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Abstract

In this paper we relate the Bade property with some new geometric properties,
similar to the λ–property (but certainly different), on C(K,X) spaces. We
also study the Bade property and the λ–property in the C(K,X)∗ spaces.

1. Introduction

Given a normed space X, BX denotes its closed unit ball, SX the unit sphere of
X, and ExtBX the set of extreme points of BX . The space X is said to have the
Bade–property (B.P.) if Co(ExtBX) = BX . The following concepts were introduced
by R.M. Aron and R.H. Lohman [2]: if x ∈ BX , a triple (e, y, λ) is said to be amenable
to x if e ∈ ExtBX , y ∈ BX , 0 < λ < 1 and x = λe+(1−λ)y. In this case, we define
λ(x) = sup {λ : (e, y, λ) is amenable to x}. X is said to have the λ–property if each
x ∈ BX admits an amenable triple. If, in addition, λ(X) = inf {λ(x) : x ∈ BX} > 0,
then X is said to have the uniform λ–property.

Let K be a compact Hausdorff space and let X be a normed space. By C(K,X)
we denote the Banach space of all continuous X–valued functions f on K, endowed
with the uniform norm. The space C(K, R) will be denoted by C(K). Bade’s theo-
rem ([4]) states that C(K) has the Bade property if and only if K is 0–dimensional.
In [2], it is shown that if X has the λ–property then X has the Bade property, but
it’s also shown that the converse assertion is false by means of C(K, C) where K is
the unit ball of C. In [5], it’s shown that if K is a compact Hausdorff space, then
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C(K) has the λ–property if and only if K is 0–dimensional and, in this particular
case, C(K) has the uniform λ–property and λ (C(K)) = 1

2 . The λ–property on the
sum of normed spaces is studied in [8] and [9]. In [3], it is shown that X has the
λ–property if and only if BX is the sequentially–convex hull of its extreme points;
that is to say, for every x ∈ BX , there exist sequences (αn)n of positive reals and
(en)n ⊂ ExtBX with x =

∑∞
i=1 αiei and

∑∞
i=1 αi = 1. As a consequence, if K is a

compact Hausdorff space, then BC(K) is the sequentially–convex hull of its extreme
points if and only if K is 0-dimensional. This result also appears in [12].

Given a normed space X, the space of convergent sequences in X, endowed with
the supreme norm, will be denoted by c(X).

2. The λ–property in C(K,X) spaces

It is well known that if K is a compact Hausdorff space and X is a Banach space,
then for every closed subset M of K and every continuous function g : M → X

there exists a continuous function f : K → X such that f |M = g ([10]). From this
result, we obtain:

Lemma 2.1

Let K be a 0–dimensional compact Hausdorff space and let X be a Banach

space. For every closed subset M of K and every continuous function g : M → SX

there exists a continuous function f : K → S such that f |M = g.

Proof. By the previous remark, there exists a continuous function h : K → X such
that h|M = g. Let A be a clopen set in K such that {t ∈ K : h(t) = 0} ⊂ A and
M ⊂ Ac. Let y ∈ X be such that ‖y‖ > ‖h‖. The function f : K → X defined by
f(t) = χA(t)y+h(t)

‖χA(t)y+h(t)‖ verifies that f(K) ⊂ SX and f |M = g. �

Remark 2.2. A similar result, when K is a compact metric space and X an infini-
te–dimensional normed space, appears in [7].

The following results, when K is a compact metric space instead of a
0–dimensional compact space, are essentially, proved in [2], and can be proved by
using similar techniques.

Proposition 2.3

Let K be a compact Hausdorff space and let X be a strictly convex Banach

space.
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1. If f ∈ BC(K,X) has an amenable triple, then λ(f) ≤ 1+mf

2 , where mf =
inf{‖f(t)‖ : t ∈ K}.

2. If f ∈ BC(K,X) and mf > 0, then f has an amenable triple, λ(f) = 1+mf

2 and
λ(f) is attained.

3. If K is 0–dimensional, then C(K,X) has the uniform λ–property and λ(f) ≤
1+mf

2 , for every f ∈ BC(K,X).

Remark 2.4. From proposition 2.3.3 we deduce that c(X) has the uniform λ–pro-
perty when X is a strictly convex Banach space, since c(X) is isometric to C(γω,X),
where γω is the Alexandroff compactification of the discrete space ω. In [1], it is
proved that c(X) has the Bade property if and only if X has it. We shall see, in 3.8,
that this result does not hold for the λ–property.

Remark 2.5. Let K be a compact Hausdorff space and let X be a normed space.
Let S be the subspace of C(K,X) of the finite-valued functions. A function f ∈ S
can be written as f =

∑n
i=1 xiχAi where {x1, . . . , xn} ⊂ X and {A1, . . . , An} is a

family of disjoint clopen sets in K whose union is K. It is well known that when
X = R, K is 0–dimensional if and only if S is dense in C(K, R). From this result it
follows that, for an arbitrary normed space X, K is 0-dimensional if and only if S
is dense in C(K,X). In this case we also have that S ∩SC(K,X) is dense in SC(K,X).

