \in B_X$, there exist sequences $(\alpha_n)_n$ of positive reals and $(e_n)_n \subset \operatorname{Ext} B_X$ with $x = \sum_{i=1}^{\infty} \alpha_i e_i$ and $\sum_{i=1}^{\infty} \alpha_i = 1$. As a consequence, if K is a compact Hausdorff space, then $B_{C(K)}$ is the sequentially-convex hull of its extreme points if and only if K is 0-dimensional. This result also appears in [12].

Given a normed space X, the space of convergent sequences in X, endowed with the supreme norm, will be denoted by c(X).

2. The λ -property in C(K, X) spaces

It is well known that if K is a compact Hausdorff space and X is a Banach space, then for every closed subset M of K and every continuous function $g: M \to X$ there exists a continuous function $f: K \to X$ such that $f|_M = g$ ([10]). From this result, we obtain:

Lemma 2.1

Let K be a 0-dimensional compact Hausdorff space and let X be a Banach space. For every closed subset M of K and every continuous function $g: M \to S_X$ there exists a continuous function $f: K \to S$ such that $f|_M = g$.

Proof. By the previous remark, there exists a continuous function $h: K \to X$ such that $h|_M = g$. Let A be a clopen set in K such that $\{t \in K: h(t) = 0\} \subset A$ and $M \subset A^c$. Let $g \in X$ be such that $\|g\| > \|h\|$. The function $f: K \to X$ defined by $f(t) = \frac{\chi_A(t)g + h(t)}{\|\chi_A(t)g + h(t)\|}$ verifies that $f(K) \subset S_X$ and $f|_M = g$. \square

Remark 2.2. A similar result, when K is a compact metric space and X an infinite-dimensional normed space, appears in [7].

The following results, when K is a compact metric space instead of a 0-dimensional compact space, are essentially, proved in [2], and can be proved by using similar techniques.

Proposition 2.3

Let K be a compact Hausdorff space and let X be a strictly convex Banach space.

- 1. If $f \in B_{C(K,X)}$ has an amenable triple, then $\lambda(f) \leq \frac{1+m_f}{2}$, where $m_f = \inf\{\|f(t)\|: t \in K\}$.
- 2. If $f \in B_{C(K,X)}$ and $m_f > 0$, then f has an amenable triple, $\lambda(f) = \frac{1+m_f}{2}$ and $\lambda(f)$ is attained.
- 3. If K is 0-dimensional, then C(K,X) has the uniform λ -property and $\lambda(f) \leq \frac{1+m_f}{2}$, for every $f \in B_{C(K,X)}$.

Remark 2.4. From proposition 2.3.3 we deduce that c(X) has the uniform λ -property when X is a strictly convex Banach space, since c(X) is isometric to $C(\gamma\omega, X)$, where $\gamma\omega$ is the Alexandroff compactification of the discrete space ω . In [1], it is proved that c(X) has the Bade property if and only if X has it. We shall see, in 3.8, that this result does not hold for the λ -property.

Remark 2.5. Let K be a compact Hausdorff space and let X be a normed space. Let S be the subspace of C(K,X) of the finite-valued functions. A function $f \in S$ can be written as $f = \sum_{i=1}^{n} x_i \chi_{A_i}$ where $\{x_1, \ldots, x_n\} \subset X$ and $\{A_1, \ldots, A_n\}$ is a family of disjoint clopen sets in K whose union is K. It is well known that when $X = \mathbb{R}$, K is 0-dimensional if and only if S is dense in $C(K,\mathbb{R})$. From this result it follows that, for an arbitrary normed space X, K is 0-dimensional if and only if S is dense in C(K,X). In this case we also have that $S \cap S_{C(K,X)}$ is dense in $S_{C(K,X)}$.

3. Definition and study of a new geometric property

Let X be a normed linear space such that $\operatorname{Ext} B_X \neq \emptyset$. We denote by T_X , or when no doubt exists by T, the subset of B_X of the points that have an amenable triple. For every $\alpha \in (0,1]$, we denote by T_α the set of points $x \in T$ such that $\lambda(x) > \alpha$. Since $B_X \setminus S_X \subset T$, T is dense in B_X .

DEFINITION 3.1. Let X be a normed space. We shall say that:

- 1. X has the dense λ -property (D λ P) if $T \cap S_X$ is dense in S_X .
- 2. X has the uniform dense λ -property (UD λ P) if, for some $\alpha \in (0,1]$, $T_{\alpha} \cap S_X$ is dense in S_X .
- 3. X has the weak uniform dense λ -property (WUD λ P) if for some $\alpha > 0$ T_{α} is dense in B_X . In this case we shall denote $\lambda W = \sup\{\alpha > 0 : T_{\alpha} \text{ is dense in } B_X\}.$

It is straightforward to prove that if X has the UD λ P, then X has the WUD λ P. We don't know if the WUD λ P implies the UD λ P.

Proposition 3.2

If X is a normed space with the WUD λP then X has the Bade property.

280 Aizpuru

Proof. Let $f: X \to \mathbb{R}$ a continuous linear form and let $\epsilon > 0$. We know that, for some $\beta > 0$, T_{β} is dense in B_X and hence there exist a $z \in T_{\beta}$ such that $\sup_{x \in B_X} f(x) - \beta \epsilon < f(z)$ where $z = \beta e + (1 - \beta)y$, $e \in \operatorname{Ext} B_X$ and $y \in B_X$. Hence $\sup_{x \in B_X} f(x) - \beta \epsilon < f(z) \le \beta f(e) + (1 - \beta) \sup_{x \in B_X} f(x)$ and $\sup_{x \in B_X} f(x) - \epsilon < f(e)$. This result clearly implies that $\sup_{x \in B_X} f(x) = \sup_{x \in \operatorname{Ext} B_X} f(x)$. \square

The Bade property is not equivalent to the WUD λ P (see 3.7) the following result does display the difference.

Proposition 3.3

The following properties on a normed space X are equivalent:

- (i) X has the $WUD\lambda P$.
- (ii) There exists $\alpha > 0$ such that for every $x \in B_X$ and $\epsilon > 0$ there exists an element $\sum_{i=1}^n a_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $\|\sum_{i=1}^n a_i e_i x\| < \epsilon$ and $a_i > \alpha$ for some $i \in \{1, 2, ..., n\}$.

Proof. Suppose i), let $\alpha > 0$ be such that T_{α} is dense in $B_X = \overline{\operatorname{Co}(\operatorname{Ext} B_X)}$. For every $x \in B_X$ and $\epsilon > 0$ there exists a $y \in T_{\alpha}$ such that $\|x - y\| < \frac{\epsilon}{2}$. We can write $y = \alpha e + (1 - \alpha)z$ for some $e \in \operatorname{Ext} B_X$ and $z \in B_X$.

Choose $\sum_{i=2}^{n} b_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $||z - \sum_{i=2}^{n} b_i e_i|| < \frac{\epsilon}{2(1-\alpha)}$. If we take $a_1 = \alpha$, $e_1 = e$ and $a_i = (1-\alpha)b_i$, for i > 1, then $\sum_{i=1}^{n} a_i e_i \in \text{Co}(\text{Ext}B_X)$ and $||x - \sum_{i=1}^{n} a_i e_i|| < \epsilon$.

Conversely, suppose ii). For a given $x \in B_X$ and $\epsilon > 0$, choose $\sum_{i=1}^n a_i e_i \in \text{Co}(\text{Ext}B_X)$ such that $a_1 > \alpha$ and $\|x - \sum_{i=1}^n a_i e_i\| < \epsilon$, then (e_1, z, α) is an amenable triple for $\sum_{i=1}^n a_i e_i$ where $z = \frac{1}{1-\alpha}(a_1 - \alpha)e_1 + \frac{1}{1-\alpha}(\sum_{i=1}^n a_i e_i)$. \square

Proposition 3.4

Let K be a compact Hausdorff space and let X be a normed space.