3. Definition and study of a new geometric property

Let X be a normed linear space such that ExtBX �= ∅. We denote by TX , or when
no doubt exists by T , the subset of BX of the points that have an amenable triple.
For every α ∈ (0, 1], we denote by Tα the set of points x ∈ T such that λ(x) > α.
Since BX \ SX ⊂ T , T is dense in BX .

Definition 3.1. Let X be a normed space. We shall say that:
1. X has the dense λ–property (DλP) if T ∩ SX is dense in SX .
2. X has the uniform dense λ–property (UDλP) if, for some α ∈ (0, 1], Tα ∩ SX is

dense in SX .
3. X has the weak uniform dense λ–property (WUDλP) if for some α > 0

Tα is dense in BX . In this case we shall denote λW = sup{α > 0 :
Tα is dense in BX}.
It is straightforward to prove that if X has the UDλP, then X has the WUDλP.

We don’t know if the WUDλP implies the UDλP.

Proposition 3.2
If X is a normed space with the WUDλP then X has the Bade property.
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Proof. Let f : X → R a continuous linear form and let ε > 0. We know that,
for some β > 0, Tβ is dense in BX and hence there exist a z ∈ Tβ such that
supx∈BX

f(x)− βε < f(z) where z = βe + (1− β)y, e ∈ ExtBX and y ∈ BX . Hence
supx∈BX

f(x) − βε < f(z) ≤ βf(e) + (1 − β) supx∈BX
f(x) and supx∈BX

f(x) − ε <

f(e). This result clearly implies that supx∈BX
f(x) = supx∈ExtBX

f(x). �

The Bade property is not equivalent to the WUDλP (see 3.7) the following
result does display the difference.

Proposition 3.3

The following properties on a normed space X are equivalent:

(i) X has the WUDλP.

(ii) There exists α > 0 such that for every x ∈ BX and ε > 0 there exists an element∑n
i=1 aiei ∈ Co (ExtBX) such that ‖∑n

i=1 aiei − x‖ < ε and ai > α for some

i ∈ {1, 2, . . . , n}.

Proof. Suppose i), let α > 0 be such that Tα is dense in BX = Co (ExtBX). For
every x ∈ BX and ε > 0 there exists a y ∈ Tα such that ‖x − y‖ < ε

2 . We can write
y = αe + (1 − α)z for some e ∈ ExtBX and z ∈ BX .

Choose
∑n

i=2 biei ∈ Co (ExtBX) such that ‖z−∑n
i=2 biei‖ < ε

2(1−α) . If we take
a1 = α, e1 = e and ai = (1 − α)bi, for i > 1, then

∑n
i=1 aiei ∈ Co (ExtBX) and

‖x − ∑n
i=1 aiei‖ < ε.

Conversely, suppose ii). For a given x ∈ BX and ε > 0, choose
∑n

i=1 aiei ∈
Co (ExtBX) such that a1 > α and ‖x−∑n

i=1 aiei‖ < ε, then (e1, z, α) is an amenable
triple for

∑n
i=1 aiei where z = 1

1−α (a1 − α)e1 + 1
1−α (

∑n
i=1 aiei). �

Proposition 3.4

Let K be a compact Hausdorff space and let X be a normed space.

(a) If X has the λ–property, then there exists an amenable triple for every finite–

valued function f ∈ BC(K,X). If λ(X) > β then λ(f) > β.

(b) If K is 0–dimensional and X has the λ–property (resp. the uniform λ–property),

then C(K,X) has the DλP (resp. the UDλP).

Proof. a) Let f =
∑n

i=1 xiχAi
where A1, . . . , An are disjoint clopen sets with

A1 ∪ . . . ∪ An = K and {x1, . . . , xn} ⊂ BX . Let 0 < λ < min1≤i≤n λ(xi). For
every i ∈ {1, . . . , n} there exists an amenable triple (ei, yi, λ) for xi. Hence (e, g, λ)
is an amenable triple for f , where e =

∑n
i=1 eiχAi and g =

∑n
i=1 yiχAi . The proof

of b) is obvious. �
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Remark 3.5. If X has the DλP (resp. the UDλP), it is straightforward to prove
that C(K,X) has the DλP (resp. UDλP), for any 0–dimensional compact Hausdorff
space K.