- (a) If X has the λ -property, then there exists an amenable triple for every finite-valued function $f \in B_{C(K,X)}$. If $\lambda(X) > \beta$ then $\lambda(f) > \beta$.
- (b) If K is 0-dimensional and X has the λ -property (resp. the uniform λ -property), then C(K, X) has the $D\lambda P$ (resp. the $UD\lambda P$).

Proof. a) Let $f = \sum_{i=1}^n x_i \chi_{A_i}$ where A_1, \ldots, A_n are disjoint clopen sets with $A_1 \cup \ldots \cup A_n = K$ and $\{x_1, \ldots, x_n\} \subset B_X$. Let $0 < \lambda < \min_{1 \le i \le n} \lambda(x_i)$. For every $i \in \{1, \ldots, n\}$ there exists an amenable triple (e_i, y_i, λ) for x_i . Hence (e, g, λ) is an amenable triple for f, where $e = \sum_{i=1}^n e_i \chi_{A_i}$ and $g = \sum_{i=1}^n y_i \chi_{A_i}$. The proof of b) is obvious. \square

Remark 3.5. If X has the D λ P (resp. the UD λ P), it is straightforward to prove that C(K, X) has the D λ P (resp. UD λ P), for any 0-dimensional compact Hausdorff space K.

Examples 3.6: There exists a normed space X with the D λ P which lacks the λ -property:

Let X_1 (resp. X_2) be a normed space without (resp. with) the λ -property. Let $X = X_1 \times X_2$ endowed with the norm $\|(x_1, x_2)\| = \|x_1\| + \|x_2\|$. It is clear that $\operatorname{Ext} B_X = \{(e_1, 0) : e_1 \in \operatorname{Ext} B_{X_1}\} \cup \{(0, e_2) : e_2 \in \operatorname{Ext} B_{X_1}\}$. Since X_1 does not have the λ -property, X does not have it either. Nevertheless, we are going to prove that X has the $D\lambda P$. Let $x = (x_1, x_2) \in S_X$ and $\epsilon > 0$.

- (a) If $||x_1|| = 1$, then $x_2 = 0$. Let $e_2 \in \text{Ext} B_{X_2}$ and let $y = ((1 \frac{\epsilon}{3})x_1, \frac{\epsilon}{3}x_2)$. We have that $||x y|| = \frac{2\epsilon}{3} < \epsilon$, ||y|| = 1 and $y = \frac{\epsilon}{3}(0, e_2) + (1 \frac{\epsilon}{3})(x_1, 0)$.
- (b) If $||x_1|| < 1$ then $x_2 \neq 0$ and if $x_2 \in \operatorname{Ext} B_{X_2}$ then $x \in \operatorname{Ext} B_X$. When $x_2 \notin \operatorname{Ext} B_{X_2}$ it is straightforward to prove that there exists an amenable triple (e_2, y_2, λ) for x_2 such that $||x_2|| = \lambda + (1 \lambda)||y_2||$. Hence $(x_1, x_2) = \lambda(0, e_2) + (1 \lambda)(\frac{1}{1 \lambda}x_1, y_2)$ and x has an amenable triple.

Let us observe that, in this case, if B_{X_1} does not have extreme points then X does not have the Bade property since $\overline{\text{Co}(\text{Ext}B_X)} \subset \{0\} \times X_2$. Hence the $D\lambda P$ does not imply the Bade property.

EXAMPLES 3.7: It is well know that ℓ_1 has the λ -property (hence, the Bade property) but lacks the uniform λ -property (Cf. [2]). We now prove that ℓ_1 lacks the WUD λ P.

If there exists an $\alpha \in (0,1)$ such that T_{α} is dense in B_{ℓ_1} , then we can choose $n \in \mathbb{N}$ such that $\frac{2n-1}{n^2} < \alpha$. Let $X = (x_i)_{i \in \mathbb{N}}$ be the sequence defined by

$$x_i = \begin{cases} \frac{1}{n} & \text{if} \quad i \le n \\ 0 & \text{if} \quad i > n \end{cases}$$

Let $z \in T_{\alpha}$ be such that $||x - z|| < \frac{1}{n^2}$ and let (e, y, α) be an amenable triple for z. Since $e = (e_i)_{i \in \mathbb{N}} \in \operatorname{Ext} B_{\ell_1}$, there exists $p \in \mathbb{N}$ such that

$$e_i = \begin{cases} \delta & \text{if} \quad i = p \\ 0 & \text{if} \quad i \neq p. \end{cases}$$

where δ is either +1 or -1.

Since $||x-z|| < \frac{1}{n^2}$, $\sum_{i \neq p} \left| \frac{1}{n} - (1-\alpha)y_i \right| < \frac{1}{n^2}$ and hence $y_i > \frac{n-1}{n^2(1-\alpha)}$, for every $i \neq p$. This contradiction proves our assertion.

282 AIZPURU

EXAMPLES 3.8: There exists a normed space with the WUD λ P which lacks the λ -property.

The normed space that we use is considered in [2]. Let C^1 denote the convex hull of the union of the sets $\{(x,y,0): |x|,|y| \leq 1\}$ and $\{(x,0,z): x^2+z^2=1, z\geq 0\}$ in \mathbb{R}^3 . Let $C=(0,0,1)+C^1$ and let $\|\cdot\|$ denote the norm on \mathbb{R}^3 whose unit ball is $B=\operatorname{Co}(C\cup -C)$. Let $X=(\mathbb{R}^3,\|\cdot\|)$. The space X has the uniform λ -property since X is finite dimensional. Nevertheless, Navarro [11] proved that c(X) does not have the λ -property (the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_{2n}=\left(\cos\frac{\pi}{2n},0,1+\sin\frac{\pi}{2n}\right)$ and $x_{2n-1}=(1,\frac{1}{n},1)$, does not have an amenable triple). As a consequence of 3.4 we can say that c(X) has the UD λ P and hence, the WUD λ P.

4. The Bade and the λ -property in $C(K,X)^*$ spaces

In [5], it is shown that the following properties on a compact Hausdorff space are equivalent:

a) K is dispersed; b) $C(K)^*$ has the λ -property; c) $C(K)^*$ has the Bade property.

Now we investigate the Banach spaces X such that a similar result holds by considering the spaces C(K,X) instead of the spaces C(K).

Let T be a set and let X be a normed space. We consider the space $\ell_1(T, X) = \{(x_t)_{t \in T} : \sum_{t \in T} ||x_t|| < \infty\}$ endowed with the norm $||(x_t)_{t \in T}|| = \sum_{t \in T} ||x_t||$. If $T = \mathbb{N}$ we write $\ell_1(X)$ instead of $\ell_1(\mathbb{N}, X)$.

The following result, in the case $T = \mathbb{N}$, appears in [2] and [8]. It can be proved by the same techniques.

Lemma 4.1

(a) $(x_t)_{t\in T} \in \operatorname{Ext} B_{\ell_1(T,X)}$ if and only if there exists a $t_0 \in T$ such that $x_{t_0} \in \operatorname{Ext} B_X$ and $x_t = 0$ for $t \in T \setminus t_0$; (b) $\ell_1(T,X)$ has the λ -property if and only if X has it; (c) If T is an infinite set $\ell_1(T,X)$ does not have the uniform λ -property.

Theorem 4.2

The space $\ell_1(T, X)$ has the Bade property if and only if X has the Bade property.