Examples 3.6: There exists a normed space X with the DλP which lacks the
λ–property:

Let X1 (resp. X2) be a normed space without (resp. with) the λ–property. Let
X = X1 × X2 endowed with the norm ‖(x1, x2)‖ = ‖x1‖ + ‖x2‖. It is clear that
ExtBX = {(e1, 0) : e1 ∈ ExtBX1} ∪ {(0, e2) : e2 ∈ ExtBX1}. Since X1 does not
have the λ–property, X does not have it either. Nevertheless, we are going to prove
that X has the DλP. Let x = (x1, x2) ∈ SX and ε > 0.
(a) If ‖x1‖ = 1, then x2 = 0. Let e2 ∈ ExtBX2 and let y =

(
(1 − ε

3 )x1,
ε
3x2

)
. We

have that ‖x − y‖ = 2ε
3 < ε, ‖y‖ = 1 and y = ε

3 (0, e2) + (1 − ε
3 )(x1, 0).

(b) If ‖x1‖ < 1 then x2 �= 0 and if x2 ∈ ExtBX2 then x ∈ ExtBX . When
x2 �∈ ExtBX2 it is straightforward to prove that there exists an amenable
triple (e2, y2, λ) for x2 such that ‖x2‖ = λ + (1 − λ)‖y2‖. Hence (x1, x2) =
λ(0, e2) + (1 − λ)( 1

1−λx1, y2) and x has an amenable triple.
Let us observe that, in this case, if BX1 does not have extreme points then X

does not have the Bade property since Co (ExtBX) ⊂ {0} × X2. Hence the DλP
does not imply the Bade property.

Examples 3.7: It is well know that #1 has the λ–property (hence, the Bade
property) but lacks the uniform λ–property (Cf. [2]). We now prove that #1 lacks
the WUDλP.

If there exists an α ∈ (0, 1) such that Tα is dense in B�1 , then we can choose
n ∈ N such that 2n−1

n2 < α. Let X = (xi)i∈N be the sequence defined by

xi =




1
n

if i ≤ n

0 if i > n .

Let z ∈ Tα be such that ‖x − z‖ < 1
n2 and let (e, y, α) be an amenable triple

for z. Since e = (ei)i∈N ∈ ExtB�1 , there exists p ∈ N such that

ei =

{
δ if i = p

0 if i �= p.

where δ is either +1 or −1.
Since ‖x − z‖ < 1

n2 ,
∑

i �=p

∣∣ 1
n − (1 − α)yi

∣∣ < 1
n2 and hence yi > n−1

n2(1−α) , for
every i �= p. This contradiction proves our assertion.
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Examples 3.8: There exists a normed space with the WUDλP which lacks the
λ–property.

The normed space that we use is considered in [2]. Let C1 denote the convex hull
of the union of the sets {(x, y, 0) : |x|, |y| ≤ 1} and {(x, 0, z) : x2 + z2 = 1, z ≥ 0}
in R

3. Let C = (0, 0, 1) + C1 and let ‖ · ‖ denote the norm on R
3 whose unit ball

is B = Co(C ∪ −C). Let X = (R3, ‖ · ‖). The space X has the uniform λ–property
since X is finite dimensional. Nevertheless, Navarro [11] proved that c(X) does not
have the λ–property (the sequence (xn)n∈N, where x2n =

(
cos π

2n , 0, 1 + sin π
2n

)
and

x2n−1 = (1, 1
n , 1), does not have an amenable triple). As a consequence of 3.4 we

can say that c(X) has the UDλP and hence, the WUDλP.

4. The Bade and the λ–property in C(K,X)∗ spaces

In [5], it is shown that the following properties on a compact Hausdorff space are
equivalent:

a) K is dispersed; b) C(K)∗ has the λ–property; c) C(K)∗ has the Bade pro-
perty.

Now we investigate the Banach spaces X such that a similar result holds by
considering the spaces C(K,X) instead of the spaces C(K).

Let T be a set and let X be a normed space. We consider the space #1(T,X) =
{(xt)t∈T :

∑
t∈T ‖xt‖ < ∞} endowed with the norm ‖(xt)t∈T ‖ =

∑
t∈T ‖xt‖. If

T = N we write #1(X) instead of #1(N, X).
The following result, in the case T = N, appears in [2] and [8]. It can be proved

by the same techniques.

Lemma 4.1

(a) (xt)t∈T ∈ ExtB�1(T,X) if and only if there exists a t0 ∈ T such that xt0 ∈
ExtBX and xt = 0 for t ∈ T \ t0; (b) #1(T,X) has the λ–property if and only if X

has it; (c) If T is an infinite set #1(T,X) does not have the uniform λ–property.

Theorem 4.2

The space #1(T,X) has the Bade property if and only if X has the Bade pro-

perty.
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Proof. X has the Bade property if and only if for every continuous linear form
h : X → R

sup
x∈BX

h(x) = sup
x∈ExtBX

h(x) .