Proof. X has the Bade property if and only if for every continuous linear form $h: X \to \mathbb{R}$

$$\sup_{x \in B_X} h(x) = \sup_{x \in \text{Ext} B_X} h(x).$$

Suppose X has the Bade property. For every $f \in \ell_1(T,X)^*$ let $f_{t_0}: X \to \mathbb{R}$ denote the continuous linear form defined by $f_{t_0}(x) = f(x^{t_0})$, where $x^{t_0} \in \ell_1(T,X)$ is given by $x_t^{t_0} = 0$ if $t \neq t_0$ and $x_t^{t_0} = x$ if $t = t_0$. We have $f((x_t)_{t \in T}) = \sum_{t \in T} f_t(x_t)$ for every $(x_t)_{t \in T} \in \ell_1(t,X)$. Let $M = \sup\{f((x_t)_{t \in T}): (x_t)_{t \in T} \in B_{\ell_1(T,X)}\}$ and, for every $t \in T$, let $M_t = \sup\{f_t(x): x \in B_X\}$. Clearly $M = \sup\{M_t: t \in T\}$. For a given $\epsilon > 0$, there exists a $p \in T$ such that $M_p + \frac{\epsilon}{2} \geq M$ and, since X has the Bade property, there exists an $e \in B_X$ such that $f_p(e) + \frac{\epsilon}{2} \geq M_p$. We have $f(e^p) + \epsilon \geq M$ and $e^p \in \operatorname{Ext} B_{\ell_1(T,X)}$. This proves that $\ell_1(T,X)$ has the Bade property.

Suppose $\ell_1(T, X)$ has the Bade property. Let $g: X \to \mathbb{R}$ be a continuous linear form. We choose $t_0 \in T$ and we define $f: \ell_1(T, X) \to \mathbb{R}$ by $f((x_t)_{t \in T}) = g(x_{t_0})$.

It can be proved that

$$\sup \{g(x): x \in B_X\} = \sup \{f((x_t)_{t \in T}): (x_t)_{t \in T} \in \text{Ext} B_{\ell_1(T,X)}\}$$

and $\sup\{g(x): x \in \operatorname{Ext} B_X\} = \sup\{f((x_t)_{t \in T}): (x_t)_{t \in T} \in \operatorname{Ext} B_{\ell_1(T,X)}\}$. Since $\ell_1(T,X)$ has the Bade property we deduce that

$$\sup \{g(x): x \in B_X\} = \sup \{g(x): x \in \operatorname{Ext} B_X\} \quad \Box$$

Remark 4.3. If X is a Banach space and K a compact Hausdorff space, it is well known ([6]) that $C(K,X)^* \simeq \operatorname{rcabv}(\Sigma,X^*)$ where Σ is the σ -field of Borel subsets of K and rcabv (Σ,X^*) is the Banach space of all regular countably additive measures F on Σ with values in X^* and of finite variation on K, endowed with the total variation norm (||F|| = |F|(K)). It can be proved that $\operatorname{Ext} B_{\operatorname{rcabv}(\Sigma,X)} = \{x\delta_t : x \in \operatorname{Ext} B_X, t \in K\}$, where $x\delta_t$ denote the measure $x\delta_t : S \to X$ defined for $A \in \Sigma$ by $x\delta_t(A) = x$ if $t \in A$ and $x\delta_t(A) = 0$ if $t \notin A$.

Theorem 4.4

Let X be a Banach space and K a compact Hausdorff space. The following properties are equivalent: a) $C(K)^*$ and X^* have the Bade property; b) $C(K,X)^*$ has the Bade property.

284 Aizpuru

Proof. That a) implies b) is a consequence of the fact that if K is dispersed then reaby $(\Sigma, X^*)^* \sim \ell_1(K, X^*)$. In order to prove that b) implies a) we note that if K is not dispersed then there exist an atomless measure $\mu: \Sigma \to [0,1]$ such that $\mu(K) = 1$. We choose an $x^* \in S_{X^*}$ and let $F: \Sigma \to X^*$ be the measure defined for $A \in \Sigma$ by $F(A) = \mu(A)x^*$. We have that $|F| = \mu$. If $\epsilon \in (0, \frac{1}{2})$, there exists $\sum_{i=1}^n \alpha_i x_i^* \delta_{t_i} \in \operatorname{Co}\left(\operatorname{Ext} B_{\operatorname{reaby}(\Sigma, X^*)}\right)$ such that $|F - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}| < \epsilon$. Hence $\mu(K \setminus \{t_1, \ldots, t_n\}) < \epsilon$, which implies that $\mu(K) < \epsilon$. This contradiction proves that K must be dispersed. Let $x^* \in B_{X^*}$ and $\epsilon > 0$. Let $t_0 \in K$ be arbitrary. Since $C(K, X^*)$ has the Bade property there exists $\sum_{i=1}^n \alpha_i x_i^* \delta_{t_i} \in \operatorname{Co}\left(\operatorname{Ext} B_{\operatorname{reaby}(\Sigma, X^*)}\right)$ such that $||x^* \delta_{t_0} - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}|| < \epsilon$. Therefore $||x^* \delta_{t_0}(K) - \sum_{i=1}^n \alpha_i x_i^* \delta_{t_i}(K)|| = ||x^* - \sum_{i=1}^n \alpha_i x_i^*|| < \epsilon$. \square

Corollary 4.5

Let K be a compact Hausdorff space and X a Banach space such that X^* has the λ -property. Then the following properties are equivalent: a) K is dispersed; b) $C(K,X)^*$ has the Bade property; c) $C(K,X)^*$ has the λ -property.

Remark 4.6. If K is an infinite set $C(K,X)^*$ does not have the uniform λ -property.

Corollary 4.7

Let K be a compact Hausdorff space and X an arbitrary Banach space. The following properties are equivalent: a) $C(K,X)^*$ has the λ -property; b) $C(K)^*$ and X^* have the λ -property.

Remark 4.8. By means of the former results we can conclude that the Banach space $X = C(\gamma \omega, Y)$, where Y is the space of the example 3.8. is such that X has the Bade property, X^* has the λ -property but X fails to have the λ -property. In the bibliography we have not found any Banach space with these characteristics

References

- 1. A. Aizpuru and F. Benítez, The Bade property and the λ -property in spaces of convergent sequences, *Collect. Math.* **42**, 3 (1991), 245–251.
- 2. R.M. Aron and R.H. Lohman, A geometric function determined by extreme points of the unit ball of a normed spaces, *Pacific Journal of Math.* **2** (1987), 209–231.
- 3. R.M. Aron, R.H. Lohman and A. Suarez, Problem Related to the Convex Series Representation Property and Rotundity in Banach Spaces, (1990) *Proc. Amer. Math. Soc.* **111**, 1 (1991), 151–155.

- 4. W.G. Bade, *The Banach space C(S)*, Aarhus Univ. Lecture Notes **26**, section 1 (1971).
- 5. F. Benítez, Estudio de los espacios C(K,R) con K compactificación 0-dimensional de ω , Universidad de Sevilla, 1989.
- 6. J. Brooks and P. Lewis, Linear operators and vector measures, *Trans. of the Amer. Math. Soc.* **192** (1974), 139–162.
- 7. Dugundji, An extension of Tietze's theorem, *Pacific J. Math.* (1951), 353–367.
- 8. R.H. Lohman and T.J. Shura, Calculation of the λ -function for several classes of normed linear spaces, *Proceedings in Honor of Ky Fan* (Marcel Dekker L.N.) 1987.
- 9. R.H. Lohman and T.J. Shura, The λ -property for generalized direct sums of normed spaces, *Bull. Australian Math. Soc.* **41** (1990), 441–450.
- 10. J. Nagata, Modern General Topology, North-Holland Math. 33, (1985).
- 11. J.C. Navarro Pascual, Sobre la λ -propiedad en espacios de sucesiones convergentes, *XV Jornadas Luso-Españolas de Matemáticas*, 1990. Evora. Portugal.
- 12. D. Oates, A sequentially convex hull, Bull. London Math. Soc. 22 (1990), 467–468.