Suppose X has the Bade property. For every f ∈ #1(T,X)∗ let ft0 : X → R

denote the continuous linear form defined by ft0(x) = f(xt0), where xt0 ∈ #1(T,X)
is given by xt0

t = 0 if t �= t0 and xt0
t = x if t = t0. We have f ((xt)t∈T ) =

∑
t∈T ft(xt)

for every (xt)t∈T ∈ #1(t,X). Let M = sup
{
f ((xt)t∈T ) : (xt)t∈T ∈ B�1(T,X)

}
and,

for every t ∈ T , let Mt = sup{ft(x) : x ∈ BX}. Clearly M = sup{Mt : t ∈ T}. For
a given ε > 0, there exists a p ∈ T such that Mp + ε

2 ≥ M and, since X has the Bade
property, there exists an e ∈ BX such that fp(e)+ ε

2 ≥ Mp. We have f(ep)+ ε ≥ M

and ep ∈ ExtB�1(T,X). This proves that #1(T,X) has the Bade property.
Suppose #1(T,X) has the Bade property. Let g : X → R be a continuous linear

form. We choose t0 ∈ T and we define f : #1(T,X) → R by f ((xt)t∈T ) = g(xt0).
It can be proved that

sup {g(x) : x ∈ BX} = sup
{
f ((xt)t∈T ) : (xt)t∈T ∈ ExtB�1(T,X)

}
and sup {g(x) : x ∈ ExtBX} = sup

{
f ((xt)t∈T ) : (xt)t∈T ∈ ExtB�1(T,X)

}
. Since

#1(T,X) has the Bade property we deduce that

sup {g(x) : x ∈ BX} = sup {g(x) : x ∈ ExtBX} �

Remark 4.3. If X is a Banach space and K a compact Hausdorff space, it is well
known ([6]) that C(K,X)∗ � rcabv (Σ, X∗) where Σ is the σ–field of Borel subsets of
K and rcabv (Σ, X∗) is the Banach space of all regular countably additive measures
F on Σ with values in X∗ and of finite variation on K, endowed with the total
variation norm (‖F‖ = |F |(K)). It can be proved that ExtBrcabv(Σ,X) = {xδt : x ∈
ExtBX , t ∈ K}, where xδt denote the measure xδt : S → X defined for A ∈ Σ by
xδt(A) = x if t ∈ A and xδt(A) = 0 if t �∈ A.

Theorem 4.4

Let X be a Banach space and K a compact Hausdorff space. The following

properties are equivalent: a) C(K)∗ and X∗ have the Bade property; b) C(K,X)∗

has the Bade property.
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Proof. That a) implies b) is a consequence of the fact that if K is dispersed then
rcabv (Σ, X∗)∗ ∼ #1(K,X∗). In order to prove that b) implies a) we note that if
K is not dispersed then there exist an atomless measure µ : Σ → [0, 1] such that
µ(K) = 1. We choose an x∗ ∈ SX∗ and let F : Σ → X∗ be the measure defined
for A ∈ Σ by F (A) = µ(A)x∗. We have that |F | = µ. If ε ∈ (0, 1

2 ), there ex-
ists

∑n
i=1 αix

∗
i δti ∈ Co

(
ExtBrcabv(Σ,X∗)

)
such that ‖F − ∑n

i=1 αix
∗
i δti‖ < ε. Hence

µ (K \ {t1, . . . , tn}) < ε, which implies that µ(K) < ε. This contradiction proves
that K must be dispersed. Let x∗ ∈ BX∗ and ε > 0. Let t0 ∈ K be arbitrary. Since
C(K,X∗) has the Bade property there exists

∑n
i=1 αix

∗
i δti ∈ Co

(
ExtBrcabv(Σ,X∗)

)
such that ‖x∗δt0 −

∑n
i=1 αix

∗
i δti‖ < ε. Therefore ‖x∗δt0(K) − ∑n

i=1 αix
∗
i δti(K)‖ =

‖x∗ − ∑n
i=1 αix

∗
i ‖ < ε. �

Corollary 4.5

Let K be a compact Hausdorff space and X a Banach space such that X∗ has

the λ–property. Then the following properties are equivalent: a) K is dispersed; b)

C(K,X)∗ has the Bade property; c) C(K,X)∗ has the λ–property.

Remark 4.6. If K is an infinite set C(K,X)∗ does not have the uniform λ–property.

Corollary 4.7

Let K be a compact Hausdorff space and X an arbitrary Banach space. The

following properties are equivalent: a) C(K,X)∗ has the λ–property; b) C(K)∗ and

X∗ have the λ–property.

Remark 4.8. By means of the former results we can conclude that the Banach
space X = C(γω, Y ), where Y is the space of the example 3.8. is such that X has
the Bade property, X∗ has the λ–property but X fails to have the λ–property. In
the bibliography we have not found any Banach space with these characteristics
